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Dislocation model of the low-temperature elastic anomalies of solid helium
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The elastic properties of hexagonal close-packed 4He samples have been shown to display various anomalies.
As the temperature is lowered below ∼0.2 K, the elastic shear modulus appears to stiffen and the moment
of inertia to drop in a concomitant manner. The former phenomenon is taken as evidence for the pinning of
dislocations, and the latter for the appearance of supersolidity. The startling close relationship between these
two observables is studied within the framework of classical deformable-body mechanics. A model based on the
formation by plastic flow of extremely soft quasiplanar, interconnected layers of dislocations is solved analytically
and numerically. This model relates quantitatively the change in moment of inertia to the drop in elastic constant
and can account for most experimental observations. Other situations, to which its relevance may seem more
doubtful, are discussed.
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I. INTRODUCTION

Helium makes an intriguing solid. Both 4He and 3He
isotopes crystallize from the liquid at absolute zero under
a pressure of 24.5 and 34.5 bars, respectively. They form
hexagonal close-packed (hcp) crystals with similar elastic
properties. These crystals are very soft owing to their small
densities and weak atomic interactions. The paucity of slip
directions causes crystals with the hcp structure to be quite
brittle: they fracture very readily. This combination of softness
and brittleness in the helium crystals makes them very prone
to plastic deformation and the formation of dislocation lines.

Because of the fast boson exchange in solid 4He and
the presence of defects, the possibility that a Bose-Einstein
condensate would form within the crystalline lattice below a
certain temperature was raised by a number of authors, starting
with Penrose and Onsager in the 1950s.1 These authors argued
that superfluid coherence, or off-diagonal long-range order
(ODLRO), would not occur in an ideally perfect crystal but
possibly could in a distorted lattice. Although the proof that
they gave was criticized by others,2–4 it marked the beginning
of a long-lasting search, both theoretical and experimental, for
features that could reveal the existence of such a “supersolid”
state in a suitably disordered crystal.

This search received strong renewed impetus after the
observation by Kim and Chan (see the reviews5) of an anomaly
in the rotational inertia of 4He solid samples as seen as a
period shift in high-quality-factor torsional oscillators (TO).
The increase in the period of the oscillator resonance below
a temperature of ∼0.2 K, now observed by many groups, is
taken to signal the decoupling of part of the helium mass
from the motion of the oscillator bob. This mass-decoupling
effect, discussed in particular by Leggett4 and called in the
present context nonclassical rotational inertia (NCRI), occurs
in a number of TO experiments with widely different sizes and
geometries.

In the framework of the time-honored two-fluid model
for superfluidity,6 such an observation would signal the
appearance of a superfluidlike fraction in the solid. Such
a “condensate” would settle to rest and decouple from the
oscillator walls as the temperature is lowered, reducing
the moment of inertia. This interpretation is borne out by

the fact that, if the oscillator geometry is modified by a
partition blocking the closed loop along which the superflow
is supposed to take place,7,8 the effect disappears. Also, NCRI
is not observed when the oscillator is filled with 3He instead of
4He,7,9 which constitutes a strong hint that quantum statistics
plays a fundamental role.

The TO measurements do seem to suggest that some form
of superfluid behavior occurs in solid 4He below 0.1 ∼ 0.2 K,
but other unambiguous manifestations of the existence of a true
superfluid component, such as a nondissipative dc flow,10–13

or a persistent current, a second sound14 or fourth sound15

mode, the fountain effect, the signature of a BEC condensate
on neutron16–18 or x-ray diffractograms19 are still lacking in
spite of the efforts and ingenuity of many research groups.

Shear modulus measurements in solid helium at low tem-
perature provide another class of anomalous elastic properties.
These measurements span many years, starting with the early
work of Wanner et al.20 soon followed by others.21–25 They
have recently been extended to the same range of temperatures
and 3He impurity concentrations as the TO experiments.26–29

A marked decrease in the shear modulus G takes place in most
samples of hcp 4He upon warming from T ∼ 0. The magnitude
of the softening varies from sample to sample, depending in
particular on the 3He impurity content x3 and the cooling
history. The drop in G can be spectacular, down to less than
20% from the T � 0 value.21,25,28,29

Day and Beamish26 have argued that the T and x3

dependencies of G were mimicking closely those of the period
shifts in TO experiments. In fact, the striking similarities
between the shear modulus and the TO resonance frequency
drops make it hard not to believe that the two phenomena are
somehow related. Direct experimental studies of this possible
connection have led to diverging conclusions.30–33

This paper34 outlines one possible such link between those
two different mechanical properties of hcp 4He. It differs from
similar attempts by other workers35–37 because it recognizes
from the start that the large drop in G requires the bunching of
dislocation lines into extended quasiplanar highly deformable
sheets, as described in Sec. II. The consequences of these
assumed defects are derived analytically for the shear modulus
drop and for the apparent change of inertia in Sec. III. These
two quantities can thus be directly linked to one another.
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Numerical values are derived in Sec. IV, where it is shown that
this simple model may account quantitatively for a number of
experimental observations. The model does not explain readily
certain classes of experiments, notably those in confined
geometries, and also the absence of inertia anomaly in solid
3He. Some speculations on these topics are offered in Sec. V.

II. SOFT LAYER MODEL

A. Planar layers of dislocations

As mentioned above, the two helium crystals are very soft:
the longitudinal and transverse sound velocities, in the 200 to
500 m/s range, are low. They are also very fragile: the yield
strength is of the order of 0.2 ∼ 0.5 bar,38,39 or very much
less depending on the experimental conditions.40 Dislocations
appear readily under very weak mechanical perturbations or
thermally induced stress. Plastic flow takes place during the
formation and subsequent cooling of the solid helium sample.
In the process, dislocations form and migrate.

