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Hubbard-model description of the high-energy spin-weight distribution in La2CuO4
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The spectral-weight distribution in recent neutron scattering experiments on the parent compound La2CuO4

(LCO), which are limited in energy range to about 450 meV, is studied in the framework of the Hubbard model on
the square lattice with effective nearest-neighbor transfer integral t and on-site repulsion U . Our study combines
a number of numerical and theoretical approaches, including, in addition to standard treatments, density matrix
renormalization group calculations for Hubbard cylinders and a suitable spinon approach for the spin excitations.
The latter spin- 1

2 spinons are the spins of the rotated electrons that singly occupy sites. These rotated electrons
are mapped from the electrons by a uniquely defined unitary transformation, in which rotated-electron single and
double occupancy are good quantum numbers for finite interaction values. Our results confirm that the U/8t

magnitude suitable to LCO corresponds to intermediate U values smaller than the bandwidth 8t , which we
estimate to be 8t ≈ 2.36 eV for U/8t ≈ 0.76. This confirms the unsuitability of the conventional linear spin-wave
theory. Our theoretical studies provide evidence for the occurrence of ground-state d-wave spinon pairing in the
half-filled Hubbard model on the square lattice. This pairing applies only to the rotated-electron spin degrees
of freedom, but it could play a role in a possible electron d-wave pairing formation upon hole doping. We find
that the higher-energy spin spectral weight extends to about 566 meV and is located at and near the momentum
[π,π ]. The continuum weight energy-integrated intensity vanishes or is extremely small at momentum [π,0].
This behavior of this intensity is consistent with that of the spin waves observed in recent high-energy neutron
scattering experiments, which are damped at the momentum [π,0]. We suggest that future LCO neutron scattering
experiments scan the energies between 450 and 566 meV and momenta around [π,π ].
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I. INTRODUCTION

The development of a better understanding of quantum
magnetism is important for improving our understanding of
the high-temperature cuprate superconductors. Indeed, the
parent compounds of the cuprates are insulating antiferro-
magnets, and these less-complicated undoped systems can
provide valuable information on which model Hamiltonians
quantitatively describe the cuprates. Improved determination
of the model Hamiltonians is essential because of the many
nearby competing phases in the doped systems, easily affected
by small parameters, which can now be seen because of
continued improvements in numerical simulations.1

The spectral-weight distribution in recent neutron scattering
experiments on the parent compound La2CuO4 (LCO), which
are limited in energy range to about 450 meV, raise new
interesting questions.2 In LCO, antiferromagnetic order occurs
with a commensurate wave vector [π,π ], where [π,π ] is
observed to remain commensurate for a finite level of doping.
A [π,π ] Goldstone mode was predicted by a spin-bag model.3

A decade ago the neutron scattering experiments on LCO
of Coldea et al.4 first showed sufficient details of the spin-
wave spectrum to demonstrate that a simple nearest-neighbor
Heisenberg model must be supplemented by a number of
additional terms, including ring exchanges. These terms arise
naturally out of a single-band Hubbard model with finite U/t ,
and several detailed studies showed that the spin-wave data in
the available energy window could be successfully described
by the Hubbard model using a somewhat smaller value of

U/t ∼ 6–8 than originally thought appropriate.4–7 (For the
effective Coulomb repulsion U in units of the bandwidth, 8t ,
this refers to intermediate values, U/8t ∼ 0.75–1.)

Part of the spin spectral weight reported in Ref. 4 was
deduced to be outside the energy window. The recent improved
neutron scattering experiments of Ref. 2, with a wider energy
window of about 450 meV, have raised a number of questions.
Surprisingly, these studies revealed that the high-energy spin
waves are strongly damped near momentum [π,0] and merge
into a momentum-dependent continuum. These results led the
authors of Ref. 2 to conclude that “the ground state of La2CuO4

contains additional correlations not captured by the Néel-SWT
[spin-wave theory] picture.”

This raises the important question of whether the more
detailed results can still be described in terms of a simple
Hubbard model. We show that the Hubbard model does
describe the new neutron scattering results. Our results confirm
that the U/t value suitable to LCO is in the range U/t ∈ (6,8).
Inclusion of second- and third-neighbor hopping parameters,
t ′ and t ′′, into the Hubbard Hamiltonian lead to an interaction
strength U/t ≈ 8. Specifically, the studies of Ref. 8 have
considered that the best fits to the ensemble of LCO inelastic
neutron scattering points from Ref. 4 are reached for U/t ≈
7.9 if one includes four independent parameters, t , t ′, t ′′, U ,
and for U/t ≈ 7.1 if one includes only t and U . Furthermore,
the results of Refs. 8 and 9 reveal that as far as the LCO inelastic
neutron scattering is concerned the inclusion of t ′ and t ′′ does
not lead to a better quantitative fit. Accordingly, the studies
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of this paper consider the half-filled Hubbard model on the
square lattice with only two independent effective parameters,
t and U .

Our study uses a combination of a number of numerical
and theoretical approaches, including, in addition to standard
treatments, density matrix renormalization group (DMRG)
calculations for Hubbard cylinders10–12 and, since conven-
tional linear spin-wave theory is unsuitable, a spinon operator
approach for the spin excitations.7,13 The spinon operator
approach is suitable for LCO’s intermediate U/t values
and corresponds to a particular case of a general operator
representation that profits from the recently found model’s
extended global symmetry.14

An exact result valid for the Hubbard model on any
bipartite lattice is that for onsite interaction U �= 0 it has
two global SU(2) symmetries,15,16 which refer to a global
SO(4) = [SU(2) ⊗ SU(2)]/Z2 symmetry.17,18 A recent study
of the problem by one of us and collaborators reported
in Ref. 14, reveals that an exact extra global c hidden
U(1) symmetry emerges for U �= 0, in addition to the
SO(4) symmetry. Specifically, the Hubbard model on a
bipartite lattice, such as the present square lattice, has a
global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 = [SO(4) ⊗ U(1)]/Z2 =
SO(3) ⊗ SO(3) ⊗ U(1) symmetry. The index c in the desig-
nation c hidden symmetry is intended to distinguish it from
the η-spin U(1) symmetry and spin U(1) symmetry in the
corresponding two model’s SU(2) symmetries. The index c

also labels the c fermions, whose occupancy configurations
generate the representations of the global c hidden U(1)
symmetry algebra. That the latter symmetry is hidden follows
from the fact that except in the U/t → ∞ limit, its generator
does not commute with the electron–rotated-electron unitary
operator. As a result, for finite U/t values its expression in
terms of electron creation and annihilation operators has an
infinite number of terms. [The generators of the η-spin and
spin SU(2) symmetries commute with that unitary operator.]

The origin of the extended global symmetry is a local gauge
SU(2) ⊗ SU(2) ⊗ U(1) symmetry of the model Hamiltonian
electron-interaction term first identified in Ref. 19. That
local symmetry becomes for finite U and t a group of
permissible unitary transformations. The corresponding local
U(1) canonical transformation is not the ordinary U(1) gauge
subgroup of electromagnetism. It is rather a “nonlinear”
transformation.19

For very large U/t values the Hubbard model may be
mapped onto a spin-only problem whose spins are those of the
electrons that singly occupy sites. However, for intermediate
U/t values this mapping generates many complicated terms
in the Hamiltonian, when written in terms of electron creation
and annihilation operators. Here we address that problem by
expressing the Hamiltonian in terms of the rotated-electron
operators, which naturally emerge from the generators of the
model’s symmetries.

In contrast to electrons, for rotated electrons single and
double occupancy are good quantum numbers for U/t > 0.
For large U/t values electrons and rotated electrons are the
same objects. Apparently, the Hamiltonian t/U expansion
is formally similar in terms of electron and rotated-electron
operators. However, that is only so for very large U/t values.
For instance, there are well-defined t2/U and t4/U 3 terms

in the Hamiltonian expression in terms of rotated-electron
operators, which are identical in form for very large U/t to
the corresponding terms using electron operators. However,
for intermediate U/t ∈ (6,8), if one expresses the former
t2/U and t4/U 3 terms in electron creation and annihilation
operators, one finds many complicated higher-order t j /Uj−1

terms where for the half-filled case j are even integers
j = 2,4,6, . . . and j = 4,6,8, . . . , respectively. Hence, the
first few terms of the Hamiltonian expression in terms of
rotated-electron operators describe many higher-order electron
processes. For moderate U/t the rotated-electron operators
also generate a much simpler form for the energy eigenstates
as well as for complicated processes involving a large number
of electrons. Our spin- 1

2 spinons correspond to the spin- 1
2 spins

of the rotated electrons that singly occupy sites, so that they
are well defined for U/t > 0.

When one decreases U/t to the intermediate U/t values
suitable for LCO, the above-mentioned Hamiltonian terms
become increasingly important and generate higher-order
spinon processes. Fortunately, those are simpler than the corre-
sponding electron processes. Indeed, the use of our operational
representation renders the intermediate U/t quantum problem
in terms of rotated electrons similar to the corresponding
large-U/t quantum problem in terms of electrons. The effect of
decreasing U/t is mostly an increase of the energy bandwidth
of an effective band associated with the spinon occupancy con-
figurations. The intermediate U/t rotated-electron processes
may be associated with exchange constants describing rotated-
electron motion touching progressively larger numbers of sites.
Within our Hubbard model’s representation such Hamiltonian
terms emerge naturally upon decreasing the magnitude of U/t .

Our theoretical studies provide evidence of the occurrence
of ground-state d-wave spinon pairing in the half-filled
Hubbard model on the square lattice. One of the few exact
theorems that applies to the half-filled Hubbard model on a
bipartite lattice with a finite number of sites and thus on a
square lattice is that its ground state is a spin-singlet state.16

Within our spinon representation the ground-state spin-singlet
N -spinon configuration corresponds to N/2 independent
spin-neutral two-spinon configurations. Under the spin-triplet
excitation one of the N/2 spin-singlet spinon pairs is broken.
Quantitative agreement with the spin-wave spectrum obtained
from our standard many-particle diagrammatic analysis is
reached provided that the broken spinon pair has d-wave
pairing in the initial ground state. Such a pairing refers only
to the rotated-electrons spin degrees of freedom. However,
it could play a role in a possible d-wave electron pairing
formation upon hole doping.

Applying our approach to the new LCO high-energy
neutron scattering reported in Ref. 2, we find that at momen-
tum [π,0] the continuum weight energy-integrated intensity
vanishes or is extremely small. Furthermore, we find that
beyond 450 meV, the spectral weight is mostly located around
momentum [π,π ] and extends to about 566 meV, suggesting
directions for future experiments.

The paper is organized as follows. In Sec. II the Hubbard
model on the square lattice and the basic quantities of
our study are introduced. The description of the model’s
antiferromagnetic long-range order is addressed in Sec. III.
Section IV presents a random-phase-approximation (RPA)
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study of the model’s coherent spin-wave spectrum and inten-
sity. Quantitative agreement with that observed in neutron-
sattering experiments is used to find the U and t values
suitable to LCO. The rotated-electron description emerging
from the Hubbard model on the square lattice with extended
global symmetry is introduced in Sec. V. This is the only
section where general electronic densities and spin densities
are considered. The goal of this more general analysis is
the introduction of a spinon representation suitable to the
LCO intermediate values of U/t . In Sec. VI this spinon
representation is used in the study of the general spin-triplet
spectrum of the half-filled Hubbard model on the square
lattice, which includes both the spin waves and the incoherent
spin-weight continuum distribution. The comparison of the
predicted spectral weights with those observed in the LCO
high-energy neutron scattering is the goal of Sec. VII. Finally,
Sec. VIII contains the concluding remarks.

II. THE MODEL AND THE BASIC QUANTITIES
OF OUR STUDY

Most of our results refer to half filling, so that the number
of lattice sites, Na , equals the number of electrons N . The
exception is the general analysis reported in Sec. V, which
considers arbitrary values of the electronic density n = N/Na .
The Hubbard model on a square lattice with Na 
 1 sites and
periodic boundary conditions reads

Ĥ = t T̂ + U V̂D, T̂ = −
∑
〈j,j ′〉

∑
σ

(c†rj ,σ
crj ′ ,σ + c

†
rj ′ ,σ crj ,σ ),

V̂D =
Na∑
j=1

(n̂rj ,↑ − 1/2)(n̂rj ,↓ − 1/2). (1)

Here T̂ is the kinetic-energy operator in units of t , V̂D is the on-
site repulsion interaction operator in units of U , c†rj ,σ

and crj ,σ

are electron creation and annihilation operators with site index
j = 1, . . . ,Na and spin σ =↑ , ↓, and n̂rj ,σ = c

†
rj ,σ

crj ,σ . The

on-site repulsion interaction operator V̂D may alternatively be
expressed in terms of the electron double-occupancy operator
D̂ or single-occupancy operator Q̂ given by

D̂ = (N̂ − Q̂)/2; Q̂ =
Na∑
j=1

∑
σ=↑,↓

n̂rj ,σ (1 − n̂rj ,−σ ), (2)

respectively. The expectation values,

d = 1

Na

Na∑
j=1

〈GS|n̂rj ,↑n̂rj ,↓|GS〉,

(1 − 2d) = 1

Na

Na∑
j=1

〈GS|(n̂rj ,↑ − n̂rj ,↓)2|GS〉, (3)

mAF = 1

Na

Na∑
j=1

1

2
〈GS|(−1)j (n̂rj ,↑ − n̂rj ,↓)|GS〉

≈ [1 − 2δS] m0
AF ,

play an important role in our study, following the strong
evidence that for U > 0 and Na → ∞ the model’s ground

state has antiferromagnetic long-range order.20 In the last
expression of Eq. (3) one has that j is an even integer and
an odd integer for each of the two sublattices, respectively.
Moreover, in that expression m0

AF stands for a mean-field
sublattice magnetization that does not account for the effect of
transverse fluctuations while δS does account for this effect, its
value being estimated below. Specifically, m0

AF is the sublattice
magnetization of the spin-density wave (SDW) state obtained
in a standard mean-field treatment of the Hubbard interaction
at zero absolute temperature as given, for instance, in Fig. 3 of
Ref. 5.

The on-site spin operators involved in our studies read

ŝx
rj ,s

= 1

2

[
ŝ+
rj ,s

+ ŝ−
rj ,s

]
; ŝ

y

rj ,s
= 1

2i

[
ŝ+
rj ,s

− ŝ−
rj ,s

]
,

ŝ+
rj ,s

= c
†
rj ,↓ crj ,↑; ŝ−

rj ,s
= c

†
rj ,↑ crj ,↓, (4)

ŝz
rj ,s

= −1

2

[
n̂rj ,↑ − n̂rj ,↓

]
.

The index s in these operators distinguishes them from the
corresponding local operators associated with the η-spin SU(2)
symmetry algebra considered below in Sec. V.

