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We investigate a three-component fermion mixture in the presence of weak attractive interactions. We use a
combination of the equation of motion and the Gaussian variational mean-field approaches, which both allow for
simultaneous superfluid and magnetic ordering in an unbiased way, and capture the interplay between the two
order parameters. This interplay significantly modifies the phase diagram, especially the superfluid-normal phase
boundaries. In the close vicinity of the critical temperature and for small chemical potential imbalances, strong
particle-hole symmetry breaking leads to a phase diagram similar to the one predicted by Cherng et al. [Phys. Rev.
Lett. 99, 130406 (2007)], however, the overall phase diagram is markedly different: additional chemical potential-
driven first- and second-order transitions and triple points emerge as well as more exotic second-order multicritical
points, and bicritical lines with O(2,2) symmetry. We identify the terms which are necessary to capture this
complex phase diagram in a Ginzburg-Landau approach, and determine the corresponding coefficients.
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I. INTRODUCTION

Experiments with ultracold atoms opened a fascinating way
to study strong correlations and the emergence of exotic phases
in a controlled way.! Paradigmatic solid state physics models
such as the fermionic and bosonic Hubbard models have been
realized, and Mott insulating and magnetic phases>’ as well
as various kinds of fermionic*® and bosonic*!® superfluid
phases have been observed. Topological excitations, e.g.,
vortices,”? solitons,!! two- and three-dimensional (2D and
3D) skyrmionic excitations,'? and knot configurations'® have
been subjects of intensive research. Introduction of artificial
gauge fields has also been considered both theoretically
and experimentally,'* indicating that the realization of the
quantum-Hall effect and related phenomena with cold atoms
are within reach.

Cold-atomic systems provide, however, not only a way to
study models emerging in solid state physics, but they were
also proposed to be used to mimic phenomena appearing
in high-energy and particle physics. In particular, attractive
three-component mixtures have been proposed to simulate
quark color superfluidity'® and “baryon” formation,'® two
fundamental concepts of quantum chromodynamics (QCD).
An experimental realization of these mixtures is very dif-
ficult, but not hopeless: although three-component systems
are plagued by three-particle losses,'”!° nevertheless, Fermi
degeneracy has been reached in °Li systems,’ which may be
just stable enough to reach interesting phases such as the trionic
(“baryonic”) regime.!” Also, systems with closed s shells,
similar to Yb, may provide an alternative and more stable
way to realize almost perfectly SU(N) symmetrical states.>!>?

In this paper, we focus on the weak-coupling regime of
an attractive three-component mixture, and study its low-
temperature color superfluid phases. Our main purpose is
to study the effect of chemical potential differences, and
provide a complete phase diagram for the SU(3) symmetrical
interaction, which can be considered as the three-component
analog of the famous phase diagram of Sarma.?® Surprisingly,
although several studies have been reported so far, such a
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phase diagram has not been discussed in sufficient detail
so far, not even in the weak-coupling regime considered
here. The first analysis of Ref. 15 assumed complete SU(N)
symmetry and has not considered the effect of different
chemical potentials. It neglected furthermore the coupling
between ferromagnetic and superconducting order parameters.
However, as later noticed in Refs. 16 and 24, SU(3) symmetry
allows for a coupling between magnetic and superfluid order
parameters, and the onset of superfluidity is therefore naturally
accompanied by a ferromagnetic polarization>*?> and possibly
domain formation.'® The consequences of such coupling have
been explored in Ref. 24 in the immediate vicinity of the
SU(3) symmetric phase transition using a Ginzburg-Landau
approach, however, the regime of lower temperatures has not
been investigated.

Throughout this paper, we shall proceed in the spirit of local
density approximation (LDA) and focus on a homogeneous
system of three interacting fermion species, described by the
Hamiltonian

=Y [ w0t - p) v M

— ) g / APl )W (1) W (r).
aFp

Here, \I/l(r) creates a fermion in a hyperfine state « = 1,2,3
with corresponding chemical potentials u,. The interaction
between the species is assumed to be local and attractive
(Agg > 0 for a # B).%® Furthermore, throughout most of this
work, we shall also assume SU(3) symmetrical interactions
Aqp = A for a # B. This assumption is certainly justified
for Yb-like closed s-shell systems, and is also a valid
approximation for the SLi system in the high magnetic field
limit.”” Although the scattering lengths in the lowest three
hyperfine states are slightly different in the latter system, one
can use radio frequency and microwave fields to make them
equal up to ~0.1% accuracy.”®
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The particular form of the single-particle operator Hy in
Eq. (1) is not very important since H, enters the mean-field
calculations only through the corresponding single-particle
density of states (DOS), for which we assume a simple form
p(&) = po(1 + v &) and a rigid bandwidth cutoff at &€ = £W.
Keeping the linear term ppy & is crucial: this term, charac-
terizing in some sense the particle-hole symmetry breaking
(see Sec. I C), is the primary source of the coupling between
ferromagnetic and superfluid order parameters. Note that in
the small-coupling regime, only the DOS pr at the Fermi
energy and its first derivative are expected to have considerable
impact in the phase diagram, and therefore we do not need
to go beyond this simple linear approximation. We should
remark though that the interactions renormalize the chemical
potentials, and therefore the position of the renormalized Fermi
energy &r and the corresponding single-particle density of
states pr must be determined self-consistently.?

Although we also discuss to a certain extent the role of
fluctuations in Sec. V, the bulk of this work consists of a
mean-field analysis. Even this is, however, not entirely trivial.
In the Hubbard-Stratonovich approach of Refs. 30 and 24,
the decoupling of the interaction into ferromagnetic and
superfluid parts suffers from a certain degree of arbitrariness.?!
Treating the ferromagnetic and superfluid order parameters
at equal footing therefore requires care. Furthermore, at
lower temperatures the second-order transitions turn into
first-order transitions, and the free energy develops several
inequivalent local minima, as has been pointed out in the
case of two-component mixtures by Sarma.”? To cope with
these difficulties, we applied two complementary methods:
an equation of motion method (EOM) with systematically
neglected vertex corrections, which leads to mean-field self-
consistency equations, and a Gaussian variational approach,
which consists of finding the minima of a mean-field free
energy. Both approaches are exempt from the arbitrariness
of the Hubbard-Stratonovich transformation, account for the
interplay between ferromagnetic and superfluid order, and,
remarkably, they are entirely consistent since at the saddle
points of the variational mean-field free energy, the EOM self-
consistency equations are satisfied (see Sec. II B). However,
the Gaussian variational approach is more efficient in that it
provides an estimate for the mean-field free energy also away
from the free-energy saddle points, and therefore it allows us
to locate first-order transitions in a complicated free-energy
landscape. Since previous works on two-component mixtures
indicate that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase with spatially varying order parameter*>* appears only
in a tiny region of the phase diagram,®’ here we restrict
our investigation to spatially homogeneous phases. We shall
neither consider breached pair (BP) nor Sarma phases?*3*
since these would require fermions of very different masses.

Before we turn to the more detailed presentation of the
calculations, let us summarize here our most important results.
In the small-coupling limit, where the critical temperature at
the SU(3) symmetric point satisfies 7. &~ 1.13 W e~ 1/C*r) «
W 333 the phase diagram is expected to become universal for
SU(3) symmetrical interactions: it should depend only on the
dimensionless temperature 7'/ 7., the dimensionless chemical
potential shifts éu,/T,, and the dimensionless particle-hole
symmetry-breaking parameter 7 = y 7.,>’ defined in terms of
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FIG. 1. (Color online) Sketch of the phase diagram for a constant
DOS, and chemical potential shifts §u; + S, + Sz = 0. Top: SF
forms between fermions with the closest chemical potentials, whereas
at higher differences the normal state (N) is favored. Bottom: Cut of
the SF phase diagram for 7 < T.. Apart from the special points (full
and empty circles) SF order always forms in one of the channels (12),
(23), or (31). At the point p, = u, = 0 (full circle), the Hamiltonian
is SU(3) symmetric, and the transition is described by an O(6) critical
point. The first-order lines, separating different SF phases, terminate
in second-order critical points with O(2,2) symmetry (empty circles).
Different SF orders are denoted by different grayscale colors.

the critical temperature 7, at the SU(3) symmetrical point
o = w. Figure 1 shows the corresponding schematic phase
diagram in case of a particle-hole symmetrical situation
y = 0.>7 The bottom figure shows a finite-temperature cut
of the phase diagram as a function of the chemical potential
differences’®

e = (1 — 12)/V2, My = (U1 + p2 — 2143)/+/6

for a temperature 7T fixed somewhat below the SU(3) symmet-
rical transition temperature 7, and a fixed average chemical
potential i = (i1 + u2 + p3)/3. In the various gray regions,
two species of the smallest chemical potential difference pair
up to form a superfluid (SF) state, while the third species
remains gapless.’® This explains the starlike structure of
the phase diagram: superfluid phases appear around regions,
where two of the chemical potentials become equal. As we
discuss in Sec. IIC, the high (“hexagonal”) symmetry of
the figure is a direct fingerprint of the SU(3) symmetrical
interaction, and a discrete particle-hole symmetry. The super-
fluid state is destroyed once all chemical potential differences
become large compared to the condensation energy (white
region). Close to T, the chemical-potential-driven SF-normal
transitions are of second order (black lines), just as in case of
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FIG. 2. (Color online) Numerically computed SF-N phase bound-
ary as a function of the chemical potentials at constant DOS for
Mo =0.1,and y = & = 0, corresponding to 7,/ W = 0.0076. The
SF-N transition becomes of first order below a temperature T Sama
(horizontal dashed lines). Vertical lines denote the O(2,2) critical
points of second (solid line) and of first order (dashed line).

a two-component mixture.”> The transition between different
SF phases is, however, always of first order (dashed lines).