Early sound propagation measurements in hcp 4He in the 5–
50 MHz frequency range20,23,41,42 have revealed an anomalous
temperature dependence below 1 K of the longitudinal sound
velocity. This anomaly has been attributed to the unpinning of
the dislocation lines as the trapped 3He impurities escape from
the dislocation cores by thermal activation. This interpretation
is well documented through the work of many authors22,24,25

and, more recently, by Syshchenko et al.43

The analysis of the high-frequency sound propagation
measurements yields typical values23 ∼ 106 cm−2 for the
density of dislocation lines � and 5 × 10−4 cm for the
average distance between the nodes of the dislocation network
LN, assumed random and homogeneously distributed. The
dimensionless quantity �L2

N is thus found of the order of
∼0.25.

Lower-frequency measurements21,22,25 interpreted in the
same manner with the help of the following relation for the
change of the effective shear elastic constant Geff relative to
the T = 0 value G,44

G/Geff = 1 + 24(1 − ν)��L2
N/π3 , (1)

give, assuming a value of 0.3 for the Poisson ratio ν and with
the highest value for the orientation parameter � � 1/2, much
larger values of the quantity �L2

N. The shear modulus mea-
surements by Paalanen, Bishop, and Dail25 were carried out at
a low frequency of 331 Hz and lead to a value of �L2

N � 1.0 to
2.5 depending on samples. More recent measurements26,28,45,46

have confirmed these results. A softening of 86% has been
observed in an ultrapure monocrystalline 4He sample by Rojas
et al.29 at frequencies in the 10–20 kHz range. In this extreme
situation, the quantity �L2

N would exceed 20 using the same
values for ν and � as above.

These values of �L2
N, obtained at long wavelengths, are

much larger than the upper limit for a dense hexagonal
network of dislocations, which espouses the underlying lattice
symmetry. As shown in the Appendix, this limit is 1/

√
2

for an ideal hcp network. The corresponding upper limit
of G/Geff as given by Eq. (1) is 1.2, which falls short of
observations21,25,28,29 by a wide margin: edge dislocation lines

escape from their preferential homogeneous network structure
and become quite extended.

This anomaly clearly points towards the formation of
inhomogeneous dislocation structures. The dislocation lines
collect in dense arrays, such as the mosaic structure that
forms along the boundaries between grains with slightly
misaligned lattice vectors47 or, more generally, in extended
planar structures. This rearrangement takes place during the
formation of the hcp 4He samples and under thermal stress
during cool down.

It has been shown by numerical simulations of dislocation
dynamics, notably by Amadeo and Ghoniem,48,49 that dis-
locations collect into different planar structures according to
different applied perturbations. Planar arrays composed of sets
of dislocation dipoles lying in planes containing the direction
of the critical resolved shear stress form under monotonic
stress conditions. Other types of structures, slip bands of
parallel dislocation lines or dislocation cells, may appear
under cyclic perturbations, provided, e.g., by mechanical
vibrations. These planar defects have been observed in a
number of metallurgical samples.47 Their phenomenology is
well documented, as reviewed, e.g., by Takeuchi and Argon50

and others. Such dislocation substructures have also been
observed in hcp 4He by x-ray topography by Iwasa et al.51

and by transmission Laue diffraction by Bossy et al.52

These defect structures are thicker than the Franck networks
that separate two grain boundaries of low-tilt angle. They
are quite different from the random network assumed in
the Granato-Lücke model,44 as already mentioned. They can
be viewed as resulting from the propagation of dislocation
pile-ups under thermal stress in a way similar to the formation
of cracks in usual hcp metals.53 Solid helium exists only under
positive pressure and does not actually crack: other types of
extended defects appear and enable the crystal to yield in the
deformation directions imposed by the rigid wall boundaries.

The dislocation arrays formed in such a manner are densely
packed and have a high density of long dislocation lines;
dislocations interact strongly and organize themselves in
extended structures of parallel lines. They become extremely
mobile when unadorned of the 3He impurities that pin them to
the lattice at T � 0.2 K and when unhampered by thermally
excited phonons that prevail at T � 0.8 K. Following the same
line of reasoning that leads to Eq. (1), the resulting large values
of �L2

N lead to very soft and easily deformable layers. These
layers separate regions with depleted dislocation densities but
of enhanced crystalline quality in which deformation also
occurs quite readily,29 at least in the directions of easy glide,
but with the geometrical limit �L2

N � 2−1/2.

B. Strain standing waves: Homogeneous case

The simple model to be studied below assumes the existence
of quasiplanar dislocation structures that facilitate both plastic
and elastic deformations. To make the problem easily tractable
analytically, a fully planar geometry is assumed: the helium
sample is taken to be confined between two parallel plane walls
located at z = 0 and R and extending to infinity along the x

and y axes. The deformation u induced in the sample depends
on z and t only (see Fig. 1); the problem is one dimensional
and easily solvable.
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FIG. 1. (Color online) Forms of the stationary wave in TO
experiments pictured as the relative displacement u(z)/u0 for z

varying from 0 to R for various dimensionless compliances κ of the
soft layers, taken to be equal, for R = 1 cm at a frequency of 1 kHz
(kR = 0.2354). The soft layers lay at z1 = 0.3R and z2 = 0.9R,
at the interfaces between slab 0, left, slab 1, middle, and slab 2,
right. The dashed-dotted lines mark the discontinuities of u(z). The
dashed-dashed line represents the elastic behavior with no soft layers.