Our study also involves the spin dynamical structure factors,

Sαα′
(k,ω) = (gμB)2

Na

Na∑
j,j ′=1

e−ik(rj −rj ′ )

×
∫ ∞

−∞
dt eiωt 〈GS|ŝα

rj ,s
(t)ŝα′

rj ′ ,s(0)|GS〉, (5)

where α = α′ = x,y,z or α = − and α′ = + and be-
low we consider g = 2. It is straightforward to show
that the sum rules [1/Na]

∑
k Sαα′

(k), where Sαα′
(k) =

[1/2π ]
∫ ∞
−∞ dω Sαα′

(k,ω), involve the average single occu-
pancy (1 − 2d) and read

1

Na

∑
k

Sαα′
(k) = (gμB)2

4
[δα,α′ + 2δα,−δα′,+](1 − 2d). (6)

In an ideal experiment all components are detected with
equal sensitivity. As discussed, for instance, in Ref. 6, in that
case a transfer of spectral weight from the longitudinal to the
transverse part as the energy increases is observed. Hence,
independent of the scattering geometry, the corresponding
effective spin dynamical structure factor satisfies the sum rule,

1

Na

∑
k

1

2π

∫ ∞

−∞
dω Sexp(k,ω) = μ2

B 2(1 − 2d). (7)

That the coefficient involved is 2(1 − 2d) rather than 3(1 − 2d)
follows from one mode being perpendicular to the plane and
thus silent in the experiment.6

III. THE HUBBARD MODEL ON THE SQUARE-LATTICE
ANTIFERROMAGNETIC LONG-RANGE ORDER

For the range U/t ∈ (0,8), the antiferromagnetic long-
range order may be accounted for by a variational ground
state with a SDW initial trial state, such as, for instance, a
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Gutzwiller projected antiferromagnetic state,21

|G〉 = e−gD̂|SDW 〉, U/t < 8, (8)

or the following related state:

|GB〉 = e−hT̂ /t e−gD̂|SDW 〉, U/t < 8. (9)

Here |SDW 〉 is the ground state of a simple effective mean-
field Hamiltonian, such as that of Eq. (18) of Ref. 21. For
U/t 
 1 this order is as well accounted for by a Baeriswyl
variational state,

|B〉 = e−hT̂ /t |∞〉, U/t 
 1, (10)

where |∞〉 is the exact U/t → ∞ ground state.21 The
coefficients h and g multiplying the kinetic-energy and double-
occupancy operators, respectively, in the state expressions
given in Eqs. (8)–(10) are variational parameters. The above
states involve as well a variational gap parameter �, which
is expected to tend to zero as the trial state approaches the
exact ground state. Indeed, that variational parameter is an
infinitesimal symmetry-breaking field.

Similarly for the trial state |SDW 〉, the relation

4
[
m0

AF

]2 = (1 − 4d), (11)

holds for the states |G〉, |GB〉, and |B〉. However, the corre-
sponding function d = d(U/t) is, in general, state dependent.
Inversion of the simple relation provided in Eq. (11) gives

d = 1
4

[
1 − 4

[
m0

AF

]2]
. (12)

This is consistent with d not being affected by transverse
fluctuations.

The evaluation of the ground-state energy for |G〉 and |GB〉
is for Na 
 1 an involved problem. Here we resort to an
approximation, which corresponds to the simplest expression
of the general form,

E/N = T0 qU + Ud; T0 = − 16

π2
t, (13)

compatible with three requirements. Those are
(1) the relation d = 1

4 [1 − 4[m0
AF ]2] provided in Eq. (12)

must be fulfilled;
(2) the antiferromagnetic long-range order must occur for

the whole U/t > 0 range;
(3) the small-U/t expansion of the energy E/N of Eq. (13)

must lack of a linear kinetic-energy term in U for U/t � 1
(except for the term Ud corresponding to the on-site repul-
sion).

Brinkman and Rice found qU = 8d(1 − 2d) for the original
paramagnetic-state Gutzwiller approximation,22 which is lat-
tice insensitive and thus does not account for the square-lattice
antiferromagnetic long-range order. The simplest modified
form of the quantity qU suitable to a broken-symmetry ground
state such that the above three conditions are met is

qU =
(

U

8t

)
a

(+)
1 d

[
(1 − 2d)

4
[
m0

AF

]2 − a2

]
− a3. (14)

Here,

a
(±)
1 = π2 ± 4 ; a2 = (1 − [π2/2a

(+)
1 ]), (15)

and the coefficient a3 is a function a3 = a3(U/t) of U/t whose
approximate limiting behaviors are

a3 = a
(−)
1

8

[
1 − tanh

(
U

8t

[(
4 + a

(+)
1

)/
a

(−)
1

])]
, U/t < 8,

= −c0[π/2]2 8t

U
, U/t 
 1, (16)

where

c0 = 1

2

[
α

4
+ 1

8

]
= 0.1462. (17)

The corresponding estimate α = 0.6696 is that of the
Heisenberg-model studies of Ref. 20. Moreover, the quantity
4[m0

AF ]2 on the right-hand side of Eq. (14) behaves as
4[m0

AF ]2 = U/8t for U/t � 1.
Minimization of the ground-state energy defined by

Eqs. (13)–(16) with respect to d leads indeed to d = 1
4

[1 − 4[m0
AF ]2]. The limiting behaviors of that energy are

E/N ≈ T0 + Ud − 1

8π2

U 2

t
, U/t � 1,

≈ −4c0
8t2

U
, U/t 
 1. (18)

We note that the small-U/t second-order coefficient reads
−[1/8π2] ≈ −0.0127, in agreement with that, ≈−0.0127,
obtained by second-order perturbation theory.23 For U/t 
 1
one recovers the known result E/N = −4c0[8t2/U ],20 so that
our approximation agrees with the known limiting behaviors.

The quantity 4[m0
AF ]2 on the right-hand side of Eq. (14)

behaves as 4[m0
AF ]2 = U/8t for U/t � 1. However, its U/t

dependence for the range U/t ∈ (0,8) remains an open prob-
lem. Here we have performed DMRG calculations of (1 − 2d),
which, according to the relation provided in Eq. (12), is given
by (1 − 2d) = 1

2 (1 + 4[m0
AF ]2). Hence, its U/t dependence

fully determines that of 4[m0
AF ]2. The corresponding DMRG

results are shown in Fig. 1. Specifically, two different-
circumference cylinders were simulated as a function of U/t ,
with open boundary conditions in x and periodic in y, and the

0 2 4 6 8 10
U/t

0

0.5

1

1-
2d

Analytical approximation
t/U expansion
DMRG, 10x6 cylinder
DMRG, 10x4 cylinder

FIG. 1. (Color online) Average single-occupancy. Approximate
expression [1 + tanh(U/8t)]/2 valid for U/t � 8 (solid line), the
limiting U/t 
 1 expression [1 − c0(8t/U )2] (dashed line), and from
DMRG numerical results on two different width cylinders.
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double occupancy measured in one of the middle columns. A
maximum of m = 4000 states were kept, with an accuracy of
∼10−4 in (1 − 2d) for the 10 × 4 system for the least accurate
smaller U/t values and about 10−3 for the 10 × 6 system.
We find that the value of (1 − 2d) is relatively insensitive
to cluster size, and these cluster sizes are representative of
two-dimensional (2D) behavior.24

We then find that 4[m0
AF ]2 ≈ tanh(U/8t) gives for the range

U/t ∈ (0,8) quantitative agreement for the (1 − 2d) depen-
dence on U/t with both our numerical DMRG calculations
(see Fig. 1) and the numerical results for the states |G〉 and
|GB〉 (see Fig. 4 of Ref. 6). For U/t 
 1 we find the behavior
4[m0

AF ]2 ≈ e−2c0 (8t/U )2
for the state |B〉, so that

(1 − 2d) ≈ 1

2

[
1 + tanh

(
U

8t

)]
, U/t < 8,

≈ 1 − c0

(
8t

U

)2

, U/t 
 1. (19)

Furthermore, the states |SDW 〉 and |G〉 give a sublattice
magnetization mAF ≈ m0

AF = 1
2

√
1 − 4d , with an improved

U/t dependence, d ≈ 1
4 [1 − tanh(U/8t)], for the latter, as fol-

lows from the corresponding (1 − 2d) expression of Eq. (19).
For the state |G〉 the sublattice magnetization is then given by

m0
AF ≈ 1

2

√
tanh

(
U

8t

)
, U/t < 8. (20)

On the other hand, we find that the states |GB〉 and |B〉 have
mGB

AF and mB
AF sublattice magnetization numerical values very

close to those given by the relation [1 − 2δS] m0
AF of Eq. (3)

with

δS ≈ d, U/t < 8,

≈ d + 1

2

[
1 − mHAF

m0
HAF

]
, U/t 
 1, (21)

respectively. Here m0
HAF = 1/2 and mHAF ≈ 0.303 is the

Heisenberg-model’s sublattice magnetization magnitude,20 so
that δS ≈ d + 0.197 in Eq. (21) for U/t 
 1. Hence, one finds

mGB
AF ≈ 1

4

[
1 + tanh

(
U

8t

)]√
tanh

(
U

8t

)
, U/t < 8,

(22)

mB
AF ≈

[
0.303 − 0.803 × c0

(
8t

U

)2]
, U/t 
 1.

The magnitudes of the sublattice magnetizations m0
AF and

mGB
AF as given in Eqs. (20) and (22) for the states |G〉

and |GB〉, respectively, are provided in Table I for several
U/t values. In that table the magnitudes of a sublattice
magnetization mlower

AF that for U/t > 0 we define as mlower
AF =

(1 − 2d)[mHAF /m0
HAF ] m0

AF are also given. Note that for
U/t 
 1 the sublattice magnetization mlower

AF becomes mB
AF .

Probably it is closest to the exact mAF , while mGB
AF is

that consistent with our use of the RPA in the ensuing
section, to study the spin-wave spectrum and corresponding
intensity.

IV. COHERENT SPIN-WAVE SPECTRUM AND INTENSITY
AND LCO U AND t VALUES

To study the coherent spin-wave weight distribution and
spectrum, we have calculated the transverse dynamical sus-
ceptibility,

χ−+(k,τ ) = (gμB)2

Na

Na∑
j,j ′=1

e−ik·(rj −r ′
j )〈ŝ−

rj ,s
(τ )ŝ+

rj ′ ,s(0)
〉
, (23)

in the RPA. Here τ denotes the imaginary time in Matsubara
formalism and we shall take the zero temperature limit.
Because we deal with the antiferromagnetic order (Néel state)
it is convenient to define two sublattices, a and b, and redefine
the susceptibility as a 2 × 2 tensor χ̃μ,ν where the Greek
subscripts denote sublattice indices,

χ̃−+
μ,ν (k,τ ) = (gμB)2

(Na/2)

∑
j∈ν,j ′∈μ

e−ik·(rj −r ′
j )〈ŝ−

rj ,s
(τ )ŝ+

rj ′ ,s(0)
〉
.

(24)

The original susceptibility in Eq. (23) is then simply related to
this tensor as

χ (k,τ ) = 1
2 [χ̃aa + χ̃bb + χ̃ab + χ̃ba]. (25)

We define electron field operators for each sublattice, âkσ

and b̂kσ , as

ĉrj ∈a,σ = 1√
Na/2

∑
k∈RBZ

eik·rj âkσ , (26)

ĉrj ∈b,σ = 1√
Na/2

∑
k∈RBZ

eik·rj b̂kσ . (27)

In the momentum summations the reduced Brillouin zone
(RBZ) covers only half of the original Brillouin zone (BZ) for
the square lattice. The effective Hamiltonian that describes the
SDW phase in mean-field theory for the Hubbard interaction
can be written as

Ĥeff =
∑
k,σ

(â†
kσ

b̂
†
kσ

)

(
εσ f (k)

f (k) −εσ

)(
âkσ

b̂kσ

)
, (28)

with

εσ = −U
σ

2
mAF , f (k) = −2t[cos(kx) + cos(ky)]. (29)

TABLE I. The sublattice magnetizations as calculated here for several U/t values and some results from Refs. 6 and 21.

U/t 6.1 6.5 8.0 10.0

m0
AF 0.401 0.410 0.436 [0.43 (Refs. 6 and 21)] 0.461 [0.456 (Ref. 6)]

mGB
AF 0.329 0.342 0.384 [0.39 (Ref. 21)] 0.426

mlower
AF 0.200 0.207 0.233 0.258
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Using the effective Hamiltonian given in Eq. (28) one derives
from Eq. (24) a susceptibility tensor χ̃ (0)

μ,ν(k,τ ) at mean-field
theory level.

Treating the Hubbard interaction futher in the RPA and
Fourier transforming the susceptibility from imaginary time τ

to (k,iω) space, the susceptibility tensor then obeys the Dyson
equation,

χ̃RPA = χ̃ (0) + Uχ̃ (0)χ̃RPA, (30)

which can be recast as

χ̃RPA = [Î − Uχ̃ (0)]−1χ̃ (0). (31)

Here Î stands for the 2 × 2 identity matrix. Such a procedure
of treating the interaction in RPA on top of the mean-field
solution has been used in previous studies.5,25

χ̃RPA has a pole iω = ω(k) obtained from the equation
Det [1 − Uχ̃ (0)] = 0, which provides the dispersion relation
ω(k) for the spin waves. It has been shown in Ref. 5 that an
excellent agreement with the spin-wave spectrum from Ref. 4
is achieved. In Fig. 2 (top) we show a fit to the more recent
experimental data of Ref. 2 (solid line) along with the results
from the s1 fermion method reported below in Sec. VI (dashed
line) for U/t = 6.1 and t = 295 meV. This corresponds to a
bandwidth 8t ≈ 2.36 eV.

Importantly, provided that the t magnitude is slightly
increased for increasing values of U/t , agreement with the
LCO spin-weight spectrum and distribution can be obtained
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FIG. 2. (Color online) (Top) Spin-wave excitation spectrum along
BZ special directions as specified in Ref. 2. (Bottom) Spin-wave
intensity as obtained from the poles of the susceptibility (see text).
Experimental points from Ref. 2.

for the range U/t ∈ (6,8) and thus U/8t ∈ (0.75,1) in units of
the bandwidth 8t . For U/t values smaller than 6 (and larger
than 8), the spin-wave dispersion between [π,0] and [π/2,π/2]
has a too-large energy bandwidth (and is too flat) for any
reasonable value of t .

