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Phase solitons and subgap excitations in two-band superconductors
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A phase soliton is a topological defect peculiar to two-band superconductors, which is associated with a 2π

winding of the relative phase of the two superconducting condensates. I study the quasiparticle spectrum in
the presence of a single planar phase soliton. I show that the order-parameter phase variation in each of the
bands leads to the existence of subgap states bound to the soliton. Calculation of the soliton energy valid at all
temperatures is presented with exact analytical results obtained for a simple soliton model.
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I. INTRODUCTION

The recent resurgence of interest in the properties of multi-
band, in particular two-band, superconductors has been largely
stimulated by the discovery of superconductivity in MgB2.1,2

Other candidates for multiband superconductivity include
nickel borocarbides,3 NbSe2,4 the heavy-fermion compounds
CeCoIn5 (Ref. 5) and CePt3Si,6 and also the whole family of
iron-based high-temperature superconductors.7 These discov-
eries have shown that multiband superconductivity, which is
characterized by a significant difference in the order-parameter
magnitudes and/or phases in different bands, is a much more
common phenomenon than was previously thought.

Theoretically, a two-band generalization of the Bardeen-
Cooper-Schrieffer (BCS) theory was introduced in Ref. 8.
Subsequent work has shown that many properties of multiband
superconductors differ qualitatively from the single-band case
and that the most spectacular features are associated with the
presence of additional degrees of freedom—the relative phases
of the pair condensates in different bands. For example, in
a charged two-band superconductor, the collective mode
corresponding to small oscillations of the relative phase, called
the Leggett mode,9 is not accompanied by the charge density
modulation and, therefore, is not pushed up into the
plasma-frequency region. If the two condensate phases have
different windings around the core of a vortex, then the vortex
will carry a fractional magnetic flux.10

In addition to exotic vortices, there is another type of
topological defect specific to multiband superconductivity,
namely, phase solitons.11 A phase soliton is a topologically
stable texture of the superconducting order parameter in which
the relative phase exhibits a kinklike variation by 2π between
its asymptotic mean-field values. The phase solitons can
be dynamically generated in nonequilibrium current-carrying
states12 or even in static situations by the proximity effect with
a conventional s-wave superconductor.13 Phase solitons of a
different kind, connecting degenerate time-reversal symmetry-
breaking states, may exist in superconductors with three or
more bands.14 Stable nontrivial phase textures similar to the
phase solitons can also exist in single-band superconductors
with unconventional multicomponent order parameters. For
instance, a chiral p-wave superconductor with kx ± iky gap
symmetry can break up into domains of opposite chirality
separated by a domain wall in which the relative phase of
the order-parameter components rotates between −π/2 and
π/2.15

Previous studies of the phase solitons in multiband su-
perconductors focused on finding the soliton shape and
energy in the Ginzburg-Landau regime.11–13,16 In this paper, I
investigate the effect of the phase solitons on the Bogoliubov
quasiparticles. The presence of a nonuniform texture in the
relative phase implies that the order-parameter phases in
individual bands also have kinklike inhomogeneities. I show
that, in addition to the gapped quasiparticles in the bulk, there
are states in both bands which are localized near the soliton
and have energies below the bulk gap edges. The origin of
these states is similar to that of the fermion states bound to
topological defects, which have appeared in many different
contexts in high-energy and condensed-matter physics.17 A
different type of subgap state that can exist near the surface
of a two-band superconductor of the s± symmetry, i.e., when
the order parameters in the bands have opposite signs, was
discussed in Ref. 18.

The paper is organized as follows. In Sec. II, I discuss the
structure of the phase soliton in the Ginzburg-Landau regime
and show how the kink in the relative phase is translated into
kinks in the individual condensate phases with nonuniversal
phase-winding numbers. In Sec. III, I study the quasiparticle
spectrum in the presence of a single planar soliton using
semiclassical, or Andreev, equations and calculate the energy
of the bound states. In Sec. IV, the phase-soliton energy
is calculated using an exact representation of the functional
determinant of the Andreev Hamiltonian. Throughout the
paper I use units in which h̄ = kB = 1.