Shear stresses and strains are produced in the sample either
by moving one plane, e.g., that at z = 0 (which would be the
transmitter in the shear modulus experiment) with respect to
the z = R plane, held steady (which would be the receiver).
Torsional oscillator experiments are mimicked by moving both
bounding walls in unison, letting the sample inertia develop
internal stresses.

If the helium sample is homogeneous with a density ρ

and a shear modulus G independent of position and time (no
viscoelastic effect,54 no internal structure), the deformation
u(z,t) obeys the following partial differential equation:

ρ
∂2u

∂t2
= G

∂2u

∂z2
. (2)

This equation describes the propagation of transverse plane
waves with dispersion relation ω2 = c2

Tk2 and c2
T = G/ρ. The

harmonic solution of Eq. (2) at frequency ω/2π is the sum of
two counterpropagating waves:

u(z,t) = (u0+e
−ikz + u0−e

ikz)eiωt = u(z)eiωt . (3)

The constants of integration for shear measurements u S
0+ and

u S
0− are then given by

u S
0+

eikR
= −u S

0−

e−ikR
= u0

eikR − e−ikR
= u0, (4)

and the solution of Eq. (2) for the deformation as a function of
z can then be expressed under the following form:

u(z) = u0

sin k(R − z)

sin kR
.

The stress in the solid is derived from the deformation, still
disregarding the time dependence:

σ (z) = G
du

dz
= −ku0G

cos k(R − z)

sin kR
.

The force per unit area acting on the receiver is the opposite
of that acting on the body, namely, the internal stress

FR = −σ (R) = ku0 G

sin kR
,

so that the measured effective shear elastic modulus Geff is
such that

G

Geff
= u0

R

G

FR
= sin kR

kR
� 1 − ρω2R2

6 G
+ . . . . (5)

Equation (5) describes the change of the effective shear
modulus at finite frequency due to the elastic response of the
body. In the limit ω −→ 0, Geff reduces to G. For kR = π , the
body is set into resonance and, as damping has been neglected,
the effective shear modulus diverges. Higher-frequency modes
are not considered here.

For torsional oscillator measurements, this elastic response
of the body becomes the dominant effect. In these experiments,
the two walls at z = 0 and R are set into identical motion u0e

iωt .
The solution to Eq. (2) that satisfies the boundary conditions

u(z)|z=0 = u(z)|z=R = u0 (6)

can be written with the help of the following relations:

u M
0+

1 − eikR
= −u M

0−

1 − e−ikR
= u0

eikR − e−ikR
= u0. (7)

In particular, the stress σ (z) is found to be

σ (z) = G
du

dz
= −kGu0

cos k(R − z) − cos kz

sin kR
.

The quantity actually measured in the TO type of experiments
is the back-action of the sample on the measuring device,
namely, the total force FX + FR exerted by the solid helium
on both walls. This force is expressed, per unit area, by

FX + FR = σ (0) − σ (R) = 2kGu0

1 − cos kR

sin kR
(8)

� ρRω2u0

[
1 + ρω2R2

12G
+ . . .

]
. (9)

The meaning of Eqs. (8) and (9) is made clear by the prefactor
of the right-hand side of Eq. (9): ω2u0 is the acceleration
amplitude, ρR the “bare” inertial mass MI per unit area and,
in the square brackets, the elastic correction at finite frequency.
This “effective mass” correction increases with frequency up
to the resonance at kR = π where it becomes very large.

The shear modulus and effective mass corrections are
related through Eqs. (5) and (8). Taking, e.g., R = 1 cm,
a frequency ω/2π = 1 kHz, at a density ρ = 0.194 g/cm2

for which cT = 267 m/s, the effect of shear elasticity on
the effective mass amounts to 4.6 × 10−3, which is not
insignificant. To a drop by 20% in G corresponds an apparent
change in the mass by ∼10−3.
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C. Soft layers

To account for the effect of highly deformable dislocation
structures, the model is extended by introducing two soft layers
at z1 and z2 parallel to the rigid cell walls, as depicted in Fig. 1.
The slabs of solid helium that these soft layers delimit have
the elastic properties of the homogeneous crystal discussed in
Sec. II B above.

Strain and stress are continuous functions at the interface
between the slab of dislocation-free crystal and the soft
layer. Denoting the shear modulus in the soft layer Gs, shear
plane waves propagate with wave vector ks = √

ρ/Gs. The
propagation of the deformation-stress vector [u(z),σ (z)] in
the layer of thickness d is described by the transfer matrix

M(d) =
[

cos ksd (1/ksGs) sin ksd

−ksGs sin ksd cos ksd

]
.

Although the problem of finding how plane waves propagate
through the stack of slabs depicted in Fig. 1 is formally
solved by multiplying transfer matrices such as M(d), it saves
a number of algebraı̈c steps to let the thickness d and the
modulus Gs go to zero in such a way that d/Gs remains
constant and equal to α. The effect of the soft layer is
then lumped into a discontinuous jump in the deformation
proportional to the local stress, described, for the layer at z1,
by

u(z1 + d) = u(z1) + α1σ (z1),
(10)

σ (z1 + d) = −k2
s dGsu(z1) + σ (z1).

In the limit d → 0, the last equality expresses the continuity
of stress across the infinitely thin layer, while the displacement
experiences a discontinuity. These boundary conditions, which
could have been anticipated, also apply to the soft layer at z2

with slip parameter α2. In the following, the soft layers will be
described by their compliances αi/R, which are such that the
parameters κi = αiG/R are dimensionless quantities.