Let |ν,ω(k)〉 denote the excited energy eigenstates of energy
ω(k) and momentum k that contribute to the coherent spin-
wave spectral weight. In the case of the −+ spin dynamical
structure factor given in Eq. (5) for α = − and α′ = +, the
corresponding coherent spin-wave spectral weight in units of
μ2

B is given by Zd 2(1 − 2d). The factor Zd in this expression
reads

Zd = 1 − 2

Na(1 − 2d)

∑
k

∑
ν ′ �=ν

|〈ν ′|ŝ+
k,s

|GS〉|2, (32)

where ŝ+
k,s

is the Fourier transform of the spin operator

ŝ+
rj ,s

defined in Eq. (4) and the sum over energy eigenstates
excludes those that generate the coherent spin-wave weight,
|ν〉 = |ν,ω(k)〉. In the U/t → ∞ limit, Zd may be identified
with the corresponding Zd = Zc Zχ factor of the Heisenberg
model on the square lattice. According to the results of
Ref. 26, the factors Zc and Zχ have magnitudes Zc ≈ 1.18
and Zχ ≈ 0.48, respectively, so that Zd ≈ 0.57. The limiting
values Zd = 1 for U/t → 0 and Zd ≈ 0.57 for U/t → ∞ and
the approximate intermediate value,6 Zd ≈ 0.65, at U/t = 8
are recovered as solutions of the equation,

Zd = e−Zd tanh(
√

U
4πt

), (33)

which is used here for finite U/t .
The spin dynamical structure factor measured in the high-

energy inelastic neutron scattering experiments of Ref. 2
includes a Bragg peak associated with its elastic part. The cor-
responding elastic spectral weight is included in the total spin-
weight sum-rule, μ2

B 2(1 − 2d), of Eq. (7). In the thermody-
namic limit the upper-Hubbard band processes generate nearly
no spin weight. Hence, the longitudinal spectral weight within
the sum rule μ2

B 2(1 − 2d) refers to the elastic contribution.
The elastic weight is given by ≈μ2

B 4(mAF )2. The inelastic
spin spectral weight corresponds to the remaining weight in the
spin-weight sum rule ≈μ2

B [2(1 − 2d) − 4(mAF )2]. It refers to
the −+ spin dynamical structure factor given in Eq. (5) for
α = − and α′ = +. It then follows that the experimentally
determined spin-wave intensity, which corresponds to the
coherent part of the inelastic spin spectral weight, is in units
of μ2

B approximately given by

WSW ≈ Zd [2(1 − 2d) − 4(mAF )2]. (34)

The GA + RPA method used in Ref. 6 accounts for
the quantum fluctuations that control the longitudinal and
transverse relative weights. Within our description notations,
that method is designed to make the inelastic spin spectral
weight μ2

B [2(1 − 2d) − 4(mAF )2] rather than μ2
B 2(1 − 2d).

Hence, for that GA + RPA method the spin-wave intensity
factor is Zd as defined in Eq. (32).

On the other hand, the RPA used here refers to the −+ spin
dynamical structure factor alone. Hence, it implicitly considers
that the total inelastic spin spectral weight is μ2

B 2(1 − 2d)
rather than μ2

B [2(1 − 2d) − 4(mAF )2]. Therefore, to describe
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the actual spin-wave intensity momentum distribution one
must use a corresponding experimentally determined factor
Z

exp
d < Zd such that

WSW = Z
exp
d 2(1 − 2d) = Zd [2(1 − 2d) − 4(mAF )2]. (35)

From the residue of the spin-wave pole the susceptibility
coherent part then reads

χ−+
co (k,iω) = Z

exp
d

∑
l=±1

Res [χ−+(k,l ω(k)]

iω − l ω(k)
, (36)

with χ−+ obtained in RPA above. The measured intensity is27

ISW (k) = π [Sxx(k) + Syy(k)] = πS−+(k). (37)

In Fig. 2 (bottom), we plot the corresponding RPA spin-
wave intensity,

ISW (k) = −[π/2]Zexp
d Res [χ−+(k,ω(k)] . (38)

The good agreement with the experimental data, specially near
the point M , reproduces the theoretical results of Ref. 2. It is
here obtained for the value Z

exp
d ≈ 0.49, which corresponds

to the choice mAF = mGB
AF = m0

AF (1 − 2d) such that δS ≈ d.
The mGB

AF dependence on U/t is given in Eq. (22) for U/t < 8.
As in Ref. 2, the spin-wave intensity shows disagreement
around the X point, which here probably stems from effects
not captured by the RPA.

V. THE ROTATED-ELECTRON DESCRIPTION
EMERGING FROM THE MODEL’S EXTENDED

GLOBAL SYMMETRY

The goal of this section is the introduction of the gen-
eral rotated-electron representation from which the spinon
representation used in the ensuing section naturally emerges.
In contrast to the remaining sections of this paper, here we
consider arbitrary values of the electronic density n = N/Na

and spin density m = [N↑ − N↓].

A. The electron–rotated-electron unitary operator

We denote the spin and η-spin of an energy eigenstate by
Ss and Sη, respectively. The corresponding spin and η-spin
projections read Sz

s = − 1
2 [N↑ − N↓] and Sz

η = − 1
2 [Na − N ],

respectively. The lowest-weight states (LWSs) of both the η-
spin and spin algebras are such that Sα = −Sz

α , where α = η

for η spin and α = s for spin. The numbers

nη = Sη − 1
2 (Na − N ) = 0,1, . . . ,2Sη,

(39)
ns = Ss − 1

2 (N↑ − N↓) = 0,1, . . . ,2Ss,

vanish for such a LWS.
Let {|lr ,lηs ,u〉} be a complete set of 4Na energy, momentum,

η-spin, η-spin projection, spin, and spin-projection eigenstates
for u ≡ U/t > 0. Here lηs is a short notation for the set of four
quantum numbers [Sη,Ss,nη,ns] and the index lr represents all
remaining quantum numbers, other than those, that are needed
to fully specify an energy eigenstate |lr ,lηs ,u〉. The energy
eigenstates of that set that are not LWSs are generated from

those as follows:

|lr ,lηs ,u〉 =
∏

α=η,s

[
1√
Cα

(Ŝ†
α)nα

]∣∣lr ,l0
ηs ,u

〉
. (40)

Here,

Cα = 〈
l,l0

ηs ,u

∣∣(Ŝα)nα (Ŝ†
α)nα

∣∣l,l0
ηs ,u

〉
= [nα!]

nα∏
j ′=1

[ 2Sα + 1 − j ′ ], α = η,s, (41)

for nα = 1, . . . ,2Sα are normalization constants, the η-spin
(α = η) and spin (α = s) off-diagonal generators Ŝ†

α and Ŝα

are given in Eq. (A7) of Appendix A, and lηs and l0
ηs stand

for [Sη,Ss,nη,ns] and [Sη,Ss,0,0], respectively. Within our
notation, l0

ηs refers to values of the general index lηs associated
with a LWS such that nη = ns = 0.

For the Hubbard model on the square lattice and also on the
1D lattice, upon adiabatically increasing U/t from any finite
value to the U/t → ∞ limit, each energy eigenstate |lr ,lηs ,u〉
continuously evolves into a uniquely defined corresponding
energy eigenstate |lr ,lηs ,∞〉, and vice versa. We emphasize
though that, due to the high degeneracy among different
spin sectors as well as η-spin sectors that occurs in the
U/t → ∞ limit, there are in such a limit many more choices of
energy eigenstates sets than for U/t finite. Accordingly, upon
adiabatically decreasing U/t most of such U/t → ∞ states
do not evolve into finite-U/t energy eigenstates. Our above
procedure uniquely defines a convenient set of U/t → ∞
energy eigenstates that upon adiabatically decreasing U/t do
evolve into finite-U/t energy eigenstates.

Both the corresponding sets of 4Na states {|lr ,lηs ,u〉} and
{|lr ,lηs ,∞〉}, respectively, are complete and refer to the same
Hilbert space. Hence, there is a uniquely defined unitary
transformation connecting the states |lr ,lηs ,u〉 and |lr ,lηs ,∞〉.
Indeed, since the model’s Hilbert space is the same for
all U/t > 0 values considered here, it follows from basic
quantum-mechanics Hilbert-space and operator properties that
for this choice there exists exactly one unitary operator
V̂ = V̂ (U/t) such that any U/t → ∞ energy eigenstate
|lr ,lηs ,∞〉 is transformed onto the corresponding U/t > 0
energy eigenstate |lr ,lηs ,u〉 as

|lr ,lηs ,u〉 = V̂ †|lr ,lηs ,∞〉. (42)

The energy eigenstates |lr ,lηs ,u〉 = V̂ †|lr ,lηs ,∞〉 (one for each
value of U/t > 0) that are generated from the same initial
U/t → ∞ energy eingenstate |lr ,lηs ,∞〉 belong to the same
V tower.

The rotated-electron operators are given by

c̃
†
rj ,σ

= V̂ † c
†
rj ,σ

V̂ ; c̃rj ,σ = V̂ † crj ,σ V̂ ,
(43)

ñrj ,σ = c̃
†
rj ,σ

c̃rj ,σ ; V̂ = e−Ŝ .

For U/t > 0 the operator Ŝ appearing here can be expanded
in a series of t/U whose leading-order term is provided in
Eq. (A2) of Appendix A.

Since the electron–rotated-electron unitary operator V̂

commutes with itself, the equalities V̂ = e−Ŝ = Ṽ = e−S̃ and
Ŝ = S̃ hold. Hence, both the operators V̂ and Ŝ have the same
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expression in terms of electron and rotated-electron creation
and annihilation operators. It then follows from the expression
of the operator Ŝ provided in Eq. (A2) of Appendix A
that the corresponding rotated operator S̃ has the following
leading-order term,

S̃ = − t

U
[T̃+1 − T̃−1] + · · · . (44)

The rotated kinetic operators T̃+1 and T̃−1 appearing here and
the related rotated kinetic operator T̃0 are given in Eq. (A3) of
Appendix A. The expressions of the corresponding unrotated
kinetic operators T̂0, T̂+1, and T̂−1 are provided in Eq. (A1) of
that appendix.

Note that the equality Ŝ = S̃ refers to the whole expression
of these operators. An important property for our study is
that except in the U/t → ∞ limit the leading order terms
− t

U
[T̂+1 − T̂−1] and − t

U
[T̃+1 − T̃−1] of the operators Ŝ and

S̃ given in Eq. (A2) of Appendix A and Eq. (44), respectively,
are different operators. Moreover, except for U/t → ∞ one
has that T̂0 �= T̃0, T̂+1 �= T̃+1, and T̂−1 �= T̃−1. This is behind for
intermediate U/t values the few first terms of the Hamiltonian
t/U expansion as written in terms of rotated-electron operators
containing much more complicated higher-order terms when
expressed in terms of electron creation and annihilation
operators.

The main point here is that for the rotated electrons that
emerge from the unitary transformation of Eq. (43) single and
double occupancy are good quantum numbers for U/t > 0.
Indeed, on any bipartite lattice the number of rotated-electron
singly occupied sites operator,

2S̃c = V̂ † Q̂ V̂ =
Na∑
j=1

s̃rj ,c,

(45)
s̃rj ,c = V̂ † ŝrj ,c V̂ =

∑
σ=↑,↓

ñrj ,σ (1 − ñrj ,−σ ),

commutes with the Hubbard model Hamiltonian.14 Here Q̂

is the corresponding number of electron singly occupied sites
operator given in Eq. (2). This follows in part from the symme-
tries of the Hamiltonian electron-interaction term, which imply
that all U/t → ∞ energy eigenstates of the set {|lr ,lηs ,∞〉} are
as well eigenstates of the electron double-occupancy operator
D̂ and single-occupancy operator Q̂ provided in that equation.
Hence, in the U/t → ∞ limit the Hilbert space is classified in
subspaces with different numbers of doubly occupied sites and
each of the states {|lr ,lηs ,∞〉} is contained in only one of these
subspaces. The same applies to the 4Na energy eigenstates of
the set {|lr ,lηs ,u〉} for U/t > 0 in terms of rotated-electron
doubly occupied sites.

The unitary operator V̂ of our formulation is uniquely
defined by its 4Na × 4Na matrix elements, 〈lr ,lηs ,u|V̂ |l′r ,l′ηs ,u

〉.
For U/t > 0 most of these matrix elements vanish. For U/t →
∞ rotated electrons become electrons so that the matrix
representing the unitary operator V̂ becomes the 4Na × 4Na

unit matrix. Hence, 〈lr ,lηs ,∞|V̂ |l′r ,l′ηs ,∞〉 = δlr ,l′r δlηs ,l′ηs
. On the

other hand, as justified in Appendix A, the unitary operator
V̂ = V̂ (U/t) commutes with the six generators of the global
η-spin and spin SU(2) symmetries. This implies that the matrix
elements between energy eigenstates with different values of

Sη, Ss , nη, and ns and thus of lηs vanish. Hence, the finite
matrix elements are between states with the same lηs values so
that we denote them by Vlr ,l′r ,

〈lr ,lηs ,∞|V̂ ∣∣l′r ,l′ηs ,∞
〉 = δlηs ,l′ηs

Vlr ,l′r , (46)

where

Vlr ,l′r = 〈
lr ,lηs ,u

∣∣V̂ ∣∣l′r ,lηs ,u

〉 = 〈
l′r ,lηs ,∞

∣∣V̂ †∣∣lr ,lηs ,∞
〉∗

= 〈
lr ,lηs ,u

∣∣l′r ,lηs ,∞
〉 = 〈

l′r ,lηs ,∞
∣∣lr ,lηs ,u

〉∗
. (47)

Given a complete set of 4Na energy, momentum, η-
spin, η-spin projection, spin, and spin-projection eigenstates,
{|lr ,lηs ,u〉}, the electron–rotated-electron unitary operator
considered here is for U/t > 0 uniquely defined by the
matrix elements of Eqs. (46) and (47). This corresponds to
one out of the infinite choices of electron–rotated-electron
unitary operators.14 All these operators and corresponding
unitary transformations refer to the same subspaces with
fixed numbers of doubly occupied sites, 0,1,2,3, . . . . They
differ only in the choice of basis states within each of
these subspaces. For most of these unitary operators the
states V̂ †|lr ,lηs ,∞〉 are not energy eigenstates for finite U/t

values. The electron–rotated-electron unitary transformation
considered here has been constructed to make these states
energy eigenstates for finite U/t values, as given in Eq. (42).

B. The general operational description naturally emerging
from the rotated electrons and symmetry

The electron–rotated-electron unitary transformation is
closely related to the extended global SO(3) × SO(3) × U(1)
symmetry found in Ref. 14 for the Hamiltonian given in Eq. (1)
on any bipartite lattice. Until recently18 it was believed that
the model’s global symmetry was for finite on-site interaction
values only SO(4) = [SU(2) ⊗ SU(2)]/Z2. The occurrence
of a global c hidden U(1) symmetry beyond SO(4) in the
model’s global SO(3) ⊗ SO(3) ⊗ U(1) = [SO(4) ⊗ U(1)]/Z2

symmetry must be accounted for in studies of the Hubbard
model on any bipartite lattice. Such a global symmetry may
be rewritten as [SU(2) × SU(2) × U(1)]/Z2

2 and stems from
the U �= 0 local gauge SU(2) × SU(2) × U(1) symmetry of
the Hubbard model on a bipartite lattice with vanishing
transfer integral, t = 0.19 The seven local generators of
the corresponding two gauge SU(2) symmetries and U(1)
symmetry are the three spin local operators ŝ l

rj ,s
provided in

Eq. (4) and the three η-spin local operators ŝ l
rj ,η

and the local
operator ŝrj ,c given in Eqs. (A8) and (A9) of Appendix A,
respectively. The index l in the generators of the two SU(2)
symmetries stand for l = ±,z.