II. GINZBURG-LANDAU DESCRIPTION OF THE PHASE
SOLITON

I assume a clean superconductor with two isotropic bands,
labeled by a = 1,2, and isotropic s-wave singlet pairing,
described by two order parameters η1(r) and η2(r), in the
absence of a magnetic field. The difference between the free
energies in the superconducting and normal states is given by
Fs − Fn = ∫

fGLd3r , where

fGL =
∑

a

[
αa|ηa|2 + βa

2
|ηa|4 + Ka

∣∣∇ηa

∣∣2
]

+ γ (η∗
1η2 + η∗

2η1). (1)

The intraband terms have the usual Ginzburg-Landau form
while the last term describes the interband “Josephson cou-
pling,” i.e., the Cooper-pair tunneling between the bands.
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Using the amplitude-phase representation of the order
parameter, ηa(r) = |ηa(r)|eiϕa (r), the free-energy density can
be written as

fGL =
∑

a

[
αa|ηa|2 + βa

2
|ηa|4 + Ka(∇|ηa|)2

+Ka|ηa|2
(∇ϕa

)2
]

+ 2γ |η1||η2| cos(ϕ1 − ϕ2). (2)

In a uniform state, the minimum energy corresponds to |ηa| =
�a and ϕ1 − ϕ2 = θ0[mod(2π )], where

θ0 = 0 if γ < 0, θ0 = π if γ > 0. (3)

The first possibility (interband attraction) is realized in MgB2

in which both gaps have the same phase19 while the second
possibility (interband repulsion) is likely realized in the iron
pnictides in which, according to the most popular model, the
gap function reverses its sign between different sheets of the
Fermi surface, corresponding to the so-called s± pairing.20

It follows from Eq. (2) that the supercurrent is a sum
of independent contributions from individual bands: j =
−(4e/c)

∑
a Ka|ηa|2(∇ϕa) (e is the absolute value of electron

charge). For a planar texture perpendicular to the x axis,
the current conservation implies that j = j x̂, where j is a
constant. The value of the current is set by external sources
and can be assumed to be zero. In order for the supercurrent
contributions from bands 1 and 2 to cancel each other, the two
order-parameter phases must vary in a counterphase fashion
with ∇xϕ2 = −ρ(x)∇xϕ1, where ρ = K1|η1|2/K2|η2|2. This
allows one to express the free energy (2) in terms of the relative
phase θ = ϕ1 − ϕ2:

fGL =
∑

a

[
αa|ηa|2 + βa

2
|ηa|4 + Ka (∇|ηa|)2

]

+ K1K2|η1|2|η2|2
K1|η1|2 + K2|η2|2 (∇xθ )2 + 2γ |η1||η2| cos θ. (4)

Variational minimization of this expression yields a system
of three coupled nonlinear differential equations for |η1(x)|,
|η2(x)|, and θ (x) with the asymptotics |ηa(±∞)| = �a and
θ (±∞) = θ0[mod (2π )].

In addition to the uniform solutions, the order-parameter
equations have various nonuniform ones, connecting differ-
ent degenerate minima of cos θ . The simplest topologically
nontrivial solutions are those with θ (+∞) − θ (−∞) = ±2π ,
where the positive (negative) sign corresponds to a phase
soliton (antisoliton). The presence of a soliton texture in the
relative phase implies that each of the two phases ϕ1 and
ϕ2 is also spatially nonuniform and attains different values
at x = +∞ and x = −∞. The phase-winding parameter is
defined as

χ ≡ ϕ1(+∞) − ϕ1(−∞) =
∫ +∞

−∞
dx

∇xθ

1 + ρ(x)
. (5)

Then, ϕ2(+∞) − ϕ2(−∞) = χ ∓ 2π for the soliton (antisoli-
ton).

An explicit expression for the phase soliton can be obtained
in the London approximation when the order-parameter
amplitudes are constant everywhere, i.e., |ηa(x)| = �a .11 The
minimization of Eq. (4) then yields a static sine-Gordon equa-
tion for the relative phase, whose soliton solution has the form

θ (x) = θs(x) + (π − θ0), where θs(x) = 2 arcsin[tanh(x/ξs)],
and

ξs =
√

K1K2�1�2(
K1�

2
1 + K2�

2
2

)|γ |
is the soliton width. The phase textures in the bands are given
by the following expressions (up to a common phase rotation):

ϕ1(x) = 1

1 + ρ0
θs(x), ϕ2(x) = − ρ0

1 + ρ0
θs(x) − (π − θ0),

(6)

where ρ0 = K1�
2
1/K2�

2
2. In the London approximation, the

phase-winding parameter [see Eq. (5)] takes the form χ =
2π/(1 + ρ0).