The phase diagram also exhibits some interesting points of
special symmetry. At the point t, = p, = 0, the Hamiltonian
is SU(3) symmetrical, and correspondingly, the phase transi-
tionat7T = T, and u, = u, = Oisdescribed by an O(6) theory
(the six components corresponding to the real and imaginary
parts of the superfluid order parameters). In three dimensions,
this symmetry is spontaneously broken for 7 < T,.3*4° On the
other hand, at the points indicated by white circles in Fig. 1,
the competition of two order parameters most likely leads to a
so-called O(2,2) critical behavior (see Sec. V).

Figure 2 shows the numerically obtained phase diagram
in a three-dimensional plot under the assumption of SU(3)
symmetric interaction and particle-hole symmetry (y = 0).%’
The domelike structures correspond to superfluid phases with
pairing in the (12), (23), and (31) channels. Below the
horizontal dashed lines, the chemical potential driven phase
transitions become of first order, while above these lines they
are of second order, as we point out in Secs. IIT A and IITI C.
These lines are thus the analogs of the critical point identified
by Sarma.?* The SF-normal transitions on the “roofs” of the
domes belong to the O(2) universality class, while the black
solid lines correspond to O(2,2) critical points. Finally, the
crossing of the black lines at j1, = p, = 0 corresponds to an
O(6) critical point.

This rich phase diagram is further complicated if one allows
for particle-hole symmetry breaking y # 0 (Ref. 41) (see
Sec. III B). On a larger scale, the y # 0 phase diagram looks
quite similar to the y = 0 phase diagrams, presented in Figs. 1
and 2, however, the structure of the phase diagram changes
in the close vicinity of the SU(3) symmetrical point. This
is demonstrated in Fig. 3, where the central region of the
phase diagram is shown for 7 = T, and 0.5 7. The absence
of particle-hole symmetry destroys the hexagonal symmetry
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FIG. 3. (Color online) Phase diagram in the vicinity of the
SU(3) symmetric point in the absence of particle-hole symmetry
y # 0. The sixfold symmetry of the phase diagram is destroyed.
A higher DOS can make SF ordering favorable in a channel not
of the smallest chemical potential difference, due to the gain in
condensation energy. For the absolute values of the SF order param-
eters A;;, see the respective color (gray) scales (right). Parameters
at the SU(3) symmetric point: A pp = 0.112, yW =05, T./W =
0.011, &r/W = 0.24 (half-filling).

of the phase diagram, and leads to a trigonal structure, as
predicted by Cherng et al.** In this central region, a higher
DOS, and thus gain in condensation energy, may make SF
ordering favorable in a channel not of the smallest chemical
potential difference. This effect is most spectacular at T = T,
where by shifting the Fermi energy of two species one can
increase the critical temperature, and induce superfluidity (see
Fig. 3, top). We remark, however, that in spite of the relatively
large particle-hole asymmetry introduced, this central region is
typically quite small compared to the rest of the phase diagram,
at least for weak couplings 7, < W. The orientation of the
phases is, however, opposite to the one predicted in Ref. 24:
to obtain the same orientation, we need to flip the sign of the
slope of the DOS, and assume a holelike Fermi surface y < 0.
We remark that the orientation we find can be understood on
simple physical arguments (see Sec. III B). We must also add
here that the Ginzburg-Landau action of Ref. 24 is unable to
capture the endpoints of the “trigonal” region, and one must

064519-3



M. KANASZ-NAGY AND G. ZARAND

retain higher-order terms in the action to account for these (see
Sec. IV).

The rest of the paper is organized as follows: In Sec. II,
we introduce our mean-field methods. We also discuss the
symmetries of the order parameters, leading to rather strong
constraints on the form of the phase diagram. In Sec. III,
we present our main results on the SF phase diagram, with
and without particle-hole symmetry, and compare our findings
with results on two component systems. In Sec. IV, we
present the numerical Ginzburg-Landau expansion of the free
energy around the SU(3) symmetric point, and identify the
terms responsible for the main features of the central part
of the phase diagram. In Sec. V, we discuss the effect of
fluctuations in the special O(2,2) symmetric bicritical points.
In Sec. VI, we comment on the experimental realizability of
an SU(3) symmetric system. Some of the technical details of
our calculations can be found in the Appendixes.

II. MEAN-FIELD CALCULATIONS

In this section, we first use an imaginary-time equation
of motion method to derive the self-consistency equations
for the SF and magnetic order parameters. Then, to address
the low-temperature regime, where these equations have
multiple solutions,? we also develop a Gaussian variational
approximation. This approach provides an estimate for the free
energy and enables one to locate first-order transitions.

A. Equation of motion technique

To simplify our notation, let us first introduce the six-
component Nambu spinor field

d(x) = (¥(x), ¥ (x)" .

Here, we used the compact notation x = (r,7) for the space
and imaginary-time coordinates. The corresponding 6 x 6
propagator matrix D(x,x;) = — (T, ®(x;) o ®f(x,)) contains
the normal as well as the anomalous Green’s functions of the
fields W, (x) and, assuming spatial homogeneity, also obeys
D(x1,x2) = D(x; — x,). In order to derive equation of motion
for the propagators, we start from the imaginary-time equation
of motion (EOM) of the fields,

0 Wo(x) = [H, Wy (x)]. @

The EOM of the part —(T, ‘-IJa(xl)lIJ;(xz)) of the propagator
follows from Eq. (2), and reads as

(e, + Ho(r1) — pa) (T Wo(x)Wh(x2))

= Bupbi, + Y Ly (T WS (X)W, (e Wa (x1) W) (x2),
Y

3

with 8y, denoting the four-dimensional Dirac-delta func-
tion. Similar equations hold for the anomalous propagators
— (T Wa(x1)Wp(x2)) and —(Tr‘lfl(m)\l’;(Xz))-

To make further progress, we simplify the four-point
functions appearing in these EOMs by simply neglecting the
vertex contribution, as shown in Fig. 4. This approximation is
almost equivalent to the usual BCS approximation, however,
it goes beyond that since it allows for the simultaneous
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FIG. 4. (Color online) Omission of the vertex corrections in the
connected four-point functions (left-hand side). Heavy lines denote
the full propagators, and the square stands for the vertex contribution.

appearance of different kinds of order parameters in an
unbiased way. Furthermore, even in the simple SU(2) case,
it also incorporates, e.g., the renormalization of the Pauli
susceptibility at the mean- field level (see Sec. III C). With
this approximation, the equation of motion becomes solvable,
and the Nambu propagator is found to take the following form
in Fourier space:

D(iw,, k)" = iw, — B(&). “

Here, w, = (2n + 1) w T are fermionic Matsubara frequencies
and the matrix B(§) is defined as

B(e) — E—A 2A s
©=(0x _e_an) )

The matrices
Aug = Aapdag, (6)

Ao = (M + ZZAD,an> Sap — 2haphly )
1
denote the SF order parameter*? and the renormalized chem-
ical potential, respectively. They are defined in terms of the
matrix of densities n, and that of the anomalous densities d:

Nep = (W) Wp(x1)), ®)

dop = (Wo(x)Wp(x1)). C))

The matrices n and d can be used to describe magnetic and
SF ordering, respectively. However, it is more natural to use
A and A as order parameters. Note that, according to Eq. (7),
magnetic ordering implies a shift in the renormalized chemical
potential A,g, and this shift can thus also be considered as a
magnetic order parameter.

The expectation values Egs. (8) and (9) are given by the
propagator D(x; — x,) at equal times and equal positions, and
are thus determined by Eq. (4). By taking the inverse of Eq. (4)
and performing the Matsubara summation over the frequencies
w,, we obtain

/ " g o ey = [ " - (10)
P = ,

—w —d*  —n+ [d& p(§)

where p(&) denotes the DOS of Hjy, and f stands for the
Fermi function. Equations (5)—(7) and (10) thus determine
self-consistently the order parameters A and A. We solve these
equations iteratively, starting from random initial conditions,
and performing the integrals in Eq. (10) numerically. Notice
that f(B(£)) is a matrix function, therefore, its evaluation

requires numerical diagonalization of the Hermitian matrix
B(&) for each value of &.
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We remark that the matrix B(§) in Eq. (5) possesses a
symplectic symmetry

01 01
(1 O)B(a:)(l 0)=—BT(s> an

since the order parameters A and A are skew symmetric and
Hermitian, respectively. This symmetry makes the eigenvalues
of B(£) come in pairs (v, — v), and thus simplifies some of
our calculations of the free energy in the next section. It is also
responsible for the structure of the equal-time, equal-position
propagator in Eq. (10).