An important point is that although addition of chemical-
potential and magnetic-field operator terms to the Hubbard
model on a square lattice Hamiltonian given in Eq. (1) lowers
its symmetry, these terms commute with it. Therefore, the
global symmetry of the latter Hamiltonian being SO(3) ⊗
SO(3) ⊗ U(1) implies that the set of independent rotated-
electron occupancy configurations that generate all 4Na energy
eigenstates, {|lr ,lηs ,u〉}, generate as well representations of the
global symmetry algebra for all values of electronic density n

and spin density m. It is confirmed in Ref. 14 that the number
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of these independent [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2
2 = SO(3) ⊗

SO(3) ⊗ U(1) symmetry algebra representations equals for the
present model on a bipartite lattice its Hilbert-space dimension,
4Na .

The generator ŝrj ,c of the local gauge U(1) symmetry given
in Eq. (A9) of Appendix A and the alternative local generator
ŝh
rj ,c

= (1 − ŝrj ,c) may be expressed as

ŝrj ,c = q̂c
rj

≡ f̂
†
rj ,c

f̂rj ,c, ŝh
rj ,c

= (
1 − q̂c

rj

) = f̂rj ,c f̂
†
rj ,c

.

(48)

Here f̂
†
rj ,c

and f̂rj ,c stand for the following creation and
annihilation operators, respectively, of suitable spinless and
η-spinless fermions:

f̂
†
rj ,c

= c
†
rj ,↑

(
1 − n̂rj ,↓

) + ei π ·rj crj ,↑ n̂rj ,↓,
(49)

f̂rj ,c = crj ,↑
(
1 − n̂rj ,↓

) + ei π ·rj c
†
rj ,↑ n̂rj ,↓,

where we used that ei π ·rj = e−i π ·rj . Here and throughout this
paper the vector π has Cartesian components π = [π,π ].

We call c fermions the rotated-electron related objects
whose creation and annihilation operators f

†
rj ,c

= V̂ † f̂
†
rj ,c

V̂

and frj ,c = V̂ † f̂rj ,c V̂ , respectively, are generated from those
of the spinless and η-spinless fermions of Eq. (49) by
the specific electron–rotated-electron unitary transformation
uniquely defined by the matrix elements of Eqs. (46) and (47).
[No upper index f̃ is used with the (rotated) c fermion operator
frj ,c.] Hence, these operators read

f
†
rj ,c

= c̃
†
rj ,↑

(
1 − ñrj ,↓

) + ei π ·rj c̃rj ,↑ ñrj ,↓,
(50)

frj ,c = c̃rj ,↑
(
1 − ñrj ,↓

) + ei π ·rj c̃
†
rj ,↑ ñrj ,↓.

The rotated-electron creation and annihilation operators ap-
pearing here are generated from corresponding electron oper-
ators by the unitary transformation uniquely defined above, as
given in Eq. (43). The corresponding c fermion local density
operator is given by

q̃c
rj

= f
†
rj ,c

frj ,c. (51)

The c fermions live on a lattice identical to the original
lattice. One can introduce c fermion momentum dependent
operators7,13:

f
†
qj ,c

= 1√
Na

Na∑
j ′=1

e+i qj ·rj ′ f
†
rj ′ ,c; j = 1, . . . ,Na. (52)

Here the c fermion operators f
†
rj ′ ,c where the index j ′ =

1, . . . ,Na refers to the sites of the original lattice are mapped
from the rotated-electron operators by an exact local trans-
formation given in Eq. (50). The c momentum band has Na

discrete momentum values qj , where j = 1, . . . ,Na . It has the
same shape and momentum area as the electronic first BZ.

The generator 2S̃c of the related global c hidden U(1)
symmetry in [SU(2) × SU(2) × U(1)]/Z2

2 found in Ref. 14 is
the number of rotated-electron singly occupied sites given in
Eq. (45). Hence, it involves the site summation

∑Na

j=1 over the
rotated local generator s̃rj ,c rather than over the corresponding
unrotated local operator ŝrj ,c of Eq. (A9) of Appendix A. This

is why 2S̃c = V̂ † Q̂ V̂ , as given in Eq. (45), where the operator
Q̂ is that of Eq. (2). The eigenvalues 2Sc = 0,1,2, . . . , of the
generator 2S̃c are thus the numbers of rotated-electron singly
occupied sites.

The c fermion creation and annihilation operators are found
in Appendix A to obey the anticommutation relations given in
Eq. (A10) of that appendix. A straightforward operator algebra
then confirms that the c fermion local density operator of
Eq. (51) is the local operator s̃rj ,c appearing in the expression
provided in Eq. (45). Hence, the global c hidden U(1)
symmetry generator may be simply rewritten as

2S̃c =
Na∑
j=1

q̃c
rj

=
Na∑
j=1

f
†
rj ,c

frj ,c. (53)

One finds that except in the U/t → ∞ limit the inequality∑Na

j=1 q̂c
rj

�= ∑Na

j=1 q̃c
rj

holds. This confirms that the generator

2S̃c given in Eq. (53) does not commute with the electron–
rotated-electron unitary operator V̂ = Ṽ . On the other hand,
and as justified in Appendix A, the three components of

the momentum operator ̂P , three generators of the global
spin SU(2) symmetry, and three generators of the global
η-spin SU(2) symmetry commute with that unitary operator.
Hence, in contrast to the Hamiltonian and generator 2S̃c, these
operators have the same expression in terms of electron and
rotated-electron creation and annihilation operators, as given
in Eqs. (A6) and (A7) of Appendix A. On the contrary, the
generator of the global c hidden U(1) symmetry given in
Eq. (45) does not commute with the unitary operator V̂ . This
is behind the hidden character of such a symmetry.

Site summation
∑Na

j=1 over the rotated local operator
provided in Eq. (51) and over the following six rotated local
operators,

s̃z
rj ,η

= − 1
2

[
1 − ñrj ,↑ − ñrj ,↓

]
,

s̃+
rj ,η

= ei π ·rj c̃
†
rj ,↓ c̃

†
rj ,↑, s̃−

rj ,η
= e−i π ·rj c̃rj ,↑ c̃rj ,↓,

(54)
s̃z
rj ,s

= − 1
2

[
ñrj ,↑ − ñrj ,↓

]
, s̃+

rj ,s
= c̃

†
rj ,↓ c̃rj ,↑,

s̃−
rj ,s

= c̃
†
rj ,↑ c̃rj ,↓, j = 1,2, . . . ,Na,

gives the seven generators of the model’s global SO(3) ⊗
SO(3) ⊗ U(1) = [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry, as
provided in Eqs. (45) and (A7) of Appendix A. However,
except in the U/t → ∞ limit the six rotated local operators
given in Eq. (54) and the corresponding six unrotated local
operators provided in Eqs. (4) and (A8) of Appendix A are
different operators.

Interestingly, the η-spin and spin SU(2) symmetries are
within the present representation particular cases of a general
ηs quasispin SU(2) symmetry. The corresponding three local
ηs quasispin operators q̃ l

rj
such that l = ±,z obey a SU(2)

algebra and have the following expression in terms of rotated-
electron operators,

q̃−
rj

= (
c̃
†
rj ,↑ + ei π ·rj c̃rj ,↑

)
c̃rj ,↓,

(55)
q̃+

rj
= (

q̃−
rj

)†
; q̃z

rj
= (

ñrj ,↓ − 1/2
)
.
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Here q̃±
rj

= q̃x
rj

± i q̃
y

rj
, where x,y,z denotes the Cartesian

coordinates. The relation of these ηs quasispin operators to the
original electron creation and annihilation operators involves
the unitary transformation of Eq. (43).

Within the present rotated-electron operational formula-
tion, three related elementary objects naturally emerge that
make the model’s global symmetry explicit. The operators
provided in Eq. (50) create and annihilate spinless and η-
spinless c fermions whose local density operator [Eq. (51)]
is directly related to the generator of the global c hidden
U(1) symmetry, as given in Eq. (53). The c fermions carry
the charges of the rotated electrons that singly occupy sites.
Moreover, the three rotated local spin operators s̃ l

rj ,s
and the

three rotated local η-spin operators s̃ l
rj ,η

such that l = ±,z

given in Eq. (54) are associated with the spin- 1
2 spinons and

η-spin- 1
2 η spinons, respectively, as defined here. The spin- 1

2
spinons carry the spin of the rotated electrons that singly
occupy sites. The c fermion holes describe the degrees of
freedom associated with the c hidden U(1) symmetry of the
sites doubly occupied and unoccupied by the rotated electrons.
The η-spin degrees of freedom of these sites are described
by the η-spin projection −1/2 η spinons (rotated-electron
doubly occupied sites) and η-spin projection +1/2 η spinons
(rotated-electron unoccupied sites).

Within our representation, the local operators s̃rj ,c, s̃h
rj ,c

,

and s̃ l
rj ,α

, where l = ±,z and α = s,η can be expressed in
terms of only the c fermion local density operator q̃c

rj
given in

Eq. (51) and three local ηs quasispin operators q̃ l
rj

of Eq. (55)
as follows:

s̃rj ,c = q̃c
rj

; s̃h
rj ,c

= (
1 − q̃c

rj

)
,

(56)
s̃ l
rj ,s

= q̃c
rj

q̃ l
rj

; s̃ l
rj ,η

= (
1 − q̃c

rj

)
q̃ l

rj
, l = ±,z.

The expressions of the local spinon operators s̃ l
rj ,s

and local

η-spinon operators s̃ l
rj ,η

provided here are a confirmation that
the corresponding spin SU(2) and η-spin SU(2) symmetries
are particular cases of the ηs quasispin SU(2) symmetry.
Specifically, they are associated with the SU(2) algebra
representations involving the (i) spin-up and spin-down
rotated-electron singly occupied sites and (ii) rotated-electron
doubly occupied and unoccupied sites, respectively.
Indeed, the c fermion and c fermion hole local density
operators q̃c

rj
and (1 − q̃c

rj
) play in the expressions of these

operators provided in Eq. (56) the role of projectors onto
such two sets of lattice-site rotated-electron occupancies,
respectively.

The relations given in Eq. (56) for the operators s̃ l
rj ,s

and

s̃ l
rj ,η

are equivalent to the following expression of the local

ηs quasispin operators q̃ l
rj

in terms of those of the former
operators provided in Eq. (54),

q̃ l
rj

= s̃ l
rj ,s

+ s̃ l
rj ,η

, l = ±,z. (57)

We emphasize that the c fermion operators [Eq. (50)] and
the spinon and η-spinon operators defined by Eqs. (54)–(56)
are mapped from the rotated-electron operators by an exact lo-
cal unitary transformation that does not introduce constraints.

Given their direct relation to the generators of the model’s
extended global symmetry, their occupancy configurations
naturally generate representations of the corresponding global
symmetry algebra. Consistent with the lack of constraints of
such a local unitary transformation, inversion of the relations
given in Eqs. (50) and (55) fully defines the rotated-electron
operators in terms of the c fermion and ηs quasispin operators
as follows:

c̃
†
rj ,↑ = f

†
rj ,c

(
1
2 − q̃z

rj

) + ei π ·rj frj ,c

(
1
2 + q̃z

rj

)
,

c̃
†
rj ,↓ = (

f
†
rj ,c

+ ei π ·rj frj ,c

)
q̃+

rj
,

(58)
c̃rj ,↑ = frj ,c

(
1
2 − q̃z

rj

) + ei π ·rj f
†
rj ,c

(
1
2 + q̃z

rj

)
,

c̃rj ,↓ = (
frj ,c + ei π ·rj f

†
rj ,c

)
q̃−

rj
.

As given in Eq. (A11) of Appendix A that the c fermion op-
erators commute with the ηs quasispin operators is behind the
form of the expressions given here, whose c fermion creation
and annihilation operators are located on the left-hand side.

The c fermion operator and ηs quasispin operator expres-
sions in terms of rotated-electron creation and annihilation
operators given in Eqs. (50) and (55), respectively, are, except
for unimportant phase factors, similar to those considered in
the studies of Refs. 28–30 in terms of electron creation and
annihilation operators. Our operational representation has the
advantage of rotated-electron single and double occupancy
being good quantum numbers for all finite interaction values.
On the other hand, the operator expressions provided in
Eqs. (50) and (55) differ from those of Refs. 7 and 13 by
unimportant phase factors.

Since for finite U/t values the Hamiltonian Ĥ of Eq. (1)
does not commute with the unitary operator V̂ = e−Ŝ , when
expressed in terms of the rotated-electron creation and annihi-
lation operators of Eq. (43) it has an infinite number of terms,

Ĥ = V̂ H̃ V̂ † = H̃ + [H̃ ,S̃ ] + 1
2 [[H̃ ,S̃ ],S̃ ] + · · · . (59)

The commutator [H̃ ,S̃ ] does not vanish except for U/t → ∞
so that Ĥ �= H̃ for finite values of U/t .

Provided that both U/t is finite and one accounts for all
higher-order terms on the right-hand-side of Eq. (59), the
corresponding expression refers to the Hubbard model. This
is in contrast to the physical problem studied in Refs. 31– 34,
for which the rotated creation and annihilation operators of
Eq. (43) refer to electrons. Thus, except for U/t → ∞ within
the physical problem studied in Refs. 31–34 the Hamiltonian
given in Eq. (59) is not the Hubbard Hamiltonian. Instead, it
is a rotated Hamiltonian for which electron double occupancy
and single occupancy are good quantum numbers. On the other
hand, for the alternative physical problem studied here and in
Refs. 7 and 13 the rotated creation and annihilation operators
of Eq. (43) refer to rotated electrons and the Hamiltonian
provided in Eq. (59) is the Hubbard Hamiltonian.