III. QUASIPARTICLE SPECTRUM

The qualitative features of the phase soliton discussed above
are expected to survive beyond the Ginzburg-Landau regime,
namely, the phase soliton divides the superconductor into two
domains, separated by a “domain wall,” whose thickness is
on the order of ξs . The order-parameter phase in each of the
bands exhibits a kinklike variation, similar to the London-limit
expressions [see Eq. (6)] with ϕa(+∞) − ϕa(−∞) = χa . For
a single soliton,

χ1 = χ, χ2 = χ − 2π, (7)

where the phase-winding parameter χ is a nonuniversal
fraction of 2π , determined by the microscopic details.

Now I turn to the calculation of the quasiparticle spec-
trum in the presence of a single planar soliton. The bands
are isotropic with the dispersions ξa(k) = (k2 − k2

F,a)/2ma ,
characterized by the effective masses ma and the Fermi
wave vectors kF,a . Since the order parameters vary slowly
on the atomic length scales, one can use the semiclassical, or
Andreev, approximation.21 An important point is that the slow
perturbation due to the phase soliton cannot cause quasiparticle
transitions between the bands; therefore, one can solve the
Andreev equations independently in each band.

Quasiparticles propagating along the semiclassical trajec-
tory directed along the unit vector k̂F are described by the
wave function ψ , which varies slowly compared to k−1

F .
The quasiparticle spectrum at a given k̂F is determined by
the equation Ĥψ = Eψ , where the Andreev Hamiltonian is
given by

Ĥ =
(−ivF,x∇x η(x)

η∗(x) ivF,x∇x

)
. (8)

Here, vF = kF /m is the Fermi velocity, and η(x) =
|η(x)|eiϕ(x). The gap magnitude approaches its bulk mean-field
value far from the soliton: |η(x)| → �0 at |x| � ξs [the Lon-
don approximation corresponds to |η(x)| = �0 everywhere].
While the band index has been temporarily dropped for
brevity, note that in the ath band, vF → vF,a = (kF,a/ma)k̂F ,
�0 → �a , and ϕ(x) → ϕa(x).

To make the eigenvalue problem for the Hamiltonian (8)
well-defined, one can put the system in a box of length � such
that � � ξs . When safe to do so, the limit � → ∞ will be
taken. For consistency with the phase winding of the order
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parameter, one should use twisted boundary conditions for the
quasiparticle wave functions: ψ(+�/2) = eiχσ̂3/2ψ(−�/2).

It is convenient to represent the phase soliton as a localized
perturbation, which is achieved by applying a gauge transfor-
mation: ψ = Û ψ̃ and Û †ĤU = ˆ̃H , where

Û (x) = eiϕ(x)σ̂3/2. (9)

One can drop the tildes and write the transformed Hamiltonian
in the form

Ĥ = Ĥ0 + δĤ , (10)

where

Ĥ0 = −ivF,x σ̂3∇x + �0σ̂1 (11)

describes the Bogoliubov quasiparticles in the uniform super-
conducting state while

δĤ = 1
2vF,xϕ

′(x)σ̂0 + [|η(x)| − �0] σ̂1

represents a perturbation which is nonzero only near the
soliton, i.e., at |x| � ξs . The gauge-transformed eigenfunctions
satisfy the periodic boundary conditions:

ψ

(
+�

2

)
= ψ

(
−�

2

)
. (12)

Note that there is a one-to-one correspondence between the
spectra of Ĥ and Ĥ0: the eigenvalues of the operator Ĥs =
Ĥ0 + λδĤ evolve smoothly between those of Ĥ0 and Ĥ as the
parameter λ varies between 0 and 1.

At a given k̂F , the spectrum of the Andreev Hamiltonian
consists of scattering states with the energies |E| � �0 and
bound states with |E| < �0. Let me start with the former.
Far from the soliton, the Hamiltonian is equal to Ĥ0, and the
scattering eigenstates are the superpositions of plane waves:

ψ(x)|x→±∞ = C±
R

(
wR

1

)
eiqx + C±

L

(
wL

1

)
e−iqx, (13)

where q =
√

E2 − �2
0/|vF,x | > 0, wR(L) = �0/(E ∓ vF,xq),

and the subscripts R,L refer to the direction of propagation of
the corresponding waves. The coefficients in these asymptotics
are not independent: it is convenient to introduce a 2 × 2
scattering matrix, or the S-matrix, which expresses the
amplitudes of the outgoing waves in terms of the amplitudes
of the incoming waves:(

C+
R

C−
L

)
= Ŝ

(
C−

R

C+
L

)
. (14)

The elements of the S-matrix depend on the energy and are de-
termined by the details of the order parameter at |x| � ξs . Note
that the S-matrix defined by Eq. (14) is not unitary in general
since I did not bother to normalize the scattering states. Still,
one can show that the S-matrix satisfies a certain constraint,
which follows from a “conservation law” for the Andreev
equations. It is straightforward to check that ∇x(ψ†σ̂3ψ) = 0
for the eigenfunctions of Eq. (8); therefore, ψ†(x)σ̂3ψ(x) =
const. Substituting here the asymptotical expression (13)
and using the definition (14), one finds that the S-matrix
must satisfy Ŝ†μ̂Ŝ = μ̂, where μ̂ = diag(w2

R − 1,1 − w2
L). In

particular, |det Ŝ| = 1.