B. Gaussian variational approach

To investigate the low-temperature phase diagram, we em-
ploy a variational method. This method consists of finding the
best Gaussian approximation to the free energy F = —T In Z
of the system. As a first step, we express the grand-canonical
partition function Z as a functional integral

z— / OF Dy e—SFH, (12)

with the action written as S = Sy + Sint, and the noninteracting
and interacting parts defined as

So = —%/dle d(1)D;'(1,2) $(2), (13)
Sint = — Z)\aﬂ / dx Yo, ()Y ()Y (X)Pa(x).  (14)
af

Here, ¢ = ()" is a Nambu spinor field and we used
the notations “1” = (ry,7;,v1), and [d1... to denote the
integration over space and imaginary-time variables and the
summation over Nambu indices (v; = 1, ...,6) in a compact
way. The inverse propagator

Ho— [ 0
—Dy' =6y, | 0n, 15
’ [ +< 0 —(Ho—ll)>:| (>

contains the single-particle Hamiltonian of the free fields H,,
where [lyg = [y 8op 1S a3 x 3 diagonal matrix containing the
chemical potentials.

Our Gaussian approximation of the free energy is based on
the standard inequality®

F < FglD)=—-ThZp+T(S—Sp)p . (16)

Here, the partition function Zp and the average (...)p are
defined in terms of the Gaussian action

Sp = —%fdldz d(HD(1,2)9(2) , (17)

Zp = /@W@;ﬁ e~SPv ¥l (18)

(-+)p = L/@W@w e_SD[va]' 19)
Zp

Since we do not want to restrict our investigations to actions
that can be associated with a Hamiltonian, we do not require
Sp to be local. Nevertheless, at the saddle points of Fg, Sp
turns out to be local, and there exists a Hamiltonian associated
with it [see Egs. (22)—(24) below].
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Since the action Sp is quadratic, the propagator matrix of
the Nambu fields can be written as

D(1,2) = —(¢()d2))p , (20)

and expectation values can be evaluated using Wick’s the-
orem. We remark that the choice (20) automatically fixes a
certain ambiguity in the definition of D~!. (For details, see
Appendix C.) The best Gaussian approximation is given by
the minimum of the functional F;[D], where F satisfies the
saddle-point equation

8Fg
§D(1,2)

As is shown in Appendix C, this equation is equivalent to the
self-consistency equations (5), (6), (7), and (10) of the EOM
technique, and amounts in D! being a local,

D7(1,2) = 8(x; — x2) D7 (x2) (22)

2

with the matrix operator on the right-hand side being just the
inverse propagator [Eq. (4)] in real space,

-l Ho(l‘z) —A 2A >
D _8r2+( " Hotey — AN )’ (23)

The order parameters A and A are determined by the former
equations (6) and (7).

Thus, the Gaussian variational approach is entirely consis-
tent with the EOM method. However, it is also more efficient
since it enables us to obtain an estimate for the free energy.
By Egs. (22) and (23), to calculate the best approximation
F¢ to the free energy, it is sufficient to consider local actions
for which we can express Sp, and thus Fg, in terms of a
Hamiltonian

1 3 S Ho— A 2A
HD:E d’r: ®'

At _(HO_A*)>®:. (24)

Since the functional integrals are, by definition, normal
ordered, the Hamiltonian Hp also needs to be normal ordered,
as emphasized by the semicolons in Eq. (24), indicating normal
ordering with respect to the vacuum.**

In this Hamiltonian language, Eq. (16) takes on the form

Fo(A,A)=—-TmhZp+ (H — Hp)p , (25)

with H the full Hamiltonian of the system, Eq. (2), and
Zp = Tre P, (26)
(- )p =T e7P)/ Zp . @7

Notice that F5(A,A) also depends implicitly on the chemical
potentials i, and the temperature 7', and it must be minimized
to find the mean-field value of the variational parameters
A, T) and Auy,T).

In this Hamiltonian approach, the evaluation of Eq. (25)
is straightforward (see Appendix D), and for the free-energy
density we obtain

1
fe = Efdif p(E)Tr(E — A)

T
- E/ds p(E)Trin{2 cosh [ B(£)/2]}
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+ ) [(Aap — tabup)Nap + dap(INapl” — Noanpp)]
ap

+ ) (Aupdly + Algdas — Aopldas ). (28)
af

Here, 8 = 1/T is the inverse temperature, the densities n and
d are determined by Eq. (10), and the matrix B(¢) is defined
in Eq. (5).

As stated before, at the local minima of the functional
fc, the order parameters A and A fulfill the EOM self-
consistency equations. In our numerical calculations, however,
we have not enforced this constraint. Rather, we treated the
order parameters as independent and free variables, and used
a Monte Carlo method to find the absolute minimum of
Eq. (28) in the 15-dimensional space spanned by these order
parameters. In the end, we verified numerically that at the
minima, A and A indeed satisfy the EOM self-consistency
equations.

A comparison of the variational Monte Carlo approach
and the straightforward solution of the EOM self-consistency
equations is presented in Fig. 5. At low temperatures, the
EOM becomes unreliable in the vicinity of first-order phase
boundaries, and finds several possible local minima. The
variational Monte Carlo method (with simulated annealing),
however, finds the absolute minimum of the free energy fg
and is able to identify the physically relevant solution.

C. Symmetries

For an SU(3) symmetrical interaction A,s = A for o # S,
the structure of the phase diagram is largely determined by
the underlying SU(3) symmetry. In particular, for p, = pn
the Hamiltonian is invariant under global SU(3) rotations
Y, (x) — Zﬁ UywpWp(x) and a global U(1) gauge transfor-
mation W, (x) > €'¢ W, (x).

The ferromagnetic order parameters n and A are Hermitian.
They are invariant under the U(1) gauge transformation, and

T = 0.25Tc, EOM T = 0.25Tc, MC

6-4-20 2 4 6 -6-4-202 4 6
#z/Tc ;Uat/Tr

FIG. 5. (Color online) Comparison of the EOM and the Gaussian
variational methods. Left: At low temperatures, the EOM equations
have multiple solutions and become unreliable close to first-order
phase boundaries. Right: The variational approach combined with
a simulated annealing identifies correctly the physically relevant
absolute minima of the free-energy density, Eq. (28). Parameters at the
SU(3) symmetric point: A pr = 0.112, yW = 0.5, T./W = 0.011,
and £/ W = 0.24 (half-filling).
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transform under SU(3) rotations as
n' — Un'U", A~ UAU', (29)

which, after taking out the trivial trace, is equivalent to the
eight-dimensional adjoint representation of SU(3).

The order parameters d and A are, on the other hand,
skew symmetric, transform as d > ¢'?*d and A > e'%* A
under U(1) gauge transformations, and the global SU(3) group
transforms them according to

d— UdU", A~ UAUT, (30)

which is equivalent to the conjugate representation of SU(3).
This can be seen by introducing the three-component vectors
d, =1 >y €apydpy and A = i >y €apyApy by means of
the completely antisymmetric Levi-Civita symbol €4, . In this
form, Eq. (30) reads as

d— U'd, A~ U'A. (€29

In the special case A4 = A for a # B, and u, = u, sym-
metry implies that the Ginzburg-Landau functional must
be invariant under the transformations (29) and (30), and
the U(1) gauge transformation. The onset of superfluidity,
however, spontaneously breaks the SU(3) ® U(1) symmetry
down to SU(2) ® U(1). This spontaneous symmetry breaking
is accompanied by the emergence of five Goldstone modes.*°

The presence of the chemical potentials [lyp = Soplta
obviously breaks the SU(3) symmetry. However, one has
strong symmetry-dictated constraints on the Ginzburg-Landau
functional even in this case, and the latter must be invariant
with respect to the transformations in Egs. (29) and (30),
provided that /i is also transformed accordingly, fi > U U’
(see also Sec. IV). In addition, even in the presence of
chemical potential differences, SU(3) symmetry implies Ward
identities,”* relating four-point expectation values and the
ferromagnetic order parameter n as

(o = p)ap = D 2008y — hay (WL WEWpW,) . (32)
Y

From this identity (derived in Appendix A) it follows that n is
diagonal for an SU(3) symmetric interaction. We remark that
a similar approximate Ward identity can be derived within the
Gaussian variational method (see Appendix B), leading to the
same conclusions.

The off-diagonal elements of the chemical potential tensor
[t describe tunneling between different hyperfine components,
and they typically vanish in practical situations. Under these
restrictions, allowed SU(3) rotations generate essentially only
permutations of the hyperfine labels « and the correspond-
ing chemical potentials p,. In the (u,,iy) plane, these
permutations translate to C; rotations and reflections, and
give a two-dimensional representation of the S; ~ C3, group,
implying a triangular symmetry of the phase diagram in this
plane (see Fig. 3).

In addition to the symmetries discussed above, for an SU(3)
symmetrical Hamiltonian, the mean-field equations also have
a certain particle-hole symmetry if the single-particle density
of states obeys o(§) = o(—£), and the chemical potentials are
set to a value p — pupqr, such that o is exactly half-filled.
Under these conditions, we can show (see Appendix E) that
the mean-field solutions are symmetrical in the sense that
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for dpuy = by — Mnae and for Sy — —8uy, the superfluid
and magnetic symmetries are broken in the same channels
and the order parameters are also equal apart from signs,
global gauge transformations, and conjugation. In this special
case, due to the additional permutational symmetry discussed
above, the phase diagram exhibits a sixfold Cg, symmetry in
the (§ux,0/4y) plane for traceless chemical potential shifts
Sy + 8 + s = 0 (see Fig. 1.)