The latter Hamiltonian may be developed into an expansion
whose terms can be written as products of the rotated kinetic
operators T̃γ given in Eq. (A3) of Appendix A where γ = 0,

±1. The corresponding order of a given Hamiltonian term
refers to the number of such rotated kinetic operators T̃γ

independently of their type, γ = 0, ± 1. To fourth order such
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a Hamiltonian reads

Ĥ = Ĥ (0) + Ĥ (1) + Ĥ (2) + Ĥ (3) + Ĥ (4) + · · · ,
Ĥ (0) = U ṼD; Ĥ (1) = t T̃0, Ĥ (2) = − t2

U
T̃−1T̃+1,

Ĥ (3) = t3

U 2

[
T̃−1T̃0T̃+1 − 1

2
(T̃−1T̃+1T̃0 + T̃0T̃−1T̃+1)

]
,

Ĥ (4) = t4

U 3

[
T̃−1T̃0T̃+1T̃0 + T̃0T̃−1T̃0T̃+1 − T̃−1T̃

2
0 T̃+1

− 1

2
T̃ 2

−1T̃
2
+1 + T̃−1T̃+1T̃−1T̃+1

− 1

2
(T̃−1T̃+1T̃

2
0 + T̃ 2

0 T̃−1T̃+1)

+ θ (2T̃0T̃−1T̃+1T̃0 − T̃−1T̃+1T̃
2

0 − T̃ 2
0 T̃−1T̃+1)

]
,

θ, real-number parameter. (60)

Here,

ṼD = V̂ † V̂D V̂ =
Na∑
j=1

(ñrj ,↑ − 1/2)(ñrj ,↓ − 1/2) (61)

is the rotated-electron interaction operator. That it appears
only once in the Hamiltonian expansion whose leading-order
terms are given in Eq. (60) follows from the derivation of that
expansion systematically using the commutator,

[ṼD,T̃γ ] = γ T̃γ , γ = 0, ± 1. (62)

We recall that except for U/t → ∞ one has that T̂0 �= T̃0,
T̂+1 �= T̃+1, and T̂−1 �= T̃−1. Expressing the Hamiltonian
expression of Eq. (60) in terms of electron creation and
annihilation operators gives for large U/t values a similar
expansion. However, for the intermediate U/t values of
interest for our study the few first terms of the Hamiltonian
t/U expansion given in of Eq. (60) in terms of rotated-electron
operators contain much more complicated higher-order terms
when expressed in terms of electron creation and annihilation
operators.

That Hamiltonian expansion may be expressed in terms of
the c fermion and ηs quasispin operators. This is achieved by
combining the rotated-electron operator expressions provided
in Eq. (58) with those of the rotated-electron interaction
operator given in Eq. (61) and three rotated kinetic operators
T̃0, T̃−1, and T̃+1 provided in Eq. (A3) of Appendix A.

If a rotated-electron term of an operator expansion in
terms of rotated-electron creation and annihilation operators
does not preserve the numbers of rotated-electron singly and
doubly occupied sites, we call it off-diagonal. An interesting
technical detail is that up to third order all diagonal terms of
the Hamiltonian expression provided in Eq. (60) are generated
by the leading-order term of the operator S̃, which is given in
Eq. (44). Indeed, when expressed in terms of electron operators
the Hubbard Hamiltonian provided in Eq. (1) does not contain
any off-diagonal terms with more than two electron operators.
(In this case the off-diagonal terms are electron off-diagonal
terms, which refer to electron doubly occupied sites.)

Only the Hamiltonian terms Ĥ (0), Ĥ (1), Ĥ (2), and Ĥ (3)

to third order given in Eq. (60) are universal. Indeed, the

form of the terms of fourth and larger order is different
for each electron–rotated-electron unitary transformation. For
the fourth-order term Ĥ (4) given in that equation only the
real-number parameter θ value is not universal, being unitary-
transformation dependent.32 For instance, the methods of
Refs. 33 and 34 refer to two different electron–rotated-electron
unitary transformations whose θ values are θ = 0 and θ = 1/4,
respectively. Moreover, one of the methods of Ref. 32 refers to
an electron–rotated-electron unitary transformation whose θ

value is θ = 1/2. Its value for the electron–rotated-electron
unitary transformation whose unitary operator is uniquely
defined by the matrix elements of Eqs. (46) and (47) remains an
open issue. Fortunately, these Hamiltonian terms multiplying
the parameter θ vanish at half filling so that this does not affect
the ensuing section studies.

The nonuniversal Hamiltonian terms are all reducible with
respect to the subspaces with fixed values of rotated-electron
single and double occupancies. That is, they contain hopping
processes that do not originate from excitation between these
subspaces, T̃0T̃−1T̃+1T̃0, nor terminate once a rotated electron
or rotated hole is returned to a subspace with larger single
occupancy, for example, T̃−1T̃+1T̃−1T̃+1. All these processes
can be viewed as arising from the specific transformation
V̂ †|lr ,lηs ,∞〉 of the U/t → ∞ energy eigenstates within
the subspaces with fixed values of rotated-electron single
and double occupancies. Thus, the infinite electron–rotated-
electron unitary transformations differ in the processes within
each subspace with fixed values of these occupancies.

VI. GENERAL Ss = 1 SPIN SPECTRUM WITHIN
THE SPINON REPRESENTATION

As discussed in Sec. I, the usual spin-wave theory does not
describe the neutron scattering of LCO. Here we study the
Ss = 1 spin-triplet spectrum of the half-filled Hubbard model
on the square lattice by means of the spinon representation
that emerges from the above more general c fermion and ηs

quasispin operator formulation, which is that suitable for the
LCO intermediate interaction range U/t ∈ (6,8). [In units of
the bandwidth, 8t , this gives U/8t ∈ (0.75,1).]

For very large U/t values the Hubbard model may be
mapped onto a spin-only problem whose spins are those of the
electrons that singly occupy sites. However, for intermediate
U/t values electron single occupancy is not a good quantum
number so that such a mapping breaks down. On the other
hand, the rotated electrons of our operator representation
have been constructed to make rotated-electron single and
double occupancy good quantum numbers for U/t > 0. This
is why our spinons are well defined for the LCO intermediate
interaction range U/t ∈ (6,8). Indeed, they are the spins of the
rotated electrons that singly occupy sites. In the large-U/t limit
the rotated-electrons become electrons, so that one recovers the
known standard results.

Within our operator formulation, the Hubbard model in the
vanishing rotated-electron doubly occupied sites number and
unoccupied sites number subspace (VDU subspace) can be
mapped onto a spin-only problem for all U/t finite values. In
the VDU subspace the number of spin- 1

2 spinons equals that
of rotated electrons, electrons, and sites N = Na . Since there
are no rotated-electron doubly occupied or unoccupied sites,

064520-11
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there are no η spinons. Hence, the number of η-spin SU(2)
symmetry algebra representations vanishes and that symmetry
does not play any role. Furthermore, although there are
N = Na c fermions, their c momentum band associated with
the operators of Eq. (52) is full. Hence, the degrees of freedom
associated with the c fermion occupancy configurations that
generate the c hidden U(1) symmetry algebra representations
are frozen and the Hubbard model in the subspace under
consideration may be mapped onto a spin-only problem, as
confirmed below.

For U/t → ∞ the VDU subspace is the only one for
finite excitation energy. For the finite-U/t spin excitations that
preserve the electron number N = Na considered in the fol-
lowing, it is the only subspace within a finite excitation-energy
window, ω ∈ (0,2�MH ). Here 2�MH is the Mott-Hubbard
gap. Below we calculate its U/t dependence for the LCO
intermediate interaction range U/t ∈ (6,8) by DMRG. Our
goal is to check whether the relevant spin energy spectrum that
emerges from our VDU subspace spin-only problem is indeed
contained in the excitation-energy domain ω ∈ (0,2�MH ) for
which it is valid.

A. The energy range of our spin-only quantum problem

From the interplay of the model’s symmetries with our
operator formulation that makes these symmetries explicit,
one straightforwardly confirms that the minimum energy for
creation of one rotated-electron doubly occupied site or one
rotated-electron unoccupied site at fixed electron number N =
Na onto the n = 1 and m = 0 ground state is indeed given by
the Mott-Hubbard gap, 2�MH . Its magnitude is twice that of
the single-particle gap, �MH . In order to define the energy
range of our study, here we calculate the Mott-Hubbard gap
2�MH dependence on U/t for a domain containing the LCO
range U/t ∈ (6,8).

Our DMRG calculations refer to the single-particle gap.
They have been performed both for 10 × 4 and 10 × 6
Hubbard cylinders. The chemical potential was set to U/2
and two states were targeted, one with N particles and the
other with N − 1. (Targeting N + 1 electrons would have
given the same results.) Both states were put into the same
density matrix in the traditional multistate targeting DMRG
approach. Thus, the same truncation error applied to both
states, leading to significant error cancellation. The resulting
gap at each sweep was plotted versus the maximum truncation
error in the sweep, yielding approximately linear behavior, and
allowing the extrapolation to zero truncation error. The error
estimate is roughly the size of the extrapolation from the last
point. From 1800 (10 × 4 Hubbard cylinder) to 6000 (10 × 6
Hubbard cylinder) states were kept.

Here we report the corresponding magnitudes of the Mott-
Hubbard gap 2�MH . For the range U/t ∈ (4,20) we find that

2�MH ≈ U

[
tanh

(√
U/γ t√

6 γ + √
U/γ t

)]2

; γ = π + 6

6
,

(63)

gives quantitative agreement with our numerical DMRG
calculations for the Mott-Hubbard gap 2�MH dependence on
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U/t
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DMRG, 10x4 cylinder
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FIG. 3. (Color online) The Mott-Hubbard gap 2�MH DMRG
numerical results on two different-width cylinders along with the
approximate analytical expression of Eq. (63) (solid line) as a function
of U/t . The DMRG points seem to be consistent with for the
half-filled Hubbard on the square lattice the Mott-Hubbard gap being
finite for U/t > 0 and vanishing in the U/t → 0 limit.

U/t . The DMRG points for that gap are plotted in Fig. 3
along with the curve obtained from the approximate analytical
expression [Eq. (63)].

For instance, our DMRG calculations for 10 × 6 Hubbard
cylinders give 2�MH ≈ 2.78(4) t for U/t = 6 and �MH =
4.30(4) t for U/t = 8. This leads to a range 2�MH ∈
(816,1442 meV) for U/t ∈ (6,8). Here we used the t

magnitudes t ≈ 293 meV and t ≈ 335 meV for which the
model describes the LCO neutron scattering for U/t = 6 and
U/t = 8, respectively. For the U/t = 6.1 value used in some
of our calculations, we find �MH ≈ 2.81(0) t from the DMRG
analysis, so that �MH ≈ 829 meV for t ≈ 295 meV.

Optical experiments overestimate the charge-transfer gap
magnitudes of the parent insulating compounds.35 On the
other hand, by measuring the Hall coefficient RH in LCO,
the studies of Ref. 36 have estimated the energy gap over
which the electron and hole carriers are thermally activated,
which corresponds to the Mott-Hubbard gap, to be 2�MH ≈
890 meV. Remarkably, this magnitude is within the range
2�MH ∈ (816,1442 meV) of our above theoretical predictions
for U/t ∈ (6,8). Our theoretical approach based on the combi-
nation of our DMRG results with the U and t values for which
agreement with the LCO neutron-scattering agreement is
reached leads to 2�MH ≈ 890 meV for U/t ≈ 6.3. Below we
consistently confirm that the spin-triplet excitation spectrum
calculated for the Hubbard model in the VDU subspace is
contained in the energy window ω ∈ (0,2�MH ) found here.

Note that the DMRG points of Fig. 3 seem to be consistent
with the Mott-Hubbard gap being finite for U/t > 0 and
vanishing in the U/t → 0 limit.

B. The Hubbard model in the VDU subspace

Let us confirm that within our operator representation the
half-filled Hubbard model on the square lattice in the VDU
subspace can for U/t > 0 be expressed solely in terms of
spinon operators. Indeed, accounting for the lack of both
rotated-electron doubly occupied sites and unoccupied sites,
upon writing the Hamiltonian of Eq. (60) in the VDU subspace,
one finds that all its terms of odd order vanish and the terms
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of even order given in that equation simplify to

Ĥ (0) = U Ṽ c, Ĥ (2) = − t2

U
T̃−1T̃+1,

(64)

Ĥ (4) = t4

U 3

[
T̃−1T̃+1T̃−1T̃+1 − 1

2
T̃ 2

−1T̃
2
+1 − T̃−1T̃

2
0 T̃+1

]
.

We have then expressed the Hamiltonian terms of even order
as those provided in Eq. (64) in terms of the c fermion and
ηs quasispin operators. This has been done by combining the
rotated-electron operator expressions provided in Eq. (58) with
those of the three rotated kinetic operators T̃0, T̃−1, and T̃+1

given in Eq. (A3) of Appendix A. Since the states that span the
VDU subspace are generated only by rotated-electron singly
occupancy configurations, the projectors q̃c

rj
and (1 − q̃c

rj
) in

the expressions of Eq. (56) can be replaced by the correspond-
ing eigenvalues 1 and 0, respectively. One then finds that s̃ l

rj ,s
=

q̃ l
rj

in the VDU subspace, so that the η-spinon operators do not

play any role. Hence, in it the ηs quasi-spin operators q̃ l
rj

reduce

to the corresponding spinon operators s̃ l
rj ,s

, where l = ±,z.
Moreover, after some algebra involving the anticommuta-

tion and commutation relations given in Eqs. (A10)–(A13) of
Appendix A, one finds that all contributions involving the c

fermion creation and annihilation operators can be expressed
only in terms of local operators q̃c

j . In the VDU subspace one
can then replace these operators by their eigenvalue 1. Thus,
the Hamiltonian terms of Eq. (64) can be expressed only in
terms of spinon operators. Importantly, this holds as well for
the remaining Hamiltonian terms of higher even order omitted
in that equation. Moreover, all Hamiltonian terms of odd order
vanish and the zeroth-order term becomes a mere constant,
Ĥ (0) = [U/4] Na , and may be ignored. The Hamiltinonian
terms of second and fourth order of Eq. (64) may after some
algebra then be rewritten as

Ĥ (2) = t2

U

∑
〈j1j2〉

1

2

[̃srj1 ,s · ̃srj2 ,s − 1
]
, (65)

and

Ĥ (4) = − t4

U 3

∑
〈j1j2〉

1

2

[̃srj1 ,s · ̃srj2 ,s − 1
]

+ t4

U 3

∑
j1,j2,j3

1

2
Dj1,j2Dj2,j3

[̃srj1 ,s · ̃srj3 ,s − 1
]

+ t4

U 3

∑
j1,j2,j3,j4

1

8
Dj1,j2Dj2,j3Dj3,j4Dj4,j1

× [
1 − ̃srj1 ,s · ̃srj2 ,s − ̃srj1 ,s · ̃srj3 ,s − ̃srj1 ,s · ̃srj4 ,s

− ̃srj2 ,s · ̃srj3 ,s − ̃srj2 ,s · ̃srj4 ,s − ̃srj3 ,s · ̃srj4 ,s

]
+ t4

U 3

∑
j1,j2,j3,j4

5

8
Dj1,j2Dj2,j3Dj3,j4Dj4,j1

× [(̃srj1 ,s · ̃srj2 ,s

)(̃srj3 ,s · ̃srj4 ,s

)
+ (̃srj1 ,s · ̃srj4 ,s

)(̃srj2 ,s · ̃srj3 ,s

)
− (̃srj1 ,s · ̃srj3 ,s

)(̃srj2 ,s · ̃srj4 ,s

)]
, (66)

respectively. Here the spinon operator ̃srj ,s has operator
Cartesian components s̃x

rj ,s
= 1

2 [s̃+
rj ,s

+ s̃−
rj ,s

], s̃y

rj ,s
= 1

2i
[s̃+

rj ,s
−

s̃−
rj ,s

], and s̃z
rj ,s

and refers to the spin of a rotated electron
that singly occupies the site of real-space coordinate rj .
The spinon operators s̃z

rj ,s
and s̃±

rj ,s
are those given in

Eq. (54). Furthermore, in the expressions of Eqs. (65) and
(66) the summation 〈j1j2〉 runs over nearest-neighboring
sites and Dj,j ′ = 1 for the real-space coordinates rj and
rj ′ corresponding to nearest-neigboring sites and Dj,j ′ = 0
otherwise.