One can also introduce the τ -matrix, which relates the
scattering-wave amplitudes at x → +∞ to those at x → −∞:(

C+
R

C+
L

)
= τ̂

(
C−

R

C−
L

)
. (15)

Comparing Eqs. (14) and (15), the τ -matrix can be expressed
in terms of the S-matrix:

τ̂ = 1

S22

(
det Ŝ S12

−S21 1

)
. (16)

In the absence of the phase soliton, there is no scattering, and
Ŝ = τ̂ = σ̂0.

A. Subgap bound states

The S-matrix (or the τ -matrix) can also be used to obtain
the bound states, which correspond to the poles at |E| < �0

on the real axis in the complex energy plane. The function
q(z) =

√
z2 − �2

0/|vF,x |, where z is the complex energy, has
two branch points at z = ±�0. The appropriate branch of
q(z) is fixed by the condition that, as implied by Eq. (13),
q is a positive real number when z is outside the gap on the
real axis, i.e., when z = E with |E| > �0. One can select the
branch cuts to run parallel to the imaginary axis from ±�0 to
±�0 ∓ i∞. Then, at |E| < �0, one has q = i�/|vF,x |, where
� =

√
�2

0 − E2.
The S-matrix can be calculated analytically in a simple

model in which the soliton width is sent to zero so that

|η(x)| = �0, ϕ(x < 0) = 0, ϕ(x > 0) = χ, (17)

where χ is the phase-winding parameter. The gauge-
transformation operator Û (x) [see Eq. (9)] is discontinuous
at x = 0, implying the following matching condition for the
gauge-transformed wave function: ψ(+0) = e−iχσ̂3/2ψ(−0).
After a straightforward calculation, one obtains

Ŝ =
(

cos
χ

2
+ i

E

vF,xq
sin

χ

2

)−1

×
(

1 i
(
1 − E

vF,xq

)
sin χ

2

−i
(
1 + E

vF,xq

)
sin χ

2 1

)
. (18)

The characteristic equation for the bound states at |E| < �0

has the form

cos
χ

2
+ sgn(vF,x)

E

�
sin

χ

2
= 0. (19)

Introducing Ẽ = Esgn(vF,x), one can write Ẽ = �0 cos �

and � = �0 sin �. Since, according to Eq. (19), tan � =
− tan(χ/2), one has � = −χ/2 + πn (n is an integer),
and therefore, Ẽ = �0(−1)n cos(χ/2). The parity of n can
be found from the condition � � 0, which yields (−1)n =
−sgn [sin(χ/2)]. Collecting everything together, one obtains

E = −�0sgn

(
vF,x sin

χ

2

)
cos

χ

2
, (20)

i.e., there is a single bound state with the energy inside the bulk
gap. In the absence of the soliton, i.e., at χ = 0, one has |E| =
�0, i.e., the bound state merges into the continuum of the bulk
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states. Note that the “sharp” phase soliton is formally similar
to a Josephson junction between two s-wave superconductors
with the phase difference equal to χ . The bound-state energy
for such a junction was calculated in Ref. 22.

Restoring the band indices and using the phase windings
from Eq. (7), one finally obtains that there is one subgap bound
state for each direction of semiclassical propagation k̂F in each
of the bands with the energy given by

Ea = −�asgn(vF,a,x) cos
χ

2
. (21)

Thus, the bound-state energy is a nonuniversal fraction of
the bulk gap. It is only in the exceptional case when the
microscopic parameters are fine-tuned to yield χ = π that
the subgap states are located exactly at zero energy.

Expression (21) has the property Ea(−k̂F ) = −Ea(k̂F ),
which is a consequence of the “electron-hole” symmetry of the
Andreev spectrum: for any k̂F , if ψk̂F

is an eigenfunction of the
Andreev Hamiltonian Ĥk̂F

corresponding to the eigenvalue E,
then iσ̂2ψ

∗
k̂F

is an eigenfunction of the Andreev Hamiltonian

Ĥ−k̂F
corresponding to the eigenvalue −E. After angular av-

eraging over the Fermi surface, the bound states will manifest
themselves as four δ-function peaks in the quasiparticle density
of states, located symmetrically at E = ±�1,2 cos(χ/2).