This particle-hole symmetry also emerges at the level of the
Hamiltonian in certain cases. The half-filled attractive three-
component Hubbard model on a bipartite lattice

2
H=-1Y Y (a,aj,+He)— %Z (Z”w - %) ,
o (ij)

i o4

e.g., has an exact particle-hole symmetry: it is invariant under
the unitary transformation a;, <> sign(i) afa, with sign(7)
taking values =+ for the two sublattices. Just as the mean-field
symmetry discussed in the previous paragraph, this exact
symmetry relates the order parameters of the symmetry broken
phases for £8u,. We remark that, on a lattice, for stronger
couplings, in addition to the SF/magnetic phases discussed
here, other nontrivial phases may emerge (e.g., charge density
waves or trionic phases).!®%

Although the particle-hole symmetry discussed here holds
only for a single and special chemical potential value, we
found that for 7, <« W, higher-order terms in the Ginzburg-
Landau action are only sensitive to the immediate vicinity of
the Fermi surface. As aresult, particle-hole symmetry becomes
an approximate symmetry with a good accuracy whenever the
slope of the single-particle density of states vanishes, y = 0.
For SU(3) symmetric interactions and y = 0, we thus recover
a phase diagram of hexagonal symmetry within our numerical
accuracy (see Fig. 1).

III. MEAN-FIELD PHASE DIAGRAM

Letus now present the phase diagrams in the weak-coupling
limit 7, « W, as obtained numerically, by the EOM and
Monte Carlo methods presented in Sec. II.

A. Constant density of states (y = 0)

As we argued in the Introduction, except for the SU(3)
symmetric point, a system of constant DOS always favors
the formation of a SF phase in one of the pairing channels
(12), (23), and (31), having the smallest chemical potential
difference. If the chemical potential difference between the
components forming the SF state exceeds a certain limit
(known as the Clogston limit* at zero temperature in case of
two fermionic components), the system goes into the normal
phase. This transition can either be of first or of second order,
depending on the temperature.??

Figure 6 shows the numerically obtained phase diagram
at different temperatures. All these cuts have the structure
presented in Fig. 1. The hexagonal symmetry of the middle
of the phase diagram is related to SU(3) symmetry: it is due
to the invariance of the Hamiltonian under the permutations
of the fermion species (¢ <> B and o <> pg) and the
approximate particle-hole symmetry, as explained in Sec. II C.

PHYSICAL REVIEW B 86, 064519 (2012)

T =T,

T =0.90T,

-6 -4-20 2 4 6 6-4-20 2 4 6
ﬂz/Tc ﬂz/Tc

(23)
31)
(12)

0 T,

FIG. 6. (Color online) Mean-field phase diagrams at constant
DOS, y = 0. Different SF phases are separated by first-order lines.
At T =0.25T,, SF-N transitions are of first order, whereas they
become of second order for 7 > 75ma ~ 0.48T, (see Sec. IIIC).
Absolute values of components of the order parameter A are given
in units of 7, [see the respective color (gray) scales]. Parameters
at the SU(3) symmetric point: A pr = 0.1, T./W = 0.0076, and
yW==§&/W=0.

The first-order SF-SF transitions appear along lines where
the chemical potential differences between two different pairs
of fermions become equal. Along some special directions
in the (ux,uy) plane, two out of three fermions have equal
chemical potentials, and can form a SF state even far away
from the central SU(3) symmetric point. This explains the
raylike structures in Fig. 6. In all other directions, the chemical
potential differences continue to grow until the system goes
into the normal phase at chemical potential differences of the
order of the superfluid gap at the SU(3) symmetric point.
For T > TS ~ (.48 T.., this chemical potential driven SF-
normal transition NiJs of second order, however, it becomes of
first order below 754™2 (see Sec. II1 C).
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B. Linear density of states (y # 0)

In the case of a nonconstant DOS (y # 0), particle-hole
symmetry is broken at the Fermi surface, and the SU(3)
symmetrical point @, = u, = 0 is not invariant under the
approximate particle-hole symmetry, either. At a first glance,
the phase diagram is only slightly different from the y =0
case, however, at a closer look qualitative differences can be
discovered (see bottom and top parts of Fig. 7). For y # 0,
the SF state does not necessarily form in the channel with
the smallest chemical potential difference. The reason is that,
as in standard BCS theory, the gap is exponentially sensitive
to the DOS.* As a result, it may be favorable to form an
SF state in channels where the DOS is larger at the chemical
potential, even at the expense of Zeeman energy (chemical
potential) loss. This mechanism is driven by the derivative
of the DOS y, and changes the phase diagram close to the
SU(3) symmetric point. Here, the phase diagram has only
threefold symmetry, corresponding to “color” permutations,
and superfluidity forms in channels of the largest density of
states. At higher values of the chemical potential, however,
the phase diagram remains essentially unaltered, and is almost
identical to that of constant density of states.

T=05Tc,yW =0 T =0.5T¢c, y W = 0.5

-02-01 0 01 02 -02-01 0 01 0.2
/lJ'/T(‘ /l.r/T(‘
T=05Tc,yW =0 T = 0.5T¢c, YW = 0.5

6 -4 -2 0 2
pa/Te

(23)
(31)
(12)

0 T.

FIG. 7. (Color online) Phase diagrams at constant (left) and linear
(right) DOS at T = 0.5T,.. Nonzero y deforms the middle of the
phase diagram (top right), whereas on the large scale (middle),
the phase diagrams with constant and linear DOS are almost
identical. For the absolute values of the SF order parameters, see
the respective color (gray) scales. Parameters at the SU(3) symmetric
point: (A pp, T,/ W,y W, &r/ W) = (0.1,0.0076,0,0) in the left and
(0.112,0.011,0.5,0.24) in the right figures.
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These results are similar to the predictions of Ref. 24,
however, the phase structure differs somewhat, and the
direction of the phase diagram of Ref. 24 seems to be
flipped. We verified that both the variational calculation and
the equation of motion method yield consistently the phase
diagram presented here, which we can also reproduce by
the Ginzburg-Landau approach, presented in Sec. IV. As we
discuss there, the Ginzburg-Landau action of Ref. 24 can not
produce the sixfold-symmetric structure of the overall phase
diagram, and one needs to keep higher-order terms to recover it.

The previously discussed region of threefold symmetry
is, however, usually small compared to the overall scale of
the phase diagram. For the parameters of the left figures in
Fig. 7, e.g., T,/W = 0.011, and a relatively steep density
of states with y W = 0.5, the threefold-symmetric region is
present only for |u,|,|uy| < 0.1 T;, while the overall scale
of the phase diagram is about ~3T,. The relative size of this
central region increases for larger interaction strengths, and for
T,/W = 0.105 and y W = 0.5, we find, e.g., that the central
triangular region extends to |ux|,|y| < 0.25 T.. The size of
the central triangular region seems to scale roughly as ~/y T..

InFig. 8, we confirm the predictions of Ref. 24 that breaking
the SU(3) symmetry by the chemical potential can indeed
lead to the appearance of superfluidity. Again, this is simply

T=Tc,yW = 0.5

: 0
0.2 (23) (31) (12)

-0.2 =01 0 0.1
ILI/TC
T=Tc,AW=0 T=Tc,yW =0.5

o1 (®)

L SN UL R N N BN N S N R N |
6-4-20 2 1 6 -6-1-20 2 416

e /T, pa/Te

FIG. 8. (Color online) Phase diagrams at 7 = T, with constant
(bottom left) and linear (y W = 0.5) DOS (top left and bottom
right). For linear DOS, the SF-N critical temperature can exceed
T, of the SU(3) symmetric point, whereas for y = 0, the SF phase
disappears everywhere above 7,. The largest values of the color
(gray) scales correspond to |Aqg| = 0.07T, (top left) and |Aqg| = T
(bottom left and right). Parameters at the SU(3) symmetric point are
X pp, T,/ W,y W, Er/ W) = (0.1,0.0076,0,0) in the bottom left and
(0.112,0.011,0.5,0.24) in the top left and bottom right figures.
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related to the fact that the superfluid transition temperature
is exponentially sensitive to the DOS at the Fermi energy. At
the SU(3) critical temperature T, superfluidity appears only in
small regions of the phase diagram, around the lines where two
of the three fermion species have equal chemical potentials.
These regions lie on that side of the SU(3) symmetric point,
where the particles of the closest chemical potentials have
higher DOS at the Fermi energy than the third one. We remark
that the expansion of the free energy up to third order in the
order parameters can not recover this structure precisely, and
here the phase diagram is significantly different from the phase
diagram of Ref. 24 (see Sec. IV for a more detailed discussion).

C. Two-component superfluidity

It is instructive to compare our mean-field theory with
results obtained for two-component systems. As noticed
by Sarma,”® for two-component systems the Zeeman field-
induced SF-N transition becomes of first order below the
temperature T5ama and above the chemical potential differ-
ence pSama — (g Sama _ Samay / /3 Sarma also determined
the mean-field values of this critical point (Sarma point), and
obtained

5™ — 0587, , p>™ = 15T,, (33)

with T, the critical temperature at ;, = 0. He also determined
the critical chemical potential difference at zero temperature,
known as the Clogston limit*:

Mslog =2 A(T = O) = 1.764 Tc s (34)

with A denoting the SF order parameter.