For very large U/t values when electron single and
double occupancy become good quantum numbers and thus
the rotated electrons become electrons the spinon operators
̃srj ,s become the usual spin operators ̂srj ,s and Eqs. (65)
and (66) recover the corresponding spin-only Hamiltonian
terms obtained previously by other authors.31 On the other
hand, for the intermediate U/t values of interest for LCO
the terms of the Hamiltonian t/U expansion given in of
Eq. (66) in terms of spinon (rotated-electron) operators
contain much more complicated higher-order terms when
expressed in terms of electron creation and annihilation
operators.

C. The absolute ground state of the Hubbard model
on the square lattice

The antiferromagnetic long-range order of the half-filled
Hubbard model on the square lattice ground state follows from
a spontaneous symmetry-breaking mechanism that occurs in
the thermodynamic limit Na → ∞. It involves a whole tower
of low-lying energy eigenstates of the finite system. They
collapse in that limit onto the ground state.

Importantly, both that ground state and the excited energy
eigenstates that collapse onto it as Na → ∞ belong to the
VDU subspace. One may investigate which energy eigenstates
couple to the exact finite Na 
 1 and n = 1 and m = 0 ground
state |GS〉 via the operator,

m̂l
s = 1

Na

Na∑
j=1

(−1)j ŝl
rj ,s

, l = ±,z. (67)

We insert the complete set of energy eigenstates as follows:

〈GS|(m̂l
s

)2|GS〉 =
∑
lr ,lηs

〈GS|m̂l
s

∣∣lr ,lηs ,u

〉〈
lr ,lηs ,u

∣∣m̂l
s |GS〉

=
∑
lr ,lηs

|〈GS|m̂l
s

∣∣lr ,lηs ,u

〉∣∣2
; l = ±,x3.

(68)

Only energy eigenstates |lr ,lηs ,u〉 with excitation momentum
k = π and quantum numbers Sη = 0, 2Sc = Na = N , Ss = 1,
and Sz

s = 0, ± 1 contribute to the sum of Eq. (68). We
recall that the quantum numbers Sη = 0 and 2Sc = Na = N

remain unchanged and thus are the same as those of the
ground state |GS〉. We denote by |1T 〉 the Ss = 1, Sη = 0,
2Sc = Na = N , and k = [π,π ] lowest spin-triplet state whose
excitation energy behaves as 1/Na for finite Na 
 1. For the
range U/t > 4 of interest for our studies the contribution from
this lowest spin triplet state is by far the largest. For instance,
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for the related spin- 1
2 Heisenberg model on the square lattice

the matrix-element square |〈GS|m̂l
s |1T 〉|2 exhausts the sum

in Eq. (68) by more than 98.7% (Ref. 37). A similar behavior
is expected for the Hubbard model on the square lattice, at
least provided that U/t > 4.

The special properties with respect to the lattice symmetry
group of the lowest-energy eigenstates contributing to the
linear Goldstone modes of the corresponding Ss = 1 spin-
wave spectrum reveal the space-symmetry breaking of the
Na → ∞ ground state. In the present case of the half-
filled Hubbard model on the square lattice the translation
symmetry is broken. Hence, as found here, both the k =
[0,0] and k = [π,π ] excitation momenta appear among the
lowest-energy eigenstates contributing to the linear Gold-
stone modes of the Ss = 1 spin-wave spectrum. However,
that the transitions to the lowest spin-triplet state |1T 〉 of
momentum k = [π,π ] nearly exhaust the sum in Eq. (68) is
consistent with the first-moment sum rules of an isotropic
antiferromagnet, such that no weight is generated by states of
momentum k = [0,0].

One of the few exact theorems that apply to the half-filled
Hubbard model on a bipartite lattice and thus on a square
lattice is that for a finite number of lattice sites Na its ground
state is a spin-singlet state.16 The studies of Refs. 7 and 13 use
an operator representation that differs from that used here only
by unimportant phase factors. Such studies provide evidence
that the n = 1 and m = 0 ground state is the only model’s
ground state that is invariant under the electron–rotated-
electron unitary transformation. For Na 
 1 the results of
those references reveal that its spin-singlet configurations refer
to Na/2 = N/2 independent spin-singlet two-spinon pairs.
Most of the weight of these spin-singlet two-spinon pairs
stems from spinons at nearest-neighboring sites, yet they have
finite contributions as well from spinons located at larger
distances.

Our spinon representation has been constructed to make
such N/2 spin-singlet spinon pairs correspond to spin-neutral
objects that obey a hard-core bosonic algebra. One can then
perform an extended Jordan-Wigner transformation that maps
them onto N/2 s1 fermions.13 (In the index s1 the number
1 refers to one spin-singlet spinon pair.) The corresponding
s1 fermion momentum band is full for the n = 1 and m =
0 absolute ground state. It has a momentum area 2π2 and
coincides with an antiferromagnetic RBZ whose momentum
q components obey the inequality

|qx | + |qy | � π. (69)

As a result of its invariance under the electron–rotated-
electron unitary transformation, the n = 1 and m = 0 absolute
ground state is the only ground state that for U/t > 0 belongs
to a single V tower. Hence, both for it and for its spin-
triplet excited states that belong to the VDU subspace, the
s1 boundary-line momenta qBs1 are independent of U/4t .
Consistent with Eq. (69), their Cartesian components qBs1x

and qBs1y obey the equations

qBs1x ± qBs1y = π, or qBs1x ± qBs1y = −π. (70)

Hence, the s1 boundary line refers to the lines connecting
[±π,0] and [0, ± π ].

D. The spin excitations and the ground-state spinon
d-wave pairing

Within our spinon operator representation the Ss = 1 spin-
triplet excitations relative to the n = 1 and m = 0 absolute
ground state involve creation of two holes in the s1 band
along with a shift π/Na of all discrete momentum values
of the full c band. Under such an excitation one of the
Na/2 = N/2 spin-singlet spinon pairs is broken. This gives
rise to two unbound spinons in the excited state whose three
occupancy configurations generate the three spin-triplet states
of spin projection Sz

s = 0, ± 1. In the case of such spin-triplet
excitations the occupancy configurations of the two holes
arising in the s1 fermion momentum band may simulate the
motion of the two unbound spinons relative to a background
of N/2 − 1 spinon pairs, or vice versa.

The general spin-triplet spectrum has within the present
spinon representation the form

ω(k) = −εs1(q) − εs1(q ′), k = π − q − q ′, (71)

where π = ±[π, ± π ], q and q ′ are the momentum values
of the emerging two s1 fermion holes, and εs1(q) is the
corresponding s1 fermion energy dispersion. Indeed, the
results of Ref. 13 provide evidence that for the Hubbard model
on the square lattice in the VDU subspace the s1 fermion
momentum q is a good quantum number, so that one can define
a corresponding energy dispersion. However, in contrast to 1D
this property does not hold for the more general problem of
that model in its full Hilbert space.13

The Hubbard model on the also bipartite 1D lattice has the
same extended global symmetry than on the square lattice.
Hence, for it an operator representation similar to that used
here may be introduced. The exact Bethe-anstaz solution then
implicitly performs the summation of all Hamiltonian terms
of even order whose leading-order terms are given in Eqs. (65)
and (66). This leads to a s1 fermion band εs1(q) that in
the U/t → 0 limit equals the occupied part of the electron
noninteracting dispersion.38,39 The main effect of increasing
the U/t value is decreasing the s1 fermion band εs1(q) energy
bandwidth. It decreases from 2t as U/t → 0 to zero for
U/t → ∞.

As discussed above, expression of the Hamiltonian in terms
of rotated-electron operators leads for the intermediate U/t ∈
(6,8) range to a quantum problem in terms of rotated-electron
processes similar to the corresponding large-U/t quantum
problem in terms of electron processes. At half filling the
main effect of decreasing U/t is the increase of the energy
bandwidth of an effective band associated with the spinon
occupancy configurations. Such an effective band is the s1
energy dispersion. Consistent with and partially motivated by
the exact 1D results yet accounting both for the corresponding
common global symmetry and different physics, the rotated-
electron studies of Refs. 7 and 13 provide evidence that for the
model on the square lattice the effective s1 energy dispersion
εs1(q) involves an auxiliary dispersion,

ε0
s1(q) = −W 0

s1

2
[cos qx + cos qy]. (72)

In the U/t → 0 limit such an auxiliary dispersion reaches its
maximum energy bandwidth. Similarly to 1D, in that limit
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it is expected to become the occupied part of the electron
noninteracting dispersion. The main effect of increasing U/t

is to decrease the energy bandwidth of that dispersion and thus
the magnitude of the energy scale W 0

s1 in Eq. (72), so that for
half filling it changes from W 0

s1 = 4t as U/t → 0 to W 0
s1 = 0

for U/t → ∞.
However, the n = 1 and m = 0 ground state of the 1D half-

filled Hubbard model has no antiferromagnetic long-range
order as Na → ∞. In the presence of that order, provided
that U/t is not too small so that one can ignore the amplitude
fluctuations of the corresponding order parameter, the problem
can be handled for the model on the square lattice by a
suitable mean-field theory. Within it the occurrence of that
order is described by a s1 energy dispersion of the general
form,7,13

εs1(q) = −
√∣∣ε0

s1(q)
∣∣2 + |�s1(q)|2. (73)

Here ε0
s1(q) is the auxiliary dispersion given in Eq. (73) and

the gap function |�s1(q)| is to be determined from comparison
with the spin-triplet spectrum obtained from the standard
formalism of many-body physics by summing up an infinite
number of ladder diagrams. (We note that, as explicitly shown
in Ref. 5, the RPA studies of Sec. IV are equivalent to summing
up an infinite number of such diagrams.)

We profit from symmetry and limit our analysis of the
spin spectrum of Eq. (71) to the sector kx ∈ (0,π ) and ky ∈
(0,kx) of the (k,ω) space. Surprisingly, quantitative agreement
with the results obtained from summing up an infinite number
of diagrams is reached provided that the s1 dispersion gap
function refers to a d-wave s1 fermion spin-singlet spinon
pairing,

|�s1(q)| = μ0

2

| cos qx − cos qy |
2

. (74)

Moreover, from comparison with many-body physics results
one finds that the inelastic coherent spin-wave spectrum is
generated by processes where q points in the nodal direction
and q ′ belongs to the boundary of the s1 band reduced zone.
The remaining choices of q and q ′ either generate the inelastic
incoherent continuum spectral weight or vanishing weight,
respectively.

For this choice of the momenta of the two emerging s1
fermion holes one finds from the use of Eqs. (72)–(74) that the
spin-wave spectrum corresponds to a surface of energy and
momentum given by

ω(k) = μ0

2

∣∣∣∣ sin

(
kx + ky

2

)∣∣∣∣ + W 0
s1

∣∣∣∣ sin

(
kx − ky

2

)∣∣∣∣,
k = π − q − q ′. (75)

This is a particular case of the general spin spectrum of
Eq. (71), which refers to the choices of the momenta π , q,
and q ′

π = [π, − π ], q =
[
π

2
− (kx + ky)

2
, − π

2
− (kx + ky)

2

]
,

q ′ =
[
π

2
− (kx − ky)

2
, − π

2
+ (kx − ky)

2

]
, (76)

for the subsector such that kx ∈ (0,π ), ky ∈ (0,kx) for kx �
π/2, and ky ∈ (0,π − kx) for kx � π/2. Moreover, for the
subsector such that ky ∈ (0,π ), kx ∈ (π − ky,π ) for ky � π/2,
and kx ∈ (ky,π ) for ky � π/2, respectively, it corresponds to
the following choices of the momenta π , q, and q ′:

π = [π,π ], q =
[
π

2
− (kx + ky)

2
,
3π

2
− (kx + ky)

2

]
,

q ′ =
[
π

2
− (kx − ky)

2
, − π

2
+ (kx − ky)

2

]
. (77)

Note that the components of the s1 band momenta q appearing
in Eqs. (76) and (77) are such that qx − qy = −π and thus
belong to the half-filling s1 boundary line defined by Eq. (70),
whereas those of the momenta q ′ in the same equations obey
the relation q ′

x = −q ′
y so that point in the nodal directions.

For the values U/t = 6.1 and t = 295 meV used in Sec. IV
in our study of the LCO spin spectrum one finds that W 0

s1 ≈
t/5.95 and μ0 ≈ t/0.5216 in the expressions of Eqs. (72),
(74), and (75), so that W 0

s1 ≈ 49.6 meV and μ0 ≈ 565.6 meV.
The spin-wave spectrum of Eq. (75) calculated for these W 0

s1
and μ0 values refers to the middle surface plotted in Fig. 4. Its
expressions corresponding to the high-symmetry directions in
the BZ are given in Appendix B. The corresponding curves are
plotted in the top panel of Fig. 2, along with those obtained
from the many-body physics by summing up an infinite
number of ladder diagrams and the LCO experimental points
of Ref. 2. In Fig. 5 the same curves are plotted together with
the LCO experimental points of Ref. 4. We emphasize that the
intermediate sheet plotted in Fig. 4, which corresponds to the

FIG. 4. (Color online) The energy-momentum space limits of
the spin Ss = 1 excited states spectrum of Eq. (71) for U/t = 6.1,
t = 295 meV, and kx and ky in units of 2π . States whose energy
is for a given k lower than that of the intermediate spin-wave
sheet as well as those of any energy and equivalent momenta
[0,0] = [0,2π ] = [2π,0] = [2π,2π ] do not contribute to the spin
spectral weight.
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FIG. 5. (Color online) The theoretical spin spectra [Eqs. (B1)–
(B9)] (solid lines) plotted in the second BZ for U/t ≈ 6.1 and t ≈
0.295 eV and thus μ0 = 565.6 meV and W 0

s1 = 49.6 meV and the
experimental data of Ref. 4 (circles) in meV. The momentum is given
in units of 2π . From Ref. 7.

general spin-wave spectrum of Eq. (75), also fully agrees with
the results of the experimental studies reported in Refs. 2 and 4.

The studies of Ref. 7 are limited to the spin-wave spectrum.
Following the agreement of the spin-wave spectrum of Eq. (75)
obtained from the general spin spectrum of Eq. (71) with
both results from the many-body physics and LCO neutron-
scattering experimental points of Refs. 2 and 4 here we
consider it for all choices of the s1 fermion hole momenta q
and q ′. The corresponding energy-momentum space domain
of the spin Ss = 1 excited states whose spectrum is provided
in Eq. (71) is represented in Fig. 4 for U/t = 6.1 and
t = 295 meV. A similar spectrum is obtained for the values
U/t = 8.0 and t = 335 meV of Ref. 6.