IV. ENERGY OF THE PHASE SOLITON

Since the quasiparticles bound to the phase soliton have
lower energies than in the bulk, it is natural to ask whether
the spontaneous formation of solitons, accompanied by “self-
trapping” of quasiparticles, could be possible. The general
expression for the energy of a nonuniform state in a two-band
superconductor is derived in the Appendix. For a planar order-
parameter texture with ηa(x) = |ηa(x)|eiϕa (x), in particular, for
the phase soliton, the free-energy difference per unit area
between the states with and without the soliton has the form
Fs = δF/A⊥, where δF is given by Eq. (A6) and A⊥ is the
area of the system in the directions perpendicular to x. One
has Fs = F1 + F2, where

F1 = −T
∑

n

∑
a

∫
d2k⊥
(2π )2

∑
μ

ln
iωn − Ea,k⊥,μ

iωn − E
(0)
a,k⊥,μ

(22)

and

F2 =
∫

dx
∑
ab

(V̂ −1)ab(η∗
aηb − η∗

a,0ηb,0). (23)

In F1, I used the following notations: ωn = (2n + 1)πT is
the fermionic Matsubara frequency, k⊥ = (ky,kz) is the wave
vector parallel to the soliton, and μ labels the eigenstates of
the reduced one-dimensional Bogoliubov-de Gennes (BdG)
Hamiltonian in the ath band at given k⊥:

Ĥ BdG
a,k⊥ =

⎛
⎝ k̂2

x−k2
0,a

2ma
ηa(x)

η∗
a(x) − k̂2

x−k2
0,a

2ma

⎞
⎠ , (24)

where k0,a =
√

k2
F,a − k2

⊥. In F2, Vab are the coupling con-
stants of the intraband and interband pairing (see the Appendix
for the explanation).

Since F1 is a sum of the independent contributions from
the two bands, one can drop the band index temporarily.
As in Sec. III, one can use the Andreev approximation to
find the spectrum of the Hamiltonian (24) because the order
parameter varies slowly on the scale of the inverse Fermi
wave vector. The eigenfunctions of Eq. (24) are sought in
the form �(x) = eikxxψ(x), where kx = ±k0. The direction
of semiclassical propagation of quasiparticles is defined by
the wave vector kF ≡ (k⊥,kx) = kF k̂F . The slowly varying
function ψ(x) is found by solving the eigenvalue equation
Ĥψ = Eψ , where Ĥ is the Andreev Hamiltonian [see Eq. (8)].
The sum over the BdG spectrum in Eq. (22) can be expressed
in the semiclassical approximation in terms of a Fermi-surface
angular average of a sum over the Andreev spectrum:∫

d2k⊥
(2π )2

∑
μ

(· · ·) = 2πNF

∫
d k̂F

4π
|vF,x |

∑
i

(· · ·),

where NF = mkF /2π2 is the Fermi-level density of states and
i labels the eigenstates of the Andreev Hamiltonian at given
k̂F .

Removing the order-parameter phase by the gauge transfor-
mation (9) and restoring the band indices, one finally arrives
at the following result:

F1 = −2πT
∑

n

∑
a

NF,a

∫
d k̂F

4π
|vF,a,x | ln Da,k̂F

(iωn), (25)

where

Da,k̂F
(z) =

∏
i

z − Ei(a,k̂F )

z − E
(0)
i (a,k̂F )

= det[z − Ĥ (a,k̂F )]

det[z − Ĥ0(a,k̂F )]
(26)

is the ratio of the functional determinants of the Andreev
Hamiltonians in the nonuniform and uniform states [see
Eqs. (10) and (11)] for a given direction of the semiclassical
propagation on the Fermi surface in the ath band.

A. Calculation of the functional determinant

There exists a very efficient way of calculating expression
(26), which is based on a relation between the functional de-
terminant and the transfer matrix for the Andreev Hamiltonian
(see Ref. 23 wherein a closely related Dirac Hamiltonian was
investigated). Let me again drop the band and direction indices,
a and k̂F . The transfer matrix is defined as a 2 × 2 matrix
satisfying the equation (z − Ĥ )M̂(x; z) = 0, where Ĥ is given
by Eq. (10), with the initial condition M̂(−�/2; z) = σ̂0.
Since the eigenfunctions of Ĥ can be written as ψ(x) =
M̂(x; z)ψ(−�/2), the transfer matrix has the meaning of the
evolution operator of the wave functions along the x axis.