III. MODEL ANALYSIS

A. Wave propagation through the sample

With the boundary conditions [Eqs. (10)] describing the
soft layers, the propagation of the propagating and counter-
propagating waves through the three slabs of homogeneous
crystal with shear modulus G and obeying no-slip boundary
conditions at the walls can be found by straightforward algebra.
Wave propagation in slab 0, between z = 0 and z1 as shown in
Fig. 1, is represented by Eq. (3), which involves two integration
constants u0+ and u0−, the amplitudes of the counterpropagating
plane waves with pulsation ω and wave vectors ±k. Similar
solutions obtain in slab 1 between z1 and z2, and in slab 2
between z2 and z = R, involving constants u1+, u1− and u2+,
u2− respectively.

The amplitudes of the propagating and counterpropagating
waves in slab 2 are linearly related to those in slab 0:

u2+ = δ11u0+ + δ12u0−,

u2− = δ21u0+ + δ22u0−.

The deformation discontinuity at the soft layer at z1 yields the
following relations:

u1(z1) = u1+e
−ikz1 + u1−e

ikz1 = u0+(1 − iκ1kR)e−ikz1

+u0−(1 + iκ1kR)eikz1 ,

σ (z1) = − ikG(u0+e
−ikz1 − u0−e

ikz1)

= − ikG(u1+e
−ikz1 − u1−e

ikz1).

Similar relations hold between u1+, u1− and u2+, u2−. Elimi-
nating u1+ and u1− leads to the following expressions for the
coefficients δij of the matrix that describes wave propagation
through the stack of slabs 0, 1, 2:

δ11 =
(

1 − i
κ1

2
kR

) (
1 − i

κ2

2
kR

)
+ κ1κ2

4
k2R2 e2ik(z2 − z1) = δ′

11 + iδ′′
11, (11a)

δ12 = i
κ1

2
kR

(
1 − i

κ2

2
kR

)
e2ikz1

+ i
κ2

2
kR

(
1 + i

κ1

2
kR

)
e2ikz2 = δ′

12 + iδ′′
12, (11b)

δ21 = −i
κ1

2
kR

(
1 + i

κ2

2
kR

)
e−2ikz1

−i
κ2

2
kR

(
1 − i

κ1

2
kR

)
e−2ikz2 = δ∗

12, (11c)

δ22 =
(

1 + i
κ1

2
kR

) (
1 + i

κ2

2
kR

)
+ κ1κ2

4
k2R2 e−2ik(z2 − z1) = δ∗

11. (11d)

The matrix  = ||δij || [Eq. (11)] describing wave propaga-
tion in a conservative time-reversal-invariant system, is unitary
and has determinant unity:

δ11δ22 − δ12δ21 = 1. (12)

B. Shear modulus

For shear modulus measurements, the no-slip condition at
the walls reads as

u0+ +u0− = u0, u2+e
−ikR + u2−e

ikR = 0

= (δ11e
−ikR + δ21e

ikR)u0+ + (δ12e
−ikR + δ22e

ikR)u0−,

relations from which the integration constants u0+ and u0− can
be derived:

u S
0+

δ12e−ikR + δ22eikR

= −u S
0−

δ11e−ikR + δ21eikR

= u0

(δ12 − δ11)e−ikR − (δ21 − δ22)eikR
= ũ0. (13)

The quantities u S
0+ and u S

0− expressed by Eqs. (13) now include
the effect of the soft layers and should not be confused with
those given by Eq. (4), which do not. The shear stress at the
receiver σ (R) is given by

σ (R) = G
du

dz

∣∣∣
R

= −ikG(u2+e
−ikR − u2−e

ikR).
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Expressing u2+ and u2− in terms of u S
0+ and u S

0− using
Eqs. (11) and (12), σ (R) takes the following simple form:

σ (R) = −2ikGũ0 = −kGu0/D, (14)

with

D = (1/2i)[(δ12 − δ11)e−ikR − (δ21 − δ22)eikR]

= sin kR + κ1kR cos k(R − z1) cos kz1

+ κ2kR cos k(R − z2) cos kz2

− κ1κ2k
2R2 sin k(z2 − z1) cos k(R − z2) cos kz1.

The effective shear modulus Geff = −σ (R) R/u0 follows
readily from Eq. (14):

G

Geff
= D

kR
(15a)

� 1 + κ1 + κ2 − k2R2

6
− κ1 + κ2

2
k2R2

+ κ1k
2z1(R − z1) + κ2k

2z2(R − z2)

− κ1κ2k
2R (z2 − z1) + . . . . (15b)

For typical numerical values, such as those used for the
graphs in Fig. 1, the first two terms of the expansion of 1/Geff

with respect to kR [Eq. (15b)] fall within 1% of the exact
value given by Eq. (15a). The zeroth-order term could have
been written from scratch. The correction to the inertial mass
turns out to be less transparent and is considered in the next
section.

C. Effective mass

The derivation of the apparent inertia of the sample follows
that given in Sec. II B for the homogeneous sample, starting
from the same boundary conditions [Eqs. (6)]. Equation (7)
for the integration constants is modified as

u M
0+

δ12e−ikR + δ22eikR − 1
= −u M

0−

δ11e−ikR + δ21eikR − 1
= ũ0,

(16)

the quantity ũ0 being the same as in Eq. (13) for the shear
modulus case.

Using these integration constants, the stress at each wall
takes the following form:

σ (0) = G
du

dz

∣∣∣∣
z=0

= −ikG
(
u M

0+ − u M
0−

)
= ikGũ0 [2 − (δ12 + δ11)e−ikR − (δ22 + δ21)eikR],

σ (R) = G
du

dz

∣∣∣∣
z=R

= −ikG(u2+e
−ikR − u2−e

ikR)

= −ikGũ0 [2(δ11δ22 − δ12δ21)

− (δ11 − δ12)e−ikR − (δ22 − δ21)eikR].