The largest energy of the general spin spectrum of the
half-filled Hubbard model on the square lattice in the VDU
subspace represented in Fig. 4 is 566 meV. Hence, the whole
spin spectrum of Eq. (71) represented in that figure is contained
in the energy window ω ∈ (0,2�MH ) of the corresponding
VDU subspace. Indeed, from combination of the results of
our DMRG calculations with the t magnitudes that lead to
agreement with the spin-wave spectrum of LCO we have found
that 2�MH ∈ (816,1442 meV) for U/t ∈ (6,8).

As mentioned above, the intermediate sheet of the general
spin spectrum represented in Fig. 4 refers to the spin-wave
spectrum. For each excitation momentum k, states of energy
lower than the latter spectrum do not contribute to the
form-factor weight. Furthermore, and consistent with the
first-moment sum rules of an isotropic antiferromagnet, no
and nearly no weight is generated by states of any energy and
momentum [0,0] = [0,2π ] = [2π,0] = [2π,2π ] and near it,
respectively.

Unfortunately, in its present form our spinon-operator
method does not provide the detailed continuum weight
intensity distribution. However, it is expected that, similarly
to the Heisenberg model case,6 its energy-integrated intensity

follows the same trend as the spin-wave intensity. Analysis
of Fig. 4 reveals that for momentum [π,0] there are no
excited states of energy higher than the spin waves. Thus, at
momentum [π,0], the continuum weight distribution energy-
integrated intensity vanishes or is extremely small, due to s1
band four-hole processes. Given the expected common trend
of both intensities, this is consistent with a damping of the
spin-wave intensity at momentum [π,0], as observed in the
recent high-energy inelastic neutron scattering experiments of
Ref. 2 but not captured by the Fig. 2 RPA intensity. Since we
find that for the half-filled Hubbard model on the square lattice
the continuum weight distribution energy-integrated intensity
vanishes or is extremely small at momentum [π,0], we predict
that for it the corresponding spin-wave intensity at momentum
[π,0] is also damped. Hence, we expect that such a behavior
is absent in Fig. 2 due to the RPA used in the calculation of the
spin-wave intensity. However, for all other momentum values
the RPA results are expected to be a quite good estimate of the
model’s spin-wave intensity.

The d-wave spin-singlet spinon pairing that follows from
the energy gap [Eq. (74)] emerged here from imposing quan-
titative agreement with the spin-wave spectrum obtained from
summing up an infinite number of diagrams. We emphasize
that such a type of spinon pairing is not inconsistent with the
ground-state antiferromagnetic order provided that the weights
of the corresponding spinon pairs fall off as a power law
of the spinon distance whose negative exponent has absolute
value smaller than 5. This was confirmed in Ref. 40 for spins
associated with electrons yet holds as well for the present
spinons, which refer to the spins of the rotated-electrons that
singly occupy sites. We emphasize that such a pairing does not
refer to electrons or rotated electrons. For the n = 1 and m = 0
absolute ground state it corresponds to N/2 spinon pairs,
which describe the spin degrees of freedom of the N rotated
electrons. Indeed, for that ground state all rotated electrons
singly occupy sites.

VII. COMPARISON OF THE PREDICTED SPECTRAL
WEIGHTS WITH THOSE IN THE LCO

HIGH-ENERGY NEUTRON SCATTERING

As discussed in Sec. IV, the total spin-weight sum-rule,
μ2

B 2(1 − 2d), of Eq. (7) can in units of μ2
B be written as

WT = 2(1 − 2d) ≈ WSW + WCO + 4
(
mGB

AF

)2
. (78)

Here WSW = Zd [2(1 − 2d) − 4(mAF )2] is the integrated
spectral weight associated with the spin-wave intensity
[Eqs. (34) and (35)], WCO = (1 − Zd ) [2(1 − 2d) − 4(mAF )2]
is that of the remaining inelastic spin spectral weight associated
with the continuum distribution, and 4(mGB

AF )2 refers to the
Bragg-peak elastic part of the spin spectral weight.

In Table II we provide the results of our calculations for
several integrated spin spectral weights (in units of μ2

B). This
includes the total spin spectral weight WT and the spin-wave
intensity coherent spectral weight WSW . In addition, in the
table we provide the estimated magnitudes of the total spin
spectral weight for excitation energy h̄ω �450 meV, W<450 =
WSW/0.71 + 4(mGB

AF )2, and the total spin spectral weight for
excitation energy h̄ω > 450 meV, W>450 = [WT − W<450].
The magnitude of the spin spectral weight for excitation
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TABLE II. Several spectral weights in units of μ2
B as defined in

the text for several U/t values and some results from Refs. 6 and 21.

U/t 6.1 6.5 8.0 10.0

WT 1.643 1.671 1.762 [1.778 (Ref. 6)] 1.848 [1.846 (Ref. 6)]
WSW 0.808 0.799 0.761 0.714
W<450 1.571 1.593 1.663 1.730
W>450 0.072 0.078 0.099 0.118

energy h̄ω � 450 meV, W<450, is derived by combining our
theoretical expressions with the observations of Ref. 2 that for
the energy range up to about 450 meV, 71% and 29% of the
weight corresponding to the inelastic response comes from the
coherent spin-wave weight and incoherent continuum weight,
respectively.

Our prediction for the magnitude of the spin spectral weight
for excitation energy h̄ω � 450 meV, W<450, varies between
1.6 μ2

B for U/t ≈ 6.1 and 1.7 μ2
B for U/t ≈ 8.0, in agreement

with the experimental value 1.9 ± 0.3 μ2
B reported in Ref. 2.

From our above analysis, the amount of spin spectral
weight for excitation energy h̄ω > 450 meV is small, W>450 ≈
0.1 μ2

B . By combining our spectral-weight results with the
boundaries of the spin-triplet spectrum plotted in Fig. 4, such
a small spin spectral weight is expected to extend to about
566 meV, mostly at and around the momentum [π,π ].

VIII. CONCLUDING REMARKS

In this paper we have studied by means of the half-filled
Hubbard model on the square lattice several open issues
raised by the recent LCO neutron scattering data reported
in Ref. 2. Our studies combined standard methods such as
RPA techniques involving a broken-symmetry ground state
with DMRG calculations on Hubbard cylinders and a spinon
representation suitable to the LCO intermediate interaction
range U/t ∈ (6,8). The latter emerges from a rotated-electron
operator representation that has been constructed to ensure
that rotated-electron single and double occupancy are good
quantum numbers for U/t > 0. This assures that our spinons
are well defined for the LCO intermediate U/t range. Indeed,
these spinons are the spins of the rotated electrons that singly
occupy sites. In the large-U/t limit the rotated-electrons
become electrons, so that one recovers the usual picture.

Within this operator formulation, the Hubbard model in
the VDU subspace considered here can be mapped onto a
spin-only problem for the U/t range of interest for our studies.
The spin excitations preserve the electron number. At fixed
electron number the VDU subspace is the only one within a
finite excitation-energy window, ω ∈ (0,2�MH ). Here 2�MH

is the Mott-Hubbard gap, whose U/t dependence we have
calculated by DMRG. We have found that 2�MH ∈ (816,1442
meV) for U/t ∈ (6,8). Correspondingly, the largest energy of
the general spin spectrum of the half-filled Hubbard model
on the square lattice in the VDU subspace represented in
Fig. 4 is 566 meV, so that it is fully contained in this energy
window.

The coherent part of the spin spectrum, which corresponds
to the spin-wave spectrum, was complementarily studied by
a RPA analysis involving a broken symmetry ground state

and the spinon operator representation. The former method
was also used to calculate the spin-wave intensity momentum
distribution. Quantitative agreement with both the spin-wave
spectrum obtained by summing up an infinite number of
ladder diagrams and that observed in LCO neutron scattering
experimental studies is reached by the spinon method provided
that the initial n = 1 and m = 0 ground state has d-wave
spinon pairing. For that ground state such a pairing refers
only to the rotated-electron spin degrees of freedom. Whether
upon hole doping such a preformed d-wave spinon pairing
could lead to rotated-electron d-wave pairing or even related
electron d-wave pairing is an issue that deserves further
investigations.

Following the good quantitative agreement with the spin-
wave spectrum, the spinon representation was used to derive
the full Ss = 1 spin-triplet spectrum represented in Fig. 4 for
the U and t values suitable for LCO. From analysis of that
figure we have found that for the momentum [π,0] there are
no excited states of energy higher than the spin waves. Thus, at
momentum [π,0], the continuum weight distribution energy-
integrated intensity vanishes or is extremely small. Such an
intensity is expected to follow the same trend as that of the spin
waves. Hence, this behavior is consistent with a corresponding
damping of the spin-wave intensity at [π,0] observed in the
recent high-energy inelastic neutron-scattering experiments of
Ref. 2.

On the other hand, a resonant-inelastic x-ray scattering
study of insulating and doped La2−xSrxCuO4 found a mode
at 500 meV, at a momentum transfer [π,0].41 This 500-meV
mode is observed only when the incident x-ray polarization
is normal to the CuO planes. It could be a d-d crystal-field
excitation,42,43 rather than a spin excitation. In case it is a spin
excitation, one possible explanation given in Ref. 41 is that it
involves two spin-flip processes, created on adjacent copper-
oxide planes. Since our present study relies on the Hubbard
model on a single square-lattice plane, that mechanism would
be beyond our theoretical approach.

We recall that for each excitation momentum k, states
in the (k,ω) domain of Fig. 4 whose energy is lower than
that of the spin-wave spectrum intermediate sheet generate
no spectral weight and thus do not contribute to the spin
dynamical structure factor. Furthermore, consistent with the
first-moment sum rules of an isotropic antiferromagnet, no
and nearly no weight is generated by states of any energy
and momentum [0,0] = [0,2π ] = [2π,0] = [2π,2π ] and near
it, respectively. That together with the small amount of spin
spectral weight reported in Table II for energies between
450 and 566 meV indicates that in that energy window
there is nearly no spin spectral weight near the momentum
[0,0] = [0,2π ] = [2π,0] = [2π,2π ] (see Fig. 4).

In addition to the Mott-Hubbard gap magnitude dependence
on U/t , DMRG calculations were performed to derive the
U/t dependence of the ground-state electron single occupancy
expectation value (1 − d). That quantity plays an important
role in our study in that it controls several spin-weight sum
rules. Our prediction for the amount of total spin spectral
weight in the energy range ω ∈ (0, 450 meV) quantitatively
agrees with that observed in the recent high-energy inelastic
neutron scattering studies of Ref. 2, which were limited to that
energy window.
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Moreover, as reported in Table II we predict that there is a
small amount of extra weight ≈0.1 μ2

B above 450 meV, which
extends to about 566 meV. Since at and near the momentum
[0,0] = [0,2π ] = [2π,0] = [2π,2π ] there is nearly no spin
spectral weight, analysis of Fig. 4 reveals that for energies
between 450 and 566 meV the small amount of extra spin
spectral weight is located at and around the momentum
[π,π ]. Thus, we suggest that future LCO neutron scattering
experiments scan the energies between 450 and 566 meV and
momenta around [π,π ].
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APPENDIX A: USEFUL OPERATORS ALGEBRA

Here we justify why the six generators of the global η

spin and spin SU(2) symmetries commute with the electron–
rotated-electron unitary operator. Moreover, we address the
problem of the c fermion operator, spinon operator, and η-
spinon operator algebras.

To achieve our first goal, it is useful to express the kinetic-
energy operator T̂ given in Eq. (1) as T̂ = T̂0 + T̂+1 + T̂−1.
Here,

T̂γ = −
∑
〈j,j ′〉

T̂γ ;,j,j ′ , γ = 0, ± 1,

T̂0;j,j ′ =
∑

σ

[
n̂rj ,−σ c

†
rj ,σ

crj ′ ,σ n̂rj ′ ,−σ

+ (
1 − n̂rj ,−σ

)
c
†
rj ,σ

crj ′ ,σ
(
1 − n̂rj ′ ,−σ

) + c.c.
]
,

T̂+1;j,j ′ =
∑

σ

[
n̂rj ,−σ c

†
rj ,σ

crj ′ ,σ
(
1 − n̂rj ′ ,−σ

)
+ n̂rj ′ ,−σ c

†
rj ′ ,σ crj ,σ

(
1 − n̂rj ,−σ

)]
,

T̂−1;j,j ′ =
∑

σ

[(
1 − n̂rj ,−σ

)
c
†
rj ,σ

crj ′ ,σ n̂rj ′ ,−σ

+ (
1 − n̂rj ′ ,−σ

)
c
†
rj ′ ,σ crj ,σ n̂rj ,−σ

]
. (A1)

While the operator T̂0 does not change electron double
occupancy, the operators T̂+1 and T̂−1 change it by +1 and
−1, respectively.

For U/t > 0 the operator Ŝ in the expression V̂ = e−Ŝ

given in Eq. (43) can be expanded in a series of t/U ,

Ŝ = − t

U
[T̂+1 − T̂−1] + O(t2/U 2). (A2)

Although as discussed in Ref. 14 there are infinite choices
for the operators V̂ = e−Ŝ and Ŝ, they share two impor-
tant properties14,31,32: (i) To leading order in t/U all read
− t

U
[T̂+1 − T̂−1], as given in Eq. (A2); (ii) their operational

expressions involve only the kinetic operators T̂0, T̂+1, and T̂−1

of Eq. (A1). Such properties apply to the specific electron–
rotated-electron unitary operator V̂ uniquely defined in this
paper.

The rotated kinetic operators T̃0, T̃+1, and T̃−1 such that
T̃γ = V̂ † T̂γ V̂ for γ = 0, ± 1 are given by

T̃γ = −
∑
〈j,j ′〉

T̃γ ;,j,j ′ , γ = 0, ± 1,

T̃0;j,j ′ =
∑

σ

[
ñrj ,−σ c̃

†
rj ,σ

c̃rj ′ ,σ ñrj ′ ,−σ

+ (
1 − ñrj ,−σ

)
c̃
†
rj ,σ

c̃rj ′ ,σ
(
1 − ñrj ′ ,−σ

) + c.c.
]
,

T̃+1;j,j ′ =
∑

σ

[
ñrj ,−σ c̃

†
rj ,σ

c̃rj ′ ,σ
(
1 − ñrj ′ ,−σ

)
+ ñrj ′ ,−σ c̃

†
rj ′ ,σ c̃rj ,σ

(
1 − ñrj ,−σ

)]
,

T̃−1;j,j ′ =
∑

σ

[(
1 − ñrj ,−σ

)
c̃
†
rj ,σ

c̃rj ′ ,σ ñrj ′ ,−σ

+ (
1 − ñrj ′ ,−σ

)
c̃
†
rj ′ ,σ c̃rj ,σ ñrj ,−σ

]
. (A3)

To confirm that the three generators of the spin SU(2)
symmetry, three generators of the η-spin SU(2) symmetry, and
also the momentum operator P̂ commute with the electron–
rotated-electron unitary operator V̂ = Ṽ , one uses the exact
result that the unitary operator V̂ can be solely expressed in
terms of the three kinetic operators given in Eq. (A1).14,31 In
Ref. 14 the following 21 commutators were found to vanish:

[P̂ ,T̂γ ] = [
Ŝz

α,T̂γ

] = [Ŝ†
α,T̂γ ] = [Ŝα,T̂γ ] = 0,

(A4)
α = η,s, γ = 0, ± 1.

