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Penetration of the magnetic field into the twinning plane in type-I and -II superconductors
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It is demonstrated that in the type-I and -II superconductors with weakly transparent twinning planes (TP)
the penetration of the external parallel magnetic field into the region of the twinning plane can be energetically
favorable. In the type-I superconductors the twinning planes become similar to Josephson junctions and the
parallel magnetic field penetrates into the TP in the form of Josephson-like vortices. This leads to an increase in
the critical magnetic field values. The corresponding phase diagram in the parameter plane “temperature-magnetic
field” essentially differs from the one obtained without taking the finite value of the magnetic field near the TP
into account. A comparison between the obtained phase diagrams and experimental data for different type-I
superconductors can allow to estimate the value of the TP transparency, which is the only fitting parameter in our
theory.
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The phenomenon of the twinning plane superconductivity
(TPS) has been the subject of intensive investigations during
the last three decades (see Ref. 1 for a review). A twinning
plane (TP) may produce more favorable conditions for the
superconducting nucleation compared with a bulk crystal, and
a superconducting layer localized on the TP can appear even
above the bulk critical temperature Tc. Recently interest to
the physics of twins in superconductors was renewed since
it was shown experimentally that TP affects the properties
of many relatively new superconductors which belong to the
pnictide family.2–7 In these superconductors, twinning planes
can enhance locally the superfluid density5,6 or influence
the vortex pinning.7,8 In particular, it was demonstrated8

that in Ba(Fe1−xCox)2As2 twinning planes repulse vortices
and act as strong barriers for vortex motion. Thereupon, the
theoretical investigations of the magnetic properties of the TP
in superconductors are of current importance.

Twinning planes can effectively screen a parallel mag-
netic field which leads to the increase in the value of the
critical field as a function of temperature. The correspond-
ing phase diagrams Hc(T ) for the absolutely transparent
TP were studied theoretically within the phenomenological
Ginzburg-Landau formalism both for the type-I9–13 and the
type-II superconductors.9 In particular, for the ultra type-I
superconductors it was shown11–13 that for small but finite
values of the Ginzburg-Landau parameter κ the magnetic
field penetration into the superconducting area leads to the
corrections to the TPS free energy proportional to κ (n+1)/2

(n = 0,1, . . .) and in practice only the term ∝κ1/2 plays an
important role while the terms of the order κ3/2 and higher
can be neglected since they weakly contribute to the resulting
Hc(T ) diagram. The resulting dependencies Hc(T ) do not
contain any fitting parameters, which allowed their quantitative
experimental verification for concrete superconductors.14,15 In
some cases16,17 the local enhancement of superconductivity
may occur near the sample surface. The upper critical field for
this situation was considered in Ref. 18. However, for Sn (the
type-I superconductor) the superconductivity in a magnetic
field should appear as the first order transition (except the
very narrow region near the critical temperature) and this field
corresponds to the overcooling of the normal phase.

Practically, for TP with finite electron transparency the
standard Ginzburg-Landau free energy functional should be
generalized by inserting an additional term which breaks the
requirement of the order parameter continuity at TP (Refs. 19
and 20). The influence of the finite TP transparency on the
upper critical magnetic field in the type-II superconductors was
analyzed in Ref. 21. At the same time for superconductors of
the I type it was found that in the case of weakly transparent TP
the essentially asymmetric distributions of the order parameter
relative to the TP can become energetically more favorable
than the symmetric ones.22 The striking prediction of this paper
is that under certain conditions the order parameter is nonzero
only at one side of the TP while at another side it should be
zero.

We would like to point out that all theoretical results which
have been obtained up to now are based on the assumption that
the superconducting nucleus localized near TP is screening the
magnetic field effectively: It was believed that in the type-I
superconductors the magnetic field can penetrate only into the
region which is far from the TP (the magnetic field value at the
TP is exponentially small) while in the type-II superconductors
the magnetic field value has its minimum at the TP.