From the periodic boundary condition (12), one obtains the
characteristic equation for the eigenvalues: det[σ̂0 − m̂(z)] =
0, where m̂(z) ≡ M̂(�/2; z) is the transfer matrix from one
end of the system to the other. The ratio of the functional
determinants [Eq. (26)] can then be represented in the
following form:

D(z) = det [σ̂0 − m̂(z)]

det [σ̂0 − m̂0(z)]
, (27)

where m̂0 is the transfer matrix from −�/2 to �/2 for Ĥ0. That
the two sides of Eq. (27) have to be the same immediately
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follows from the fact that they both are meromorphic functions
in the complex energy plane, having the same poles and
zeros and also the same asymptotics at |z| � �0. If this
argument is not convincing, a more elaborate proof can be
found in Ref. 23. An expression like Eq. (27) represents a
significant step forward compared to definition (26) because it
reduces the calculation of the infinitely dimensional functional
determinant to solving an initial value problem for a 2 × 2
transfer matrix. Expressions of this sort are sometimes called
the Gelfand-Yaglom formulas (see Ref. 24 and also Ref. 25
for a review).

Further simplification is possible in the thermodynamic
limit, � → ∞, where one can represent Eq. (27) in terms of
the scattering matrix. To obtain this representation, note that,
according to the definition of the transfer matrix,

ψ

(
+�

2

)
= m̂ψ

(
−�

2

)
. (28)

On the other hand, using Eq. (13), the wave functions far from
the phase soliton can be expressed in terms of the scattering
wave amplitudes as follows:

ψ

(
±�

2

)
= Ŵ±

(
C±

R

C±
L

)
, (29)

where

Ŵ± =
(

wRe±iq�/2 wLe∓iq�/2

e±iq�/2 e∓iq�/2

)
.

It follows from Eqs. (15), (28), and (29) that m̂ = Ŵ+τ̂ Ŵ−1
−

and

D(z) = det(σ̂0 − Ŵ+τ̂ Ŵ−1
− )

det(σ̂0 − Ŵ+Ŵ−1
− )

. (30)

Here, I used the fact that τ̂ = σ̂0 for Ĥ0.
According to Eq. (25), the free energy of the phase

soliton is expressed in terms of the Andreev functional
determinant on the imaginary energy axis. At z = iωn, one

has q = iκ , where κ =
√

ω2
n + �2

0/|vF,x |. Calculating the
2 × 2 determinants on the right-hand side of Eq. (30) and
keeping only the leading, exponentially divergent at � →
∞ terms, one obtains det(σ̂0 − Ŵ+τ̂ Ŵ−1

− ) = −eκ�τ22 and
det(σ̂0 − Ŵ+Ŵ−1

− ) = −eκ�. Therefore,

D(iωn)|�→∞ = τ22(iωn) = 1

S22(iωn)
, (31)

where I used relation (16) between the τ and S matrices.
Returning to Eq. (25), one finally obtains

F1 = 2πT
∑

n

∑
a

NF,a

∫
d k̂F

4π
|vF,a,x | ln S22(iωn; a,k̂F ).

(32)

Thus, the problem of evaluating the free energy of a
nonuniform order-parameter texture has been reduced to
the calculation of the semiclassical scattering matrix of the
Bogoliubov quasiparticles, analytically continued to complex
energies.

B. Sharp soliton

The scattering matrix can be calculated explicitly only in
some simple cases. For instance, for the sharp-phase soliton
defined in Sec. III, it is given by Eq. (18), and one has

T
∑

n

ln S22(iωn; a,k̂F ) = −T
∑
n�0

ln

(
1 − �2

a

ω2
n + �2

a

sin2 χ

2

)
.

According to Eq. (23), for the sharp soliton, F2 vanishes, and
one obtains the following exact expression for the energy,
which is valid at all temperatures:

Fs = −π
∑

a

NF,avF,aT
∑
n�0

ln

(
1 − �2

a

ω2
n + �2

a

sin2 χ

2

)
.

(33)

At T = 0, the Matsubara sum here becomes an integral and
can be calculated in a closed form:∫ ∞

0

dω

2π
ln

(
1 − �2

a

ω2 + �2
a

sin2 χ

2

)
= −�a

2

(
1 −

∣∣∣∣ cos
χ

2

∣∣∣∣
)

.