Although the algebra involved in their derivation is cumber-
some, it is straightforward. The vanishing of the commutators
given in Eq. (A4) then implies that the momentum operator
and the six generators of the η spin and spin algebras commute
with the unitary operator V̂ ,

[P̂ ,V̂ ] = [
Ŝz

α,V̂
] = [Ŝ†

α,V̂ ] = [Ŝα,V̂ ] = 0,
(A5)

α = η,s, l = 0, ± 1.

Hence, the above operators have the same expression in
terms of electron and rotated-electron creation and annihilation
operators, so that the momentum operator reads

̂P =
∑

σ=↑,↓

∑
k

k c
†
k,σ

ck,σ =
∑

σ=↑,↓

∑
k

k c̃
†
k,σ

c̃k,σ . (A6)

Furthermore, the above-mentioned six generators are given by

Ŝz
η =

Na∑
j=1

ŝz
rj ,η

=
Na∑
j=1

s̃z
rj ,η

, Ŝ†
η =

Na∑
j=1

ŝ+
rj ,η

=
Na∑
j=1

s̃+
rj ,η

,

Ŝη =
Na∑
j=1

ŝ−
rj ,η

=
Na∑
j=1

s̃−
rj ,η

, Ŝz
s =

Na∑
j=1

ŝz
rj ,s

=
Na∑
j=1

s̃z
rj ,s

, (A7)

Ŝ†
s =

Na∑
j=1

ŝ+
rj ,s

=
Na∑
j=1

s̃+
rj ,s

, Ŝs =
Na∑
j=1

ŝ−
rj ,s

=
Na∑
j=1

s̃−
rj ,s

.
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Those of the unrotated local operators appearing here associ-
ated with the η-spin algebra read

ŝz
rj ,η

= − 1
2 [1 − n̂rj ,↑ − n̂rj ,↓], ŝ+

rj ,η
= ei π ·rj c

†
rj ,↓ c

†
rj ,↑,

ŝ−
rj ,η

= e−i π ·rj crj ,↑ crj ,↓, j = 1,2, . . . ,Na, (A8)

whereas those associated with the spin algebra are given in
Eq. (4). On the other hand, the rotated local operators appearing
in the alternative expressions of Eq. (A7) are provided in
Eq. (54).

The six local operators given in Eqs. (4) and (A8) together
with the local operator,

ŝrj ,c =
∑

σ=↑,↓
n̂rj ,σ (1 − n̂rj ,−σ ), j = 1,2, . . . ,Na, (A9)

are the seven generators of the U �= 0 local gauge SU(2) ×
SU(2) × U(1) symmetry of the Hubbard model on a bipartite
lattice with vanishing transfer integral, t = 0 (Ref. 19).

Since the electron–rotated-electron transformation gener-
ated by the operator V̂ is unitary, the rotated-electron operators
c̃
†
rj ,σ

and c̃rj ,σ of Eq. (43) have the same anticommutation

relations as the corresponding electron operators c
†
rj ,σ

and
crj ,σ , respectively. Similarly, the local c fermion operators
of Eq. (50) and three local spinon operators and three local
η-spinon operators of Eq. (54) have the same algebra as
the corresponding unrotated spinless and η-spinless fermion
operators of Eq. (49) and and three local spin operators
of Eq. (4) and three local η-spin operators of Eq. (A8),
respectively. The former operators play a major role in the
finite-U/t physics of the model. The latter operators are a
limiting case of the former operators reached for U/t 
 1.
Hence, without loss of generality in the following we provide
the algebra of the local c fermion operators of Eq. (50) and
three ηs quasispin operators of Eq. (55). The SU(2) algebra
of the latter three operators fully determines those of the three
local spinon operators and three local η-spinon operators of
Eq. (54).

Straightforward manipulations based on Eqs. (50)–(55)
lead to the following algebra for the c fermion operators:{

f
†
rj ,c

,frj ′ ,c
} = δj,j ′ ,

{
f

†
rj ,c

,f
†
rj ′ ,c

} = {
frj ,c ,frj ′ ,c

} = 0,

(A10)

and the c fermion operators and the local ηs quasispin
operators, [

f
†
rj ,c

,q̃l
rj ′

] = [
frj ,c ,q̃l

rj ′

] = 0,[
f

†
rj ,c

,s̃l
rj ′ ,α

] = [
frj ,c ,s̃l

rj ′ ,α
] = 0, (A11)

l = ±,x3, α = η,s.

The SU(2) algebra obeyed by the local ηs quasispin
operators q̃ l

rj
where l = x3,±, such that q̃±

rj
= q̃x

rj
± i q̃

y

rj
, and

corresponding η-spinon (α = η) and spinon (α = s) operators
s̃ l
rj ,α

is

[
q̃+

rj
,q̃−

rj ′

] = δj,j ′ 2 q̃
x3
rj

;
[
q̃±

rj
,q̃

x3
rj ′

] = ∓δj,j ′ q̃±
rj
, (A12)

and [
s̃+
rj ,α

,s̃−
rj ′ ,α′

] = δj,j ′δα,α′ 2 s̃
x3
rj ,α

,[
s̃±
rj ,α

,s̃
x3
rj ′ ,α′

] = ∓δj,j ′δα,α′ s̃±
rj ,α

, (A13)

α,α′ = η,s,

respectively. Moreover, one has obviously that [q̃ l
rj
,q̃l

rj ′ ] = 0

and [s̃ l
rj ,α

,s̃l
rj ′ ,α′ ] = 0, where l = 0,± and α,α′ = η,s. While

the c fermion and ηs quasispin operator algebras refer to
the whole Hilbert space, those of the η-spinon and spinon
operators correspond to well-defined subspaces spanned by
states whose value of the number 2Sc of rotated-electron singly
occupied sites is fixed. This ensures that the value of the
corresponding η-spinon number Mη = [Na − 2Sc] and spinon
number Ms = 2Sc is fixed as well.

The relations given in Eqs. (A10)–(A13) confirm that when
acting onto the model’s Hilbert space the c fermions associated
with the global c hidden U(1) symmetry are η-spinless
and spinless fermionic objects. They are consistent as well
with the spinons and η spinons being spin- 1

2 and η-spin- 1
2

objects, respectively, whose local operators obey the usual
corresponding SU(2) algebras.

APPENDIX B: SPIN-WAVE SPECTRUM
IN THE HIGH-SYMMETRY DIRECTIONS

In this appendix we study the spin-wave spectrum of
Eq. (75) in the BZ high-symmetry directions. These directions
correspond to those measured by high-resolution inelastic
neutron scattering in LCO, as plotted, for instance, in Fig. 3(A)
of Ref. 4. (Our theoretical spin-wave spectrum curves are
plotted along with the more recent LCO high-energy neutron
scattering points of Ref. 2 in Fig. 2.)

We denote such symmetry directions by MO, �O, XM ,
�X, and XO. They connect the momentum-space points
M = [π,π ], O = [π/2,π/2], � = [0,0], and X = [π,0] of
the general spin-wave spectrum provided in Eq. (75). The use
of that equation reveals that the spin-wave excitation spectrum
is in such symmetry directions given by

ω�O(k) = μ0

2
sin(ki),

k = [π, − π ] − q − q ′ = [ki,ki] , (B1)

ki = kx = ky ∈ (0,π/2),

for s1 fermion hole momenta,

q = [π/2 − ki, − π/2 − ki], ki ∈ (0,π/2),
(B2)

q ′ = [π/2, − π/2],

ωMO(k) = μ0

2
sin(ki), k = [π,π ] − q − q ′ = [ki,ki],

(B3)
ki = kx = ky ∈ (π/2,π ),

for s1 fermion hole momenta,

q = [π/2 − ki,3π/2 − ki], ki ∈ (π/2,π ),

q ′ = [π/2, − π/2], (B4)
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ω�X(k) =
[
μ0

2
+ W 0

s1

]
sin(kx/2),

(B5)k = [π, − π ] − q − q ′ = [kx,0], kx ∈ (0,π ),

for s1 fermion hole momenta,

q = [π/2 − kx/2, − π/2 − kx/2], kx ∈ (0,π ),
(B6)

q ′ = [π/2 − kx/2, − π/2 + kx/2], kx ∈ (0,π ),

ωXM (k) =
[
μ0

2
+ W 0

s1

]
cos(ky/2),

(B7)k = [π,π ] − q − q ′ = [π,ky], ky ∈ (0,π ),

for s1 fermion hole momenta,

q = [−ky/2,π − ky/2], ky ∈ (0,π ),
(B8)

q ′ = [ky/2, − ky/2], ky ∈ (0,π ),

and,

ωXO(k) = μ0

2
− W 0

s1 cos(kx) = μ0

2
+ W 0

s1 cos(ky),

k = [π, − π ] − q − q ′ = [π,π ] − q ′′ − q ′′′

= [kx,π − kx], kx ∈ (π/2,π )

= [π − ky,ky], ky ∈ (0,π/2), (B9)

for s1 fermion hole momenta,

q = [0, − π ], q ′ = [π − kx, − π + kx], kx ∈ (π/2,π ),

(B10)

or

q ′′ = [0,π ], q ′′′ = [ky, − ky], ky ∈ (0,π/2),

(B11)

respectively.
The theoretical spin excitation spectra [Eqs. (B1)–(B9)] are

plotted in Fig. 5 (solid line) for U/t ≈ 6.1 and t ≈ 0.295 eV
together with the experimental results of Ref. 4 (circles) for
T = 10 K. Such U/t and t magnitudes correspond to μ0 =
565.6 meV and W 0

s1 = 49.6 meV in the above energy spectra.
The spin-spectrum expressions provided in Eqs. (B1)–(B9)
refer to the first BZ. In Fig. 5 they are plotted in the second
BZ, alike in Fig. 3(A) of Ref. 4. An excellent quantitative
agreement is reached for the above magnitudes of the involved
energy scales.
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40S. Liang, B. Douçot, and P. W. Anderson, Phys. Rev. Lett. 61, 365

(1988).

064520-20

http://dx.doi.org/10.1103/PhysRevB.79.220504
http://dx.doi.org/10.1103/PhysRevB.79.220504
http://dx.doi.org/10.1103/PhysRevLett.105.247001
http://dx.doi.org/10.1103/PhysRevLett.105.247001
http://dx.doi.org/10.1103/PhysRevB.39.11663
http://dx.doi.org/10.1103/PhysRevB.39.11663
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevB.65.132404
http://dx.doi.org/10.1103/PhysRevB.65.132404
http://dx.doi.org/10.1103/PhysRevB.72.224511
http://dx.doi.org/10.1103/PhysRevB.72.224511
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.014
http://dx.doi.org/10.1016/j.nuclphysb.2010.07.023
http://dx.doi.org/10.1016/j.nuclphysb.2010.07.023
http://dx.doi.org/10.1103/PhysRevB.79.235130
http://dx.doi.org/10.1002/pssb.200301719
http://dx.doi.org/10.1002/pssb.200301719
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1103/PhysRevB.84.041108
http://dx.doi.org/10.1103/PhysRevB.84.041108
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/j.aop.2011.09.001
http://dx.doi.org/10.1016/j.aop.2010.03.002
http://dx.doi.org/10.1016/j.aop.2010.03.002
http://dx.doi.org/10.1111/j.1749-6632.1971.tb34956.x
http://dx.doi.org/10.1111/j.1749-6632.1971.tb34956.x
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.63.2144
http://dx.doi.org/10.1142/S0217984990000933
http://dx.doi.org/10.1142/S0217984990000933
http://dx.doi.org/10.1103/PhysRevLett.65.120
http://dx.doi.org/10.1103/PhysRevB.44.12413
http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1088/1367-2630/11/7/075010
http://dx.doi.org/10.1088/1367-2630/11/7/075010
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1103/PhysRevB.39.4462
http://dx.doi.org/10.1103/PhysRevB.63.125116
http://dx.doi.org/10.1103/PhysRevB.63.125116
http://dx.doi.org/10.1103/PhysRevLett.82.2915
http://dx.doi.org/10.1103/PhysRevB.45.10131
http://dx.doi.org/10.1103/PhysRevB.45.10131
http://dx.doi.org/10.1103/PhysRevB.48.3264
http://dx.doi.org/10.1103/PhysRevB.51.11580
http://dx.doi.org/10.1103/PhysRevLett.90.216401
http://dx.doi.org/10.1103/PhysRevLett.96.066404
http://dx.doi.org/10.1007/BF02508481
http://dx.doi.org/10.1103/PhysRevB.70.235111
http://dx.doi.org/10.1103/PhysRevB.41.2565
http://dx.doi.org/10.1103/PhysRevB.41.2565
http://dx.doi.org/10.1103/PhysRevB.37.9753
http://dx.doi.org/10.1103/PhysRev.157.295
http://dx.doi.org/10.1103/PhysRevB.84.075116
http://dx.doi.org/10.1103/PhysRevB.75.024515
http://dx.doi.org/10.1007/BF01312134
http://dx.doi.org/10.1103/PhysRevB.68.085104
http://dx.doi.org/10.1103/PhysRevB.68.085104
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.036
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.036
http://dx.doi.org/10.1103/PhysRevLett.61.365
http://dx.doi.org/10.1103/PhysRevLett.61.365


HUBBARD-MODEL DESCRIPTION OF THE HIGH-ENERGY . . . PHYSICAL REVIEW B 86, 064520 (2012)

41J. P. Hill, G. Blumberg, Young-June Kim, D. S. Ellis, S. Wakimoto,
R. J. Birgeneau, Seiki Komiya, Yoichi Ando, B. Liang, R. L.
Greene, D. Casa, and T. Gog, Phys. Rev. Lett. 100, 097001
(2008).

42J. D. Perkins, J. M. Graybeal, M. A. Kastner, R. J. Birgeneau, J. P.
Falck, and M. Greven, Phys. Rev. Lett. 71, 1621 (1993).

43J. P. Falck, J. D. Perkins, A. Levy, M. A. Kastner, J. M. Graybeal,
and R. J. Birgeneau, Phys. Rev. B 49, 6246 (1994).

064520-21

http://dx.doi.org/10.1103/PhysRevLett.100.097001
http://dx.doi.org/10.1103/PhysRevLett.100.097001
http://dx.doi.org/10.1103/PhysRevLett.71.1621
http://dx.doi.org/10.1103/PhysRevB.49.6246