The total force per unit area exerted by the helium sample on
both walls is now given, instead of Eq. (8) for the homogeneous
case, by

FX + FR = σ (0) − σ (R) = 2ikGũ0 [2 − δ11e
−ikR − δ22e

ikR],

using again the property that ||δij || has determinant unity.
Expliciting the quantities within square brackets making use

of Eqs. (11) and (15a), the total force on the walls takes the
final form

FT = FX + FR = kGu0

N
D = u0

R
GeffN , (17)

with

N = 2 − δ11e
−ikR − δ22e

ikR = 2(1 − cos kR)

+ (κ1 + κ2)kR sin kR − κ1κ2k
2R2 sin k(z2 − z1)

×{sin k(z2 − z1) + sin k(R − z2 + z1)}.

D. Stationary waveforms

The displacement u(z) in the sample can easily be evaluated
using, e.g., in the inertia measurement case, the solution to the
wave equation expressed by Eqs. (16) for u M

0+ and u M
0+, with the

following results:
(i) for slab 0: u(z)(0) = u0[cos kz + (B/A) sin kz)];

(ii) for slab 1: u(z)(1) = u0[cos kz − κ1kR/2{sin kz +
sin k(2z1 − z)} + (B/A)[sin kz + κ1kR/2{cos kz +
cos k(2z1 − z)}]];

(iii) for slab 2: u(z)(2) = (u0/A)[sin k(R − z) +
sin kR + κ1kR/2 cos k(z − z1) cos kz1 + κ2kR/2 cos k(z −
z2) cos kz2 − κ1κ2K

2G2 sin k(z2 − z1) cos k(z − z2) cos kz1].
In these expressions,

A = (δ′
11 − δ′

12) sin kR + (δ′′
12 − δ′′

11) cos kR = D,

B = 1 − (δ′
11 + δ′

12) cos kR − (δ′′
12 + δ′′

11) sin kR.

These waveforms can readily be evaluated numerically. As an
example, the relative displacement u(z)/u0 for three values of
the dimensionless compliance κ of the soft layers, taken to
be equal, is shown in Fig. 1 for kR = 0.2354, z1 = 0.3R, and
z2 = 0.9R. The discontinuities at z1 and z2 caused by these
soft layers increase in size with the compliance, up to the point
where D becomes zero and the deformation diverges.

The next step, carried out in the following section, consists
in extracting the parameters κi of the soft layers from the
measured value of Geff and in evaluating the corresponding
apparent change in inertia.

IV. NUMERICAL RESULTS

As the temperature is raised from absolute zero, κ varies
from its low-temperature value, assumed to be negligibly
small because the dislocations are immobilized by the isotopic
impurities, to its high-T value. The corresponding change
of G/Geff to lowest order in the small parameter kR in
Eq. (15b) reduces to a static correction to the elastic constant.
The lowest-order correction to the effective mass results from
a dynamical effect of a magnitude comparable to that of the
plain elastic response, which should be subtracted out. This
difference follows from Eqs. (8) and (17):

FT − FT|κ1, κ2=0 = ρRω2u0

kR

{N
D − 2

1 − cos kR

sin kR

}
(18a)

� ρRω2u0

k2R2

1 + κ1 + κ2

[
κ1 + κ2

4
− κ1

z1(R − z1)

R2

− κ2
z2(R − z2)

R2

]
. (18b)
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FIG. 2. (Color online) Inverse effective shear modulus Geff ,
normalized to the shear modulus with no soft layers G, in terms of the
dimensionless compliance κ of the soft layers for the same parameter
values as in Fig. 1 for various values of kR. The dashed-dashed
curve represents the case with R = 1 cm at a frequency of 1 kHz,
kR = 0.2354. The symbols mark the cases discussed in the text: (�)
for G/Geff = 9 ,κ = 4.411, (•) for G/Geff = 1.6 ,κ = 0.3075. The
dashed-dotted-dashed lines correspond to a reentrant branch that, for
a given value of G/Geff , can not be reached by adiabatic turn-on of
the κi’s.

Equations (18a) and (18b) show how what could be called
the “superfluid fraction” fNCRI = (FT − FT|κ1, κ2=0)/ρRω2u0

depends on the compliances κi , which in turn are related
to the effective shear modulus. The quantity ρRω2u0 has
already appeared in Eq. (8) and stands for the force due to the
acceleration of the inertial mass MI = ρR. These quantities
hold per unit area.

The full expression of the exact result [Eq. (18a)] is
fairly lengthy and not particularly transparent but evaluates
numerically quite readily. The outcome is discussed in the
following. The correction due to the mass decoupling effect
[Eq. (18b)] is second order in kR and linear in the κi’s,
the term in κ1κ2, of order (kR)3, being discarded. This
correction is either positive or equal to zero for the special case
z1 = z2 = R/2, that is, for a vanishing dangling mass and, by
symmetry, vanishing local stress in slab 2. Equations (18a) and
(18b), together with (15a) and (15b), which express the NCRI
fraction and the effective shear modulus in the presence of soft
dislocation arrays, constitute the main result of this work.34,55

The variation of the shear modulus in terms of the soft layer
compliances, taken for simplicity to be equal to a common
value κ , is shown in Fig. 2 for various values of kR for the
same sample geometry and parameter values as in Fig. 1.
As the compliance κ increases from zero, assumed to be its
T = 0 value, the effective shear modulus Geff decreases; the
solid becomes softer, up to a point where G/Geff reaches a
maximum: the interfaces between slab 1 and its neighbors
become so soft that, although the dangling slab swings with
increasing amplitude, the stress due to its motion ceases to