Therefore,

Fs(T = 0) = π

2

(
1 −

∣∣∣∣ cos
χ

2

∣∣∣∣
)∑

a

NF,avF,a�a. (34)

Expressions (33) and (34) show that the soliton energy is
positive, vanishing only in the absence of the phase winding,
i.e., at χ = 0. Thus, one comes to the conclusion that the
spontaneous formation of the phase solitons is energetically
unfavorable. Note though that a definitive answer would
require a self-consistent solution of the gap equations. The
feedback effect of the subgap states on the order-parameter
profile might be strong enough to cause the self-trapping of
Bogoliubov quasiparticles, similar to that discussed in Ref. 26,
see also Ref. 27. Investigation of this possibility is beyond the
scope of the present work.

V. CONCLUSIONS

I studied the Bogoliubov quasiparticle spectrum in a
two-band superconductor in the presence of a solitonlike
topological defect in the relative phase ϕ1 − ϕ2. While the
relative phase winding across the soliton is given by 2π , the
phase windings in individual bands are nonuniversal fractions
of 2π : ϕ1(+∞) − ϕ1(−∞) = χ and ϕ2(+∞) − ϕ2(−∞) =
χ − 2π , where the parameter χ depends on the microscopic
details. I found that there are quasiparticle bound states
localized near the soliton, whose energies are nonuniversal
fractions of the bulk gaps.

The bound states will lead to sharp peaks in the quasiparticle
density of states at E = ±�1,2 cos(χ/2), which can be
observed in tunneling experiments. The tunneling probe will
have to be located sufficiently close to the phase soliton to be
able to detect the contribution from the localized states. This
can be done, e.g., in the experimental setup proposed in Ref. 13
in which the soliton is “pinned” to the spatial variation of
the interband Josephson coupling, controlled by the proximity
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effect with another superconductor. Note that the peaks in the
density of states are expected to acquire a finite width when
impurity scattering or intraband gap anisotropy are taken into
account.

I also derived a general expression for the phase-soliton
energy, relating it to the scattering matrix of the Bogoliubov
quasiparticles. As a simple application, the energy in the limit
of zero soliton width has been calculated exactly.
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APPENDIX: FREE ENERGY OF A NONUNIFORM
TWO-BAND SUPERCONDUCTOR

In this Appendix, I present a microscopic derivation of
the free energy of a clean two-band superconductor in a
nonuniform state at arbitrary temperature, using the effective-
action formalism. I start with a two-band generalization of the
BCS Hamiltonian:

Ĥ =
∑
k,a

ξa(k)ĉ†k,a,αĉk,a,α

− 1

V
∑

kk′q,ab

Vabĉ
†
k+q,a,↑ĉ

†
−k,a,↓ĉ−k′,b,↓ĉk′+q,b,↑, (A1)

where a = 1,2 is the band index, α =↑,↓ is the spin projection
(the spin indices that appear twice are summed over), and V
is the system volume. The second term in the Hamiltonian
describes singlet s-wave pairing interactions in the Cooper
channel: the intraband pairing, characterized by the coupling
constants V11 and V22, and the interband “tunneling” of the
pairs, described by V12 and V21. The hermiticity and time-
reversal invariance of the Hamiltonian dictate that the constants
Vab form a real symmetric matrix V̂ .

The following derivation is a straightforward generalization
of the standard textbook procedure in the single-band case (see,
e.g., Ref. 28). The partition function for the Hamiltonian (A1)
can be represented as a functional integral over the Grassmann
fields ck,a,α(τ ) and c̄k,a,α(τ ), Z = ∫

DcDc̄e−S[c̄,c], where the
action is given by

S =
∫ β

0
dτ

∑
k,a

c̄k,a,α

∂

∂τ
ck,a,α +

∫ β

0
dτH[c̄,c]

with β = 1/T . The interaction term in the action can be written
as

Sint = −
∫ β

0
dτV

∑
q,ab

VabB̄a(q,τ )Bb(q,τ ),

where

B̄a(q,τ ) = 1

V
∑

k

c̄k+q,a,↑(τ )c̄−k,a,↓(τ ),

Ba(q,τ ) = 1

V
∑

k

c−k,a,↓(τ )ck+q,a,↑(τ ).

One can decouple the interaction by means of the Hubbard-
Stratonovich transformation, introducing two complex-
conjugated bosonic fields η1,2(q,τ ):

e−Sint →
∫

Dη∗Dη exp

{
−

∫ β

0
dτ

1

V
∑
q,ab

(V̂ −1)abη
∗
aηb

−
∫ β

0
dτ

∑
q,a

(η∗
aBa + B̄aηa)

}
.

The field ηa has the meaning of the fluctuating order parameter
in the ath band.