The three-component system exhibits a two-component
behavior in regimes where the chemical potential of two
species remains close, e.g., |p1; — u2| ~ T., while that of
the third component is very far from them (|3 > T.). To
investigate this limit, we fixed u, = 5T, and varied p,, along
the solid line shown in the top left panel of Fig. 9. The
corresponding SF phase diagram displays features similar to
those predicted by Sarma. At T = 0 temperature, the absolute
value of the SF order parameter is independent of p, in the
superfluid phase, and its magnitude agrees with the BCS
result A(T =0) =0.882 T*), with T.) being the critical
temperature at 1, = 0.* The critical value of ju, (Clogston
limit), however, shows significant deviations compared to
Eq. (34). For a coupling A = Apr = 0.1, e.g., we find both
for a two- and for a three-component system:

pe'%® — e =219A(T =0)=193T" . (35)

For T. <« W, the prefactor was found to be approximately
independent of the value of w, and particle-hole symmetry-
breaking parameter 7. The difference between Eq. (35) and
Clogston’s result is due to the inclusion of magnetic degrees
of freedom in the free-energy density, Eq. (28), which accounts
for interaction-related contributions to the Pauli susceptibility
X ~ pr, neglected in Sarma’s work.>® These susceptibility
contributions are proportional to Aup 0%, and therefore result
in a correction to the magnetic energy of relative size ~Ap0F,

in rough agreement with the numerically observed shift of

pS°% 1t is easy to understand this difference on physical

grounds: In the SF state (12), the densities n;; and ny, are
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T™TT ™ T
6-4-20 2 4 6

pa/Te

0.8

0.6

0.4

0.00-+
0 '

o /T

FIG. 9. (Color online) SF phase diagram (top right and bottom)
atlinear DOS (y W = 0.5), with u, = 5T kept constant, as indicated
by the solid line in the top left figure. The SF-N transition becomes
from second order (solid line) to first order (dashed line) below
the temperature 7™ = (.48 T*), and chemical potential difference
S = 1,842 7™, with T = 1.027 T, the critical temperature at
y = 0and u, = 5T,. Parameters at the SU(3) symmetric point were
Apr=0.1,yW =0.5,T./W = 0.0076, & = 0.

exactly equal at 7 = 0, while in the normal state they shift
according to the chemical potential difference. The interaction
is, however, repulsive in the magnetic channel. Consequently,

the (magnetized) normal state becomes less favorable, and

uS™°8 shifts upwards.

Locating numerically the Sarma point we also find that it is
shifted compared to Eq. (33):

TSarma N TSarmahL:(l1 — 048 Tc(*) , (36)
P = Iy = 184279 37

again, approximately independently from the value of . These
results and Eq. (35) demonstrate that the positions of the
Sarma point and the Clogston point [Eq. (34)] can significantly
deviate from their standard BCS values due to interaction
effects. Furthermore, their independence from the particular
value of y shows that, at least for 7, <« W, particle-hole
symmetry breaking does not have a significant effect on the
SF phases in the regime where the chemical potentials are far
from the SU(3) symmetric point.
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n”o "

pa /T,

FIG. 10. Interplay between superfluidity and magnetism in the
SF channels, @ = 1,2 (top), and for the third, normal component
(bottom), for linear DOS (y W = 0.5), with p, = 5T, kept constant.
The shift of the densities along the SF-N phase boundary is smooth for
T > T Suma (solid line), and discontinuous for 7' < T Sarma (dashed
line). The density jump of the third component is much smaller than
that of the SF components. (See also Fig. 9.) Parameters at the SU(3)
symmetric point: A pp = 0.1,y W = 0.5,7,./W = 0.0076, & = 0.

In the SF state, the SF species are bound together, and
the condensate itself can not be polarized. This has an
experimentally important manifestation at the SF-N transition,
where a sudden shift appears in the densities at the phase
boundary, as presented in Fig. 10. At zero temperature, the
densities in the SF channel are equal, and their value does
not depend on the chemical potential difference, whereas at
the SF-N transition, a difference in the densities sets in. At
temperatures below T Sarma_the SE-N transition is of first order,
and the densities jump discontinuously on the phase boundary.
In Fig. 10, this amounts to a ~1% jump in the densities. In the

PHYSICAL REVIEW B 86, 064519 (2012)

strongly interacting regime, however, the jump is expected to
take much higher values, similar to two-component systems.®

Let us close this section by investigating the effect of SF
transition on the third, normal component. Indeed, in the
presence of particle-hole symmetry breaking, the SF order
parameter couples directly to the magnetization, and should
shift the density of the third component. Figure 10 shows this
effect for a linear DOS in the weak-coupling limit. We find
that the shift in the density of the third component is only of
the order of 0.01% for T,/ W = 0.0076, however, for larger
ratios T,/ W = 0.1 (but the same y), it reaches values of the
order of 1%, indicating that this effect may be measurable in
the strong-coupling regime.*’

IV. GINZBURG-LANDAU ACTION

In this section, we focus on the central region of the phase
diagram, and construct a Ginzburg-Landau (GL) expansion
of the free energy (28) around the SU(3) symmetric point
py = iy = O0for T ~ T.. Throughout this section, we assume
a perfectly SU(3) symmetrical interaction A,g = A for a # B.
While the form of the Ginzburg-Landau functional is dictated
by symmetry, the coefficients of the various terms depend
on the microscopic parameters. We shall give approximate
expressions for them, as obtained through a numerical analysis
of Eq. (28).

In the weak-coupling limit, the dimensionless free-energy
density

fo = fol(prT?)

can only depend on a few dimensionless physical parameters:
the dimensionless interaction A = pgX, the dimensionless
slope of the DOS at the Fermi energy y = yT,, the re-
duced temperature t = (T — T,)/ T, and the dimensionless
chemical potential differences 8 = (u — uSY®)/T., with
p3Y®) denoting the chemical potential at the SU(3) symmetric
point.*® Most importantly, however, f is a functional of the
dimensionless order parameters

A=A/T., SA=(A—ASYO)T,, (38)

with ASU®) denoting the renormalized chemical potential at
the SU(3) symmetric point.

The expansion of the free energy contains only SU(3)
invariant terms and can therefore be expanded as’*

fo = A; THAKT) + A, TrH{(AA )]
+ B, Tr(5A%) + By Tr(5A)? + B Tr(SJi 5A)
+C, Tr6AAAT) + C, Tr(s A)Tr(AA™)
+CTrSEAA Y + - - - (39)

The eight coefficients appearing in this expansion are all
functions of A, 7, and . We determined them by fitting the free
energy Eq. (28) numerically, and found that the expressions
in Table I give a good estimate for these parameters.49~At the
minima of the free-energy functional above, we have SA o< 1t
and A o /7. Therefore, the expansion above contains all terms
up to O(t2,871 t,811%).

The superfluid phase transition is driven by the term
Ai(t,)), which changes sign at the SU(3) point. All other
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TABLE 1. Approximate expressions of the Ginzburg-Landau
coefficients in Eq. (39). The dimensionless parameters are A = prA,
y=yT,andt =(T —T.)/T..

PHYSICAL REVIEW B 86, 064519 (2012)

TABLE II. Approximate expressions of the Ginzburg-Landau
coefficients in Eq. (40). The dimensionless parameters are A = prA,
y=yT,andt =(T —T,)/T..

Parameter Approximate expression Parameter Approximate expression

A, 2.00¢4--- a 20f+---

Ay 0.40 —1.20¢ + - -- a 040 —1.2¢+---

B, 0.5000 + 1.000% + - - - b (321 —0.083/32)7 + - --

B, —1.000% + - - - ¢ 0.125 - 0.29% — 0.137 + - - -

B; —1.000 + - - - e —0.115+027 % +0.12¢ + - - -

C 1259 + -

C, —1.229 4 - , ,

Cs —0.627 /54 - that it determines correctly the absolute value of the SF

coefficients are approximately constant close to the phase
transition. The terms ~B; describe the ferromagnetic order
parameter and its response to the external “magnetic field”
1t. The most interesting terms are those proportional to the
coefficients C;: these describe the coupling between the SF
order parameter and the magnetization (or chemical potential
differences), and they are responsible for the threefold-
symmetric structure in the central region of the phase diagram
(see Fig. 7). The terms C; and C, couple the superfluid and
magnetic order parameters, and produce the density shift of the
normal component at the onset of superfluidity. Notice that all
these terms are found to be proportional to the dimensionless
particle-hole symmetry-breaking parameter y.

While the third-order expansion (39) accounts for the
central regions in the right panels of Fig. 7, it does not
recover the sixfold-symmetric structure that dominates the
phase diagram at larger chemical potential differences. This
is obvious since the terms C, C3, and C3 are odd under the
particle-hole transformation 8t < —8J1, SA < —SA", and
are proportional to y, while the hexagonal structure is even
under particle-hole transformation, and already appears for
y = 0. The “hexagonal” structure must therefore be controlled
by higher-order terms, containing even degree polynomials of
31t and 8 A, coupled to the SF order parameter. Unfortunately,
the number of such terms is huge, and is next to impossible
to determine all of them and their corresponding GL coeffi-
cients accurately. However, observing that the ferromagnetic
response is always small, we can just focus on the SF order
parameter. At a formal level, this can be done by minimizing
the free-energy functional fg in A for any fixed @t and A,
and thus defining

FoGH.R) = Fo(OH.0A,8Amin(SHL.6A)).