0 10 20 30 400 50
G/Gef f

0

1

3

4

f N
C

R
I

(%
)

kR = 0 .1
kR = 0 .15

kR = 0 .2

kR = 0 .2354

0. 5 0 .4 0.3                              0.1

FIG. 3. (Color online) Relative change in the apparent inertia
fNCRI vs the inverse dimensionless shear modulus G/Geff for the
situation of Fig. 1 and for various values of kR as labeled in the figure.
The symbols (•) and (�) on the dashed-dashed curve for kR = 0.2354
mark the same cases as in Fig. 2. The dashed-dotted-dashed portions
of the various curves correspond to reentrant regions that can not be
reached by adiabatic turn-on of the compliance of the soft layers.

increase. Beyond this point, a further increase in κ would lower
G/Geff because the stress reflected back onto the external
boundaries effectively decreases while the displacement of
slab 1 goes on increasing.

It has been assumed above that the steady-state regime
is reached adiabatically, which implies that (1) only the
ascending branch of G/Geff in Fig. 2 can be reached by
adiabatic turn-on of the κi’s from zero and (2) damping does
not vanish entirely. If damping is introduced in the wave
equation (2), slab 1 would be coupled to its neighbors by
friction in addition to shear elasticity and the results obtained
above would be quantitatively different from those in Fig. 2 for
very small values of Geff . In particular, the descending branch
of G/Geff(κ) could not actually cross the x axis.

The NCRI fraction is plotted directly in terms of the shear
modulus in Fig. 3. From the measured overall change in
G/Geff , which reaches values of 1.6 (Refs. 22 and 28) up
to 9 or more,29 the corresponding values of the compliance
of the soft layers can be found from Eq. (15a). From these
values κ = 0.31 for G/Geff = 1.6, κ = 4.4 for G/Geff = 9,
the NCRI fractions given by Eq. (18a) are 0.22% and 0.58%,
respectively. These values depend on z1 and z2: the largest
fNCRI are achieved for z1 ∼ 0, z2 ∼ R. The reentrant branches
of the graphs in Fig. 3 correspond to the descending branches
for large κ in Fig. 2. An accurate description of these regimes
where displacements become very large should, as already
mentioned, include damping. They are irrelevant to the present
discussion.

Dislocations are also found in the homogeneous slabs. They
may also induce a variation of k = √

ρ/G ω as G may also
vary with temperature. The contributions to fNCRI of the soft
layers and of the dislocation network in the homogeneous
slabs are seen in Eq. (18a) to be additive and their respective
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FIG. 4. (Color online) Maximum possible value of fNCRI in terms
of G/Geff for kR = 0.2354 (upper curves) and 0.1 (lower curves). The
nearly straight curves stem from the homogeneous elastic response,
the bending curves are the pure soft layer contributions. The values
for f max

NCRI are extracted from graphs for fNCRI in terms of κ1 as shown
in the insert where they are marked by (�). The symbols (•) and (�)
on the curve for kR = 0.2354 mark the same cases as in Fig. 2.

weights depend on how each contributes to G/Geff . However,
the contribution of the network should be no more than 20%,
the geometrical limit for hcp structures, so that its effect on
fNCRI is less significant.

The highest values of fNCRI for given G/Geff and kR are
reached for z1 = 0, z2 = R and varying κ1 while adjusting
κ2 to keep G/Geff constant. These maximum maximorum
values are plotted in Fig. 4 for kR = 0.2354 and 0.1, and for
various values of the effective shear modulus. These quantities
overtake those for homogeneous systems, given by Eqs. (5) and
(8), up to G/Geff values that are much larger than those for
homogeneous systems �L2

N � 2−1/2, as seen in Fig. 4. Values
of fNCRI ranging from near 0 to above 1% can be reached
for kR = 0.2354, i.e., in a 1-cm-size cell at a frequency of
1 kHZ for the experimentally observed values of G/Geff . For a
cylindrical geometry, these values are approximately halved.56

V. DISCUSSION

Because of the very large drop of the shear modulus
observed at low frequencies in most samples of solid 4He, it is
surmised in this work that, instead of forming homogeneous
random networks, dislocations crop into organized slip bands
or quasiplanar arrays of sizable thickness. When the 3He
impurities evaporate from the cores of the dislocation lines,
the latter become very mobile and the planar arrays very
soft.48 It is argued that a large degree of polycrystallinity does
not suffice to obtain large G/Geff and large fNCRI, as shown
experimentally in aerogel by Mulders et al.57 Dislocations
have to organize over large distances in such a way that parts
of the sample become uncoupled and acquire additional kinetic
energy, thereby increasing the apparent inertia.

In a hcp structure, edge dislocations glide easily in the
basal plane along three preferred crystallographic directions

at 120◦ of one another. To climb away from these directions,
they have to change into screw or mixed dislocations. As
shown by Suzuki and Nishioka,58 this process is thermally
assisted above ∼0.8 K (at ρ = 0.192 g/cm3) and proceeds
by quantum tunneling below. More recent and detailed
theoretical considerations of the climb process in the quantum
regime59,60 have led to the realization that the cores of
screw and edge dislocations could become superfluid. Climb
processes would then become greatly enhanced, hence, the
concept of “superclimb” introduced by Kuklov and co-
workers.61,62 This quantum-assisted climb process provides
a mechanism in solid 4He for edge dislocations to easily
move off the basal plane. This process lifts a constraint
on dislocation motion. The propagation of dislocation pile-
ups in the course of plastic deformation becomes greatly
facilitated, as well as the formation of percolating planar
defects.