One can now calculate the Gaussian integral over the
fermionic fields to obtain Z = ∫

Dη∗Dηe−Seff [η∗,η], where

Seff = −
∑

a

Tr ln Ĝ−1
a +

∫ β

0
dτ

∫
d3r

∑
ab

(V̂ −1)abη
∗
aηb

(A2)

is the effective bosonic action and

Ĝ−1
a =

(
−∂τ − ξa(k̂) −ηa(r,τ )

−η∗
a(r,τ ) −∂τ + ξa(k̂)

)

is the inverse Green’s operator in the ath band with k̂ = −i∇.
The trace in the first term should be understood as an operator
trace in (rτ ) space and a 2 × 2 matrix trace with respect to the
electron-hole (Nambu) indices in the ath band. Near the critical
temperature, the order-parameter components are small, and
the first term in Eq. (A2) can be expanded in powers of ηa . In
this way one would arrive at the Ginzburg-Landau functional
for the two-band superconductor, which has been derived by
different means in Ref. 29.

One can go beyond the Ginzburg-Landau regime and
calculate the free energy in the mean-field approximation at
arbitrary temperature. The mean-field solution for the order
parameter corresponds to a static saddle point of the effective
action and satisfies the equations δS/δη∗

1,2 = 0. From Eq. (A2)
one obtains two coupled self-consistency equations:

ηa(r) = −T
∑

n

∑
b

VabGb,12(r,r; ωn). (A3)

Here, ωn = (2n + 1)πT is the fermionic Matsubara frequency,
and Ga,12 is the anomalous (Gor’kov) component of the
matrix Green’s function Ĝa , which satisfies the equation
(iωn − Ĥ BdG

a )Ĝa(r,r ′; ωn) = σ̂0δ(r − r ′), where

Ĥ BdG
a =

(
ξa(k̂) ηa(r)

η∗
a(r) −ξa(k̂)

)
(A4)

is the Bogoliubov-de Gennes Hamiltonian.
The gap equations can be represented in terms of the

eigenstates and eigenvalues of the BdG Hamiltonian, which
are found from Ĥ BdG

a �a,p(r) = Ea,p�a,p(r). The eigenstates
are two-component Nambu spinors, � = (u,v)T , labeled in
the ath band by quantum numbers p. Assuming that the
eigenstates form a complete and orthonormal set, one obtains
for the matrix Green’s function:

Ĝa(r,r ′; ωn) =
∑

p

�a,p(r)�†
a,p(r ′)

iωn − Ea,p

.
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Inserting this into Eq. (A3) and using the “electron-hole”
symmetry of the BdG spectrum (if � corresponds to the energy
E, then iσ̂2�

∗ corresponds to the energy −E), one arrives at
the final form of the gap equations

ηa(r) =
∑

b

Vab

∑
p

′
ub,p(r)v∗

b,p(r)[1 − 2f (Eb,p)], (A5)

where f (E) = 1/(eβE + 1) is the Fermi function. The prime
means that the summation is performed only over the upper
half of the BdG spectrum, i.e., over the eigenstates with
Eb,p � 0. Equation (A5) can be used to obtain both the
critical temperature and the temperature dependence of the
gaps (see Refs. 8 and 29). In addition to the spatially uniform
solution, given by η1,0 = �1e

iθ0 and η2,0 = �2, where θ0 = 0
for interband attraction (V12 > 0) and θ0 = π for interband
repulsion (V12 < 0), the gap equations also have various
nonuniform solutions, in particular, the one corresponding to
the phase soliton.

The effective action [Eq. (A2)] for any mean-field con-
figuration of the order parameter has the form Seff = βE ,

where

E = −T
∑

n

∑
a,p

ln(iωn − Ea,p)

+
∫

d3r
∑
ab

(V̂ −1)abη
∗
a(r)ηb(r).

The mean-field free energy is given by F = −T ln Z = E +
const. To remove the undetermined constant, one calculates
the free-energy difference between a given nonuniform super-
conducting state and some reference state. For my purposes, it
is natural to choose the latter to be a uniform superconducting
state with the order parameters equal to ηa,0, and one finally
obtains

δF ≡ F[η] − F[η0] = −T
∑

n

∑
a,p

ln
iωn − Ea,p

iωn − E
(0)
a,p

+
∫

d3r
∑
ab

(V̂ −1)ab(η∗
aηb − η∗

a,0ηb,0). (A6)

Here, E(0)
a,p are the eigenvalues of the BdG Hamiltonian (A4)

in the uniform state.
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