The form of this GL functional is also dictated by symmetry,
and it can also be expanded in 8t and SA. Up to O(t2,87i 1),
it reads as*

fo =ay (AR + a» TI(AA Y] + b TrSEAA ™)
oy TeEPAAT) + ¢ TIORASEA Y +---. (40)

The approximate values of the numerically obtained coeffi-
cients are enumerated in Table II.

Minimization of Eq. (40) yields the correct structure of
the phase diagram in the vicinity of the SU(3) symmetric
point, and accounts for the competition between the odd
(b, ...)andeven (cj,cs, . ..) order couplings. We also checked

order parameter in the weak-coupling regime 7./ W < 0.1 at
temperatures 0.97, < T < T.. However, the locations of the
triple points at the interface of the threefold- and approximately
sixfold-symmetric structures in Fig. 7 are reproduced only
with an error of about 50%. Although this error is very large,
it is also natural, since on the scale of this structure, the
chemical potential difference is of the order of 3 ~ 0.2.
Therefore, 811 can not be considered as a small parameter
here, and higher-order terms in the expansion (40) shift the
phase boundaries significantly.

V. BEYOND MEAN-FIELD

In the discussion presented so far, we restricted ourselves
to a mean-field approach, and neglected fluctuations. Fluc-
tuations, however, not only reduce somewhat the transition
temperatures and fields, but they also change the universality
class and thus the critical exponents of the transition. In
ordinary superfluids, such fluctuation effects are typically hard
to observe, however, in cold-atomic systems one can reach
the strong-coupling regime, and therefore a nontrivial critical
behavior may be observable.>”

First, let us discuss the central SU(3) symmetrical point
of the phase diagram p, = u, = 0. At this point, only the
first two terms of the GL action (40) survive for an SU(3)
symmetrical interaction. These terms as well as the gradient
term Tr{0; A - 3. A"} have an increased O(6) symmetry with
respect to SU(3),*” with the real and imaginary parts of
the independent components of A forming a six-component
real vector. Since higher-order terms are irrelevant in the
renormalization group (RG) sense, the i, = v, = O transition
is described by the O(6) critical theory. Thus, the correlation
length diverges as & ~ |T — T.|7"°©, while the order pa-
rameter scales as (A) ~ |T — T,|Po®. For d = 3 dimensions,
the critical exponents are known from € expansions,’! 1/n
expansions,’” as well as from high-temperature expansions,>
and Monte Carlo simulations,>* giving similar results

Vo 2 0.80, B, ~ 0.41 .

In two dimensions, on the other hand, fluctuations suppress the
phase transition at the SU(3) symmetrical point 7.°° — 0,
which thus becomes a quantum critical point.

For generic values of p,,u, # 0, only one superfluid
channel dominates the phase transition, which is therefore
described by the XY model. In d =3 dimensions, the
corresponding critical exponents are given by>°

viy ~ 0.67, By ~0.35, (41)
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while in d =2 dimensions the transition is of Kosterlitz-
Thouless type.’

Interesting critical behavior emerges in the vicinity of the
bicritical lines of Fig. 2. Along these lines, two components of
the matrix A, e.g., A3 and Ap3 compete with each other
to form the superfluid. These can be grouped into a real
four-component vector ¢ = (ReA3,ImAjz3,ReA3,ImA 3).
Fermion number conservation implies that the effective action
must be invariant under global phase transformations A;; —
€'%i A;;, which translates to an O(2) x O(2) symmetry in terms
of the field ¢. Up to fourth order, the most general effective
Hamiltonian can be written as®®

_ d l 2 2
Hpw = | d 2(qu) +1r9° +1_¢llp

+m¢f+wwwf+w¢wnw+~},<M>

where the terms breaking the O(4) symmetry were written in
terms of the matrix

II= . (43)
-1

In the absence of the terms 7_ and w, this action has an
additional Z, symmetry A3 <> A3, leading to a O(2,2) =
(0O(2) x O(2)) x Z, symmetry of the free-energy functional.
In the presence of particle-hole symmetry, one can show
that at the boundary of the two superfluid phases, the Z,
violating terms vanish: 7~ = w = 0. In general, however,
the simultaneous vanishing of 7_ and w is not guaranteed.
Nevertheless, already leading-order € expansion indicates>
that the coupling w is irrelevant at the phase transition
ty — 0. Thus, the Z, symmetry is apparently restored at the
transition, and the critical state must be described by the O(2,2)
symmetrical functional with z_,w — 0.

The O(2,2) functional (42) with r_,w — 0 thus describes
the phase transition at all bicritical endpoints where two
superfluid phases meet (white circles in Fig. 11). Notice that
the structure of the phase diagram changes close to 7., and

T. 5T 5T T, T

=
<

(23) (31) (31)

bz /Te b/ Te

FIG. 11. Schematic picture of the position of the O(2,2) points
(empty circles) in case of linear DOS. At the temperature 7" below
which the triple points appear, from each O(2,2) bicritical line (left)
two new bicritical lines of the same universality class branch out
(right). The branching points are multicritical. SF-SF transitions are
of first order (dashed lines), whereas SF-N transitions are of second
order (solid lines).
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G ’_\<4 ﬁ
FIG. 12. Schematic picture of the O(e?) RG flows in the (u,v)

plane, with 7~ = w =0, for € < 5/7. For € — 1, the fixed-point
structure changes, and the € expansion is inconclusive.

the six O(2,2) points, characteristic at lower temperatures,
pairwise merge into three O(2,2) points above a tricritical
temperature T (as also shown in Fig. 11).

The second-order terms 7, and f_ trigger the SF-N and
SE-SF transitions, respectively, and scale as

I+ X 3/L||, (44)

o Sy (45)

for small chemical potential shifts parallel (6.¢) and perpen-
dicular (5, ) to the SF-SF phase boundary.

The model (42) has been studied extensively,’>® typically
in the framework of the more general n-m component
models.®' Despite the extensive effort, the stability of its
various fixed points is still debated. Systematic € expansion
yields three nontrivial fixed points with #* = w* = 0, which
could potentially describe the critical state: (a) an O(4)
Heisenberg fixed point with #* > 0 and v* = w* =0, (b) a
decoupled fixed point (DFP) (u* = v*,w* = 0), where the two
superfluid components are described by two independent XY
theories, and (c) a mixed (or biconical) fixed point (MFP) with
u* # v*and w* = 0.

For small values of € =4 —d, € expansion yields the
picture shown in Fig. 12, predicting that the mixed fixed point
(MFP) describes the phase transition along the O(2,2) critical
line. However, already in second order in €, the fixed-point
structure changes completely as one approaches the physical
value € = 1, and even the results of six loop € expansion
remain completely inconclusive regarding the stability of the
fixed points.®3 Nonperturbative arguments, on the other hand,
seem to support that the rather boring decoupled fixed point
(DFP) describes the critical state.%3-9°

The universality class of the fixed point has considerable
impact on the phase diagram. The ratio of the critical exponents
v+ associated with the terms 7, determine, e.g., the shape of
the SF-N phase boundary in the vicinity of the bicritical point.
Standard crossover scaling arguments>” lead to the conclusion,
e.g., that the specific heat diverges in the vicinity of the SF-N
transition line as

cy(ty) o |ty — )| ™™, (46)
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Yty = Yt_
(23)

pz/Te pz/Te

FIG. 13. Schematic phase diagram of the vicinity of the O(2,2)
bicritical point (see Fig. 1) in case of the mixed (left) and the
decoupled (right) fixed point. In the former case, fluctuations modify
the SF-N phase boundary into curves with universal scaling.

where axy denotes the specific-heat exponent of the
XY model, and the phase boundary is determined by
the function C(z_):

C(r) o |- |+ 47)

Since the critical exponents yy; are different for the two
possible stable fixed points even to first order in €,

WP =2—e2+-, YWMP=2_c/6+-.-,
WP =2—%e+-, (48)

the shape of the phase boundary will be different in the two
cases. Notice that since the DFP describes two independent
XY models, its exponents yPFP will be equal to all orders
in €, implying that the SF-N boundaries start /inearly at the
bicritical point. For the MFP, on the other hand, yY* < yMFF,
and the SF-N boundary has a universal exponent in the vicinity
of the O(2,2) point, as shown in Fig. 13. This difference in the
shape of the phase boundary provides a clear fingerprint of the
universality class of the transition.