On heuristic grounds, propagation of dislocation pile-ups in
brittle materials, such as hcp helium, causes cracks to form and
results eventually in mechanical failure. In solid helium, which
is under positive hydrostatic pressure, cracks with voids can
not form, but corresponding macroscopic defects with little
or no crystalline order must appear,48,50 hence, the plausible
appearance of connected veins imprinted by plastic flow. These
regions of the sample show strong spatial disorder and can
possibly sustain off-diagonal long-range order instead.1,63 That
they are found anomalously soft in a number of experiments
lends credence to this possibility.

The model based on these soft layers is easily tractable
analytically. The calculated values for the shear modulus and
the NCRI fraction, NCRIf, fall within the range of the observed
values, barring the highest ones.64 This model explains readily
why the NCRI and stress-strain measurements depend so
strongly on the sample geometry64 and thermal history:56,65

even small changes in the soft layer properties and the
interconnection of the channels that they delimit can greatly
influence the motion of the dangling masses. Homogeneous
dislocation networks, aside from having a limited effect of the
shear modulus, can hardly exhibit such variability.

Actual samples studied in the laboratory are likely to be
more convoluted than sketched in Fig. 1. The veins have
tortuous paths and coarse sheaths, which might appear to
hinder motion. However, applied strains are small, of the order
of 10−6 or less,28,46,66 and displacements are correspondingly
small. The soft layers considered here are thicker than low-tilt
angle subgrain boundaries, possibly in the 10 to 100 nm
range.48 The crystal lattice is heavily distorted over such
a thickness. The soft layers can be expected to be quite
malleable on such a scale and yield easily under local stress.
Being extremely compliant, they support plastic flow within
themselves and accommodate departures from the ideal planar
geometry depicted in Fig. 1. The soft layers can conceivably
also become fully fluid,38 or even genuinely superfluid, as
already mentioned above.63 Crystal subgrain motions on a
submillimetric scale have actually been reported by Burns
et al.19 in x-ray experiments using very fine collimated beams.
Similarly, the mobile features observed in solid 4He at higher
temperatures67–69 can be reexamined in the present framework;
these experiments also provide possible clues for the existence
of veins of easy deformation.
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Maris and Balibar70 take a quite different point of view to
account for the observed relationship between Geff and fNCRI.
They point out that experimental TOs may lack sufficient
structural rigidity. If the TO body deforms in such a way as
to induce additional strain on the helium sample, the NCRIf
may appear larger than the intrinsic value. As discussed in
Ref. 70, the effect can be quite large. This helps in particular
to understand some very large NCRIf values reported in the
literature8,32 that would not be readily explainable with the
existence of soft layers as assumed here. Along the same lines
of reasoning, Beamish et al.71 have pointed out the perturbing
effect of the solid helium contained in the torsion rod of the
TO when the rod is hollow and also serves as fill line for
the experiment cell. These possible artifacts cast doubt on a
number of experiments, and the values of fNCRI reported in
the literature should probably be reassessed as discussed by
Beamish et al.71 and by Maris.72

From the results in Figs. 3 and 4, fNCRI remains below a few
percent at the most for centimeter-size cells, less for smaller
toroidal annuli. But conversely, these results do not imply
that, whenever the stiffness of the helium sample changes, an
apparent NCRI is bound to occur; this last feature depends on
the geometry of the soft layers and may be altogether absent.
Such is, for instance, the situation observed by Fefferman
et al.73 with no inertia effect in a polycrystalline sample but
a sizable NCRIf in a monocrystal where dislocation lines can
be long and can readjust their position more readily.

A number of experiments might seem to invalidate the
present approach. The TO experiments with a blocked channel
show a much reduced NCRIf. This is interpreted as the
manifestation that some sort of superflow is taking place when
flow paths are connected in a loop and not when the loop is
broken. However, the same considerations apply to the plastic
flow in connected veins, which also can form, or not, channels
through which dangling masses can jiggle.

Some TO measurements in confined geometries, Vycor,
porous gold, aerogel,. . ., especially early ones, have shown a
sizable NCRIf and would also appear to completely invalidate
the present approach. If the model is applied to a single pore,
for which kR is very small, then, indeed, the resulting effect
that decreases as (kR)2 will be extremely small. For sizes
comparable to that of the soft layers, the soft layer model is
not expected to apply, neither for shear nor for inertia. Pores
do not appear to be filled with homogeneous hcp solid but
with either a combination of layers of liquid and of bcc solid16

on top of 1 ∼ 2 layers of amorphous solid, or, for finer pores
(47 Å in MCM-41 and 34 Å in gelsil),17 with amorphous solid
only and inclusions of bcc-like nodules. What was assumed
for softer layers carries over to the fine pores, which present a
multiconnected geometry with complex plastic flow patterns.
The conditions of existence of connected veins assumed at
a macroscopic level are clearly fulfilled at the mesoscopic
level of the pores so that confined helium, either liquid or
amorphous, would contribute to NCRI, but in a way quite
different from the mass decoupling envisioned here in the bulk.
These questions deserve further consideration, especially in
view of the present dubious situation on the experimental front
and the ongoing reassessment of earlier observations.33,70,74,75

Hexagonal solid 3He is also soft but appears not to
show NCRI: the two isotopes apparently possess similar
elastic properties but different inertial properties. This isotopic
dependence is well documented, in particular, by the work of
West et al.9 This observation would seem to also invalidate
the present approach. However, the tunneling motion of
dislocations is unlikely to proceed in a similar manner in
the bosonic and fermionic solids. On a microscopic ground,
dislocations can be considered, as suggested by Suzuki,76

as lines of vacancies. The properties of vacancies, following
Pushkarov,77 depend on the periodicity of the neighboring lat-
tice. In 4He, lattice order is quickly reestablished a few Burgers
vector away from the dislocation core; dislocation lines can
move relatively freely through the lattice. Spin disorder in
3He hampers this process by dressing the dislocation cores
with vacancy-impurity nanoclusters. By the same token, the
formation of connected plastic flow veins is also hampered.
Also, the process of superclimb61,62 relies on the existence
of superfluidity in dislocation cores,59,60 a mechanism not
to be found in solid 3He and, therefore, of no assistance to
dislocation line mobility. It is therefore expected that, owing
to the difference in core structure, anomalous shear elastic
constant drops by 60% or more seen in hcp 4He will not be
observed in 3He.

Kim et al.31 directly addressed the connection between
shear and NCRI in an ingenious experimental arrangement
allowing simultaneous measurements of both quantities. They
observe, in particular, that the response to an increase in drive
amplitude differs very significantly between both properties.
However, the drive is not applied in an identical manner for
both measurements because of details of the cell geometry.
Soft layers can be located at different places and have different
conformations: they are bound to respond differently. The
experiments of Ref. 31 are not fully conclusive.

Specific experiments can be performed to probe the present
model. Shear modulus measurements have not been performed
in a cell geometry for which the plastic flow lines would
close on themselves in the way they do in torsional oscillators.
These measurements should reveal the existence of supersoft
elastic moduli.69 Equipping a torsional oscillator with a floppy
membrane as septum to interrupt a quantum-coherent flow,
but not the continuity of stresses and strains, offers another
venue.78 The study of higher resonance modes in multiply
connected acoustic cavities can also provide a way to probe
the internal response of an inhomogeneous sample.79

Multiple-mode TO resonators32,80 appear to give somewhat
indecisive answers, but still show the expected trend of
enhanced NCRIf at higher frequency.33 A two-mode TO with
the dummy massive bob inside the resonator chamber, in
contact with the solid helium but connected loosely to the
main body by an additional torsion rod, provides a mean of
coupling shear to the sample in a Couette-type experiment. If
the inner bob angular position could be tracked by some optical
or electrodynamical means, the coupled system response could
be analyzed in detail. A strong enhancement of G/Geff is
expected, which would be directly related to the NCRIf.
A control experiment with bcc 3He, which shows no shear
modulus anomaly and no NCRI,9 can be carried out at
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FIG. 5. Dislocation network in a hexagonal structure. The net-
work is formed of two-dimensional hexagonal cells of side length a

in basal planes perpendicular to the ĉ axis. The whole pattern can
be generated from the elementary block in thick line of length A by
translations of moduli A and b as shown in the figure.

appropriate density and shear modulus values to distinguish
between cell and sample contributions to the apparent NCRI.

To conclude, the soft layer model presented here takes
into account known heterogeneities in dislocation patterns
revealed, in particular, by the anomalous softening of a
number of hcp 4He samples. It is argued that the actual
softness can be even more extreme than observed, being
hampered by the tortuous arrangement of the dislocation
structures and of the crystalline regions that they delimit.
The corresponding values of the NCRIf are shown to lie
within the range of observations, barring the highest ones.
The model conflicts in no irredeemable way with the available
assortment of experimental observations. Conversely, it can
be stated that most existing experiments to date support the
assumption of the existence of very mobile macroscopic
veins arranged along connected paths in hcp crystals of
helium 4 and formed in a process that depends on quantum
statistics, such as superclimb. Matter in the veins themselves
undergoes displacements governed by classical mechanics and
subject to dissipative mechanisms. These various assertions are
amenable to experimental verification.

ACKNOWLEDGMENTS

The author acknowledges useful discussions with I. Iwasa,
S. Balibar, and Y. Mukharsky and correspondence with
J. Reppy and M. Chan. He thanks A. Braslau for his numerous
suggestions on the manuscript. This work has been supported
by ANR grant “Superdur.”

APPENDIX

In a crystal lattice with hexagonal symmetry, there exist
three glide directions for edge dislocations in the basal plane,
perpendicular to the ĉ axis, at 2π/3 from one another. These
dislocations arrange themselves on a hexagonal network in the
basal plane with side length a, possibly connected to adjacent
basal planes at a distance c along the ĉ axis by pillars of screw
or mixed dislocations.

The dislocation network that entirely fills a given basal
plane of a sample taken as a square of side S for simplicity
can be constructed as shown in Fig. 5. The building block
in thicker line is duplicated and translated by 	A along one
side and 	b along the other. There are a total of S2/bA such
translations, each involving a dislocation line length equal to
6a. The volume spanned in the process is S2c so that the density
of edge dislocation amounts to � = 6a/bAc. As b = 31/2a

and A = 3a, there comes that �ac = 2/31/2. This result has
already been quoted by Iwasa et al.23

The network length LN can be taken equal to a; it disappears
in the final result for �L2

N, which is scale independent. For
a hexagonal close-packed lattice, c = (8/3)1/2a so that the
expression �L2

N in Eq. (1) takes the value 2−1/2. This value is
smaller if the lattice is less densely packed. For a cubic lattice,
a similar derivation gives the often quoted geometrical limit
�L2

N = 3, a value much larger than for a hexagonal lattice,
which reflects the paucity of easy glide directions in the latter
case.
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