The critical exponent 8 of the order parameter (¢) along
the SF-SF phase boundary is determined by the exponent yj,
of the “magnetic field” at the critical fixed point

g (49)
Y+
Since the magnetic field exponents get their first nontrivial
contribution in O(e?) order, to leading order in € we have

€ €
WP=3——4, WF=3-c+.0 49
2 2
However, since y}* £ yP™  the exponents g and gMFP
turn out to be different already to first order in €,
1 3 1 €
ﬁDFP:__ _’_'.'7 ﬁMFP:___+"'- (50)

—e€
2 20 2 8

VI. EXPERIMENTAL RELEVANCE

Currently, maybe °Li ultracold gases provide the most
promising perspective for the realization of three-component
superfluidity. For high magnetic fields, the s-wave scattering
lengths between the three lowest hyperfine states approach
the spin-triplet scattering length aj, ~ ay; ~ a3; ~ —2140ay,
with ag the Bohr radius.?” At fields of ~2000 G, for example,

PHYSICAL REVIEW B 86, 064519 (2012)

the scattering lengths all deviate less than 2% from their
average value.”’ It has been proposed theoretically that this
deviation can further be decreased using radiofrequency (rf)
and microwave fields (mw),”® down to 0.1 %, and thereby a
strongly attractive system can be realized with almost perfect
SU(3) symmetry in this high-field regime.

Although three-body loss is a major obstacle in three-
component experiments, recent experiments showed that
decay rates tend to decrease at high fields in °Li systems,
and indeed, Fermi degeneracy has successfully been realized
in this three-component system.!” According to our estimate,
a ®Li experiment in the high magnetic field limit on a system
of Fermi energy Tr = 1 uK and without optical lattice would
correspond to the parameters A.g o ~ 0.11,y W ~ 0.18, and
T./W = 0.01.° This system would thus be in the regime
of weak interactions, studied here. However, such a small
critical temperature is currently unreachable. Application of
an optical lattice can, however, easily bring the system into
the regime of strong interactions, where SU(3) superfluidity
may be accessible.®® Although our calculations do not apply
for strong interactions, we believe that, similar to the SU(2)
case,>®%?3 the major features of our phase diagram are robust,
and should carry over to the strongly interacting case.?>*’

So far, we assumed a perfectly SU(3) symmetrical inter-
action in our calculations. The phase diagram is, however,
somewhat modified if the the scattering lengths are only ap-
proximately equal.®> In Fig. 14, we present a phase diagram
for the case where we have set the ratio of critical temperatures
in the different channels to be 7,?¥/T12 = 7@/ T2 =
0.95. For TC(”)/W ~ 0.01, this would correspond to a ~1%
asymmetry of the scattering lengths. At temperatures 712 >
T > T = T8V, the SF phase is formed only in the (12)
channel. The starlike shape of the phase diagram is preserved
at lower temperatures, however, the interaction asymmetry
destroys the sixfold symmetry of the central region of the
phase diagram, including the O(6) critical point: the phase
(12) dominates this central region and expels the other two
SF phases. Thus, the shape of this region depends rather
sensitively on the interaction asymmetry, and fine tuning of
the scattering lengths (by using rf and mw fields,”® e.g.) may
be needed to realize an SU(3) symmetric superfluid.

VII. CONCLUSIONS

In this paper, we studied the phase diagram and the
interplay of fermionic and superfluid order parameters in a
three-component fermionic mixture. We mostly focused on
the case of SU(3) symmetrical interactions and studied the
weak-coupling regime, where the critical temperature is much
smaller than the Fermi energy of the atoms, 7, < Er ~ W.”!
We combined two complementary mean-field methods (Gaus-
sian variational method and equation of motion techniques)
to study how a chemical potential imbalance polarizes the
atomic cloud and modifies/destroys superfluid order. Although
the phase diagram of the three-component system is naturally
much richer than that of the two component mixture,? there are
some similarities: large chemical potential imbalances (|u; —
il > T, for all i # j), for example, destroy superfluid (SF)
order, similar to two-component mixtures. The corresponding
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FIG. 14. (Color online) Phase diagram with only approximately
equal interaction strengths. The rate of the critical temperatures in
the respective channels are 729 /T!? = TGV /T2 = 0.95. The
SF phase in the channel of strongest interaction repels the other
two phases from the central region of the phase diagram. See the
respective color (gray) scales for the absolute values of the SF order
parameters. Parameters at the t, = @, = 0 point: (A12,A23,A31)0F =
(0.1057,0.1046,0.1046), T"PW = 0.01,y W = 0, & = 0.

SF-normal transition is of second order at higher temperatures,
while it becomes of first order below the Sarma temperature.
The superfluid phase is, on the other hand, much richer than
in the two-component case. SF order can form in channels (12),
(23), and (31), and the chemical-potential-driven transitions
between these superfluid phases are of first order. In a
real experiment, where fermion numbers are approximately
conserved for each component, such first-order transitions
would appear as segregation of different SF phases, and
domain formation.'® Experimentally, these domains would
likely appear as a shell structure, sketched in Fig. 15. Based
upon our phase diagram, for N3 > N, 2 Ny, e.g., a possible
configuration is that in the center of the trap a (23) superfluid
forms, however, approaching the external region of the trap 7,
decreases, and the (12) superfluid state becomes more stable.”?
Similar shell-like structures have been proposed, e.g., in the
case of unequal masses of the three fermionic components.”?
We remark, however that phase separation in a trap can be more
complicated when the total numbers of atoms Ny, N;, and N3 is
such that they restrict the local chemical potentials in the trap to
follow the SF-SF phase boundaries in our phase diagram, e.g.,

PHYSICAL REVIEW B 86, 064519 (2012)

FIG. 15. (Color online) Possible trap configurations for total atom
numbers N3 > N, 2 Nj.

in the case of N3 2 N; = N,. In this case, we can not give a
simple argument on the possible phase configurations. We also
remark that in case of strong interactions, strong spontaneous
magnetization most likely leads to phase separation even in
the SU(3) symmetric case Ny = N, = N3, as suggested in
Refs. 16,24 and also found in Ref. 25 in case of a lattice with
strong three-particle losses, and in Ref. 40 in the continuum.

As a rule of thumb, SF order tends to form in the
channel of the smallest chemical potential difference. This
simple rule determines the overall structure of the phase
diagram (see Fig. 7). However, unlike the two-component case,
for three-component mixtures a nontrivial coupling between
magnetic and SF order is also allowed.'®?* This interesting
coupling, the strength of which is regulated by particle-hole
symmetry breaking y ~ o'(Er)/o(Er) ~ 1/EF, leads to a
peculiar triangular structure in the central region of the phase
diagram pu; & u, in agreement with the predictions of Ref. 24
(although with opposite orientation, see Fig. 7). However, the
relative size of this central region is apparently proportional to
~/yT.; therefore, for weak and intermediate couplings, the
triangular structure appears only in the close vicinity of the
SU(3) symmetrical point u; = u. For very strong attractive
interactions 7. ~ Er ~ W, on the other hand, the central
(triangular) region must get more extended, and may become
observable.

We also constructed the Ginzburg-Landau functionals
describing the three-component mixture, and determined the
temperature and asymmetry (y) dependence of the various
coefficients. We have shown that, to capture the termination
of the central triangular region, one needs to go beyond
the expansion of Ref. 24, and higher-order terms need be
incorporated in the functionals.

As discussed in Sec. V, fluctuations modify somewhat the
mean-field picture. The temperature-driven phase transition
for generic (unequal) chemical potential values is typically
described by the XY model and its critical exponents. How-
ever, for certain special chemical potentials, the competition
between various superfluid orders may lead to interesting
critical behavior. For u; = n and an SU(3) symmetrical
interaction, e.g., the normal-SF transition belongs to the O(6)
universality class, and is characterized by the corresponding
exponents. Along the critical lines separating the three phases
(12), (23), and (31), on the other hand, an interesting O(2,2)
critical behavior may emerge (see our discussion in Sec. V).
The shape of the phase diagram in the vicinity of these
special lines is then determined by the corresponding universal
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crossover exponents. We emphasize that, while it is very
difficult to observe it in the weak-coupling regime, a nontrivial
critical behavior could be observable in the strong-coupling
regime, often reached in cold-atom experiments.

Finally, we studied the fragility of the SU(3) physics, i.e.,
the sensitivity of these results and the phase diagram to the
symmetry of interaction. We have shown that already a small
difference in the scattering lengths can substantially distort the
SU(3) phase diagram, and the SF phase of the channel with
the strongest interaction may suppress and mask the SU(3)
symmetrical [O(6)] critical regime. These results agree with
those obtained in Ref. 70. Here, however, in contrast to Ref. 70,
we focused on the consequences of SU(3) symmetry (rather
than on the consequences of its violation) and the effects
of the coupling between ferromagnetic and superfluid order
parameters, neglected in Ref. 70. In addition, we also discussed
the role of fluctuations and the structure of the emerging
critical states and multicritical lines. Our results as well as
those of Ref. 70 indicate that in experimental realizations,
to observe the SU(3) physics, one should use systems with
almost perfectly symmetrical interactions, similar to Yb,”* or
one should use some tricks to make all scattering lengths equal
as much as possible.?® Moreover, one should possibly stay in
the strong-coupling regime 7, ~ W, where the impact of a
small asymmetry in the interaction is not exponentially large.
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APPENDIX A: EXACT WARD IDENTITIES

In this Appendix, by making use of the global SU(3)
invariance of the functional measure, we derive exact Ward
identities that give constraints on the possible values of the
order parameters and densities [Eqgs. (6)—(9)]. Consider the
partition function Z, defined in Eq. (12). For the current
calculation, we rewrite the action in equations (13) and (14) in
the form

So(l) = Z/dx Vo l@r + Ho)dap — flaplVp, (AD)
ap

(D) == 2 Tupys [ dx T30,

afyd
by introducing ﬁ/aﬁ = Uy aaﬁ and Faﬁyg = %Aaﬁ(éaséﬁy —
Say8ps). An SU(3) transformation of the fields ¥, (x) —
» p Uap¥p(x) translates to the transformation of & and I

(A2)

in the functional integral. Expressing U = exp(i Zi:l n“T?)
with the Gell-Mann matrices T¢, we find

J . \ a a A
—— Map(n) =1 Z (MayTy,s - Tayﬂyﬂ)’ (A3)
37) n9=0 Y
0 .
_arotﬂyﬁ(n) =2i ()\aﬂ - )\;/8)8115 Tﬂay (A4)
877 n9=0
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The invariance of the functional integral with respect to
global SU(3) transformations 521, = 0 leads to the Ward
identity

0InZ

Z 0lnZ
(ILLOZ I’L};) A (‘ "/3 )\’Ot )
aﬂaﬁ ” v 4

arwﬁy

(A5)
for any o and B, from which Eq. (32) follows.

APPENDIX B: WARD IDENTITIES IN THE
GAUSSIAN APPROXIMATION

Here, we derive approximate Ward identities, similar to
those in Appendix A, that hold in the Gaussian approximation.
As explained in Appendix C, we can assume that the inverse
propagator in the definition of the partition function Zp
[Eqg. (18)] is local:

Zp = /@W@w e%fdlal)D’l(l)(P(l)’ (B1)

where D! is defined in Eq. (23).

An SU(3) transformation of the fields ,(x) —
> P Uupp(x) translates to the transformation of order pa-
rameters

A — UAU, (B2)

A — UAUT (B3)

[see Egs. (29) and (30)]. Using the invariance of the partition
function with respect to these global SU(3) transformations,
we get the following constraints on the densities:

I“j\ I‘Z —-n* d
Tr N =0, (B4
-ry" r¢/\d™ n

with T4 = [A,T¢] and T = 2(T¢A + AT*).” Here, the
matrices T%, a =1, . ..,8, are the Gell-Mann matrices.

In the case of SU(3) symmetric interactions, at the solutions
of the EOM equations [Egs. (6), (7), and (10)], this equation
simplifies to the same form as the exact Ward identity
[Eq. (32)]:

(e — mpingg = 0. (BS)

Therefore, when neither two of the chemical potentials are
equal, the matrix of densities n and that of renormalized
chemical potentials A are both diagonal [see Eq. (7)].

APPENDIX C: SADDLE-POINT EQUATION IN
THE GAUSSIAN APPROXIMATION

In this Appendix, starting from the saddle-point equation
(21), we derive the saddle-point form of the propagator D in
the Gaussian approximation [Eqs. (22) and (23)]. We will use
the notations of Sec. II B.

First, we fix the arbitrariness in the form of D~! in the
definition of Sp [Eq. (17)]. We split D~ !into 3 x 3 matrices

L a(x1,x2) FB(Xl,X2)>

(C1)
Lc(x1,x) Tplxr,x2)

D1(1,2) = (

It is easy to see that, because of the anticommutation
of the fields ¥, and ,, modifications of D' that
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leave T 4(x1,x2) — T'D(x2,x1), Tp(x1,x2) — Th(x2,x1), and
Tce(xq,x) — Fg(xg,xl) invariant, will not change Sp. There-
fore, we may assume that D~! has the symplectic symmetry

(8 2o (8 4) =0 Tonn

The saddle-point equation (21) gives very strong constraints
on the form of D. In particular, it is equivalent to the EOM
self-consistency equation of Sec. Il A. To see this, we use the
definition (16) to rewrite Eq. (21) in the form

1 3Zp  §(S—Spp
Zp 8D(1,2) ~  §D(1,2)

(C2)

(C3)

The calculation of the left-hand side of this equation is
straightforward. Using only the definition of Zp [see Eq. (18)]
and Eq. (20), we get

1 62Zp 1

— =——D7',0.
Zp §D(1,2) 2

(C4)

To evaluate the right-hand side of Eq. (C3), omitting a
constant term, we can write

(S — Sp)p = —%/dl dZDal(l,Z)D(Z,l) + (Sine)p.  (C5)

Then, it is easy to see that the saddle-point equation is
equivalent to

(S(Sint)D

—1 . _
D™ (1,2) =D, (1,2) 2819(2,1).

(Co)

Expanding (Siy)p using Wick’s theorem gives a product of
equal-time propagators, whose variation according to the
propagator matrix D can be straightforwardly calculated.
We get the desired formulas (22) and (23), with the order
parameters A and A satisfying the EOM self-consistency
equations (6), (7), and (10). This means that the EOM method
is consistent with the Gaussian variational approach.

APPENDIX D: CALCULATION OF THE GAUSSIAN
APPROXIMATION TO THE FREE ENERGY

In the following, we calculate the Gaussian approximation
of the free energy, Eq. (25). We first introduce the Fourier
components ¥, (r) = JL@ Zk ¥ ank, obeying the anticom-

mutation relations {ala,ak’ﬁ} = 8up Ok, Where €2 denotes the
volume. With these, the Hamiltonian (24) takes on the form

1 a
Hp=33" {(alﬁ,akm(gk)(aﬁ‘

k -k

) + Tr(é — A)} , (DD

with B(£€) defined in Eq. (5), and the last term originating from
normal ordering.

From the above form, the calculation of Zp = Tre #Hr
is straightforward, although some care is needed to avoid
double counting in momentum space. Note that because of
the symplectic symmetry [Eq. (11)] and Hermiticity of the
matrix B(§), its eigenvalues are real and come in pairs. To each
eigenvalue 7(£) there is another eigenvalue —7 (£). Using this
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property, In Zp simplifies to

InZp = % Xk: Trln [2 cosh (gB (gk))} (D2)

B
—EijTr@k —A).

The calculation of (H — Hp)p is also straightforward using
Wick’s theorem. One finds
1
S H = Holp =D hap(Inapl” = naanps — |degl’)
op

+ Z(Aaﬂ - /La(saﬁ)naﬂ
ap

+ ) Aupdlly + Alydap. (D3)
ap

Thus, using Egs. (D2) and (D3), we get the result (28) for the
Gaussian approximation of the free-energy density. In order to
evaluate Eq. (D3), the densities and anomalous densities n and
d also have to be determined. These can be easily calculated
from the variations of (D2) with respect to A and A, leading
to the same equation [Eq. (10)] as the EOM self-consistency
equations.

APPENDIX E: PARTICLE-HOLE TRANSFORMATION

Particle-hole symmetry introduces a Z, symmetry of the
mean-field phase diagram, when the band is half-filled,
the DOS is particle-hole symmetric [p(§) = p(—£)], and
the interaction has SU(3) symmetry (Ao = A for o # B).
This symmetry together with the permutation symmetry of the
fermion species make the phase diagram sixfold symmetric
(see Fig. 1).

In this appendix, we calculate the effect of the particle-hole
transformation

W, (x) <— Wl(x) (E1)

on the order parameters A and A. This transformation leaves
the interaction invariant, whereas it modifies the bare chemical
potentials and the single-particle energies as

Ho — —Ho, (EZ)

Mo = —a — 4A Ny, (E3)

where Ny = f_WW d& p(§) is the density of the completely
filled band. The bare chemical potentials remain unchanged
on the mean-field level at

Mhalf = —2A Nmax (E4)

which is precisely the condition for the band being half-filled
[see Eq. (7)].

In order to investigate the inversion symmetry of the phase
diagram, consider two Hamiltonians with opposite differences
in bare chemical potentials from half-filling:

HY = HHo, tihair + Site, 1, W], 0,), (ES)

H® = H(Ho, tthair — Site, 1, W], W), (E6)
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as defined in Eq. (1). A particle-hole transformation of H®
leads to the equation

H® = H(=Ho, ptnas + 8ta-1, U, Wo) = HY,  (ET)

where U, = Wi, Accordingly, the densities in the original and
the particle-hole-transformed system can be connected as

1) = (BT = -1 + s (E8)
do%) = (U (1) Tp(x))3) = — 533)* (E9)

Then, it is also straightforward to show from the definitions
(6) and (7) that the relation between the order parameters are

A? = AP A = A", (E10)

Looking at their definitions, we see that the only difference
between H® and H® is in the sign of H,. However, if the
DOS is electron-hole symmetric,

p&) = p(=§), (ELD)
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then all of the EOM self-consistency equations (6), (7), and
(10), and the mean-field free-energy equations (10) and (28)
are identical in the two systems. Therefore, the set of the
possible mean-field configurations have to be the same (A" =
AP, AD = A®) Putting this, and Eq. (E10) together, we
obtain the desired equations

A(pnat 4+ 81be) = —A™(Mhait — f4a), (E12)

A(pnar + 8pke) = — A" (hair — S4a), (E13)

connecting order parameters at opposite §u, values, with the
other parameters of the system unchanged.

We remark that in the special case when du; + du +
83 = 0, the particle-hole symmetry connects the points of
the same ({4, 1t ,) plane, and the mean-field phase diagram has
an inversion symmetry. Away from this plane, the inversion
symmetry is only approximate due to logarithmic corrections
to the values of the order parameters coming from the
asymmetric cutoff.
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