In the present paper we show that for both type-I and -II
superconductors with weakly transparent TP the parallel mag-
netic field can fully penetrate into the twinning plane region
and the corresponding state is energetically favorable. For the
type-II superconductors this fact results in small corrections to
the magnetic susceptibility only. At the same time for the type-I
superconductors the magnetic field penetration into the center
of the TP leads also to essential changes in the dependence of
the critical magnetic field on temperature due to the negative
contribution to the free energy, which has the order of κ . Note
that the obtained solutions have lower energy than the ones
found in Ref. 22. At the same time the corresponding profiles
of the order parameter are symmetric relative to the TP.

Let us consider a bulk superconducting sample with a
single twinning plane at z = 0. The external magnetic field
H is assumed to have only the y component. We choose the
corresponding vector potential in the form Ax(z) = Hz so that
the order parameter ψ depends only on x and z. We will use the
standard Ginzburg-Landau free energy functional to describe
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the local enhancement of the superconductivity on the TP11,21
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where a = α(T − Tc), B = rotA, ρ is a phenomenological
constant describing the finite transparency of the TP, ψ± =
ψ(x,y,±0) and the value ξs will be defined below. Let us
also introduce the temperature-dependent coherence length as
ξ (T ) = h̄/

√
4mα(T − Tc). The last two terms in the functional

(1) correspond to the energy of the TP: (i) The term with ξs

describes the change in the superconducting coupling constant
near the TP which leads to the local enhancement of the critical
temperature and (ii) the term with ρ describes the Josephson-
like coupling between the two sides of the TP.

For further analysis it is convenient to rewrite the functional
(1) in dimensionless variables
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2
s

8π
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Here Ts is the critical temperature of the superconductor with
the twinning plane (Ts > Tc), ψ0(T ) = √|a|/b and Hc(T ) =√

4πa2/b are the values of the order parameter wave function
and the critical filed for the bulk superconductor without
twinning plane; κ = mc

√
b/

√
2πeh̄ is the Ginzburg-Landau

parameter. In what follows we will omit the tildes since we will
consider only dimensionless expressions. Then the functional
for the free-energy per unit length along the TP reads as

G = Gs

∫
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Let us start with the case of the absolutely opaque TP
(r = ∞) in the ultra type-I superconductor (κ � 1) and
consider the order parameter wave function in the form
ψ(x,z) = ϕ(z)exp{iθ (x)}. Varying the functional (3) by ψ∗
and A for z �= 0 we obtain the equations

−∂2
z ϕ + tϕ + ϕ3 + ϕ(A/

√
2 − ∂xθ )2 = 0,

(4)
∂2
z A = (

√
2ϕ2/κ2)(A/

√
2 − ∂xθ )

with the boundary conditions ∂zϕ+ = −ϕ+ and ∂zϕ− = ϕ−.
Note that the system (4) has the first integral

(∂zϕ)2 − tϕ2 − ϕ4

2
− ϕ2

(
A√

2
− ∂xθ

)2

+ κ2

2
(∂zA)2 = h2

2
.

(5)

The modulus of the order parameter on the TP is given
by11 ϕ2

0 = (1 − t) +
√

(1 − t)2 − h2. In what follows we will
assume that the magnetic field penetration into the TP weakly
affects the order parameter modulus near the TP. The validity
of this assumption will be discussed below. Also we would
like to mention that the order parameter decay length l is
proportional to t−1/2 while the magnetic field penetration
length is proportional to κ/

√
1 − t and for κ � 1 and (1 −

t) 	 κ2 it is much less than l. This allows one to consider the
constant order parameter value in the region near the TP where
the local magnetic field b = κ∂zA is nonzero. We will assume
that b(z = ±∞) = h and b(z = 0) = h0, where h0 � h. Then
from the solution of Eq. (4) on the vector potential we
obtain

b(z) = h0exp

{
− ϕ0

κ
|z|

}
, ∂xθ = signz√

2

h0

ϕ0
. (6)

The resulting correction to the free energy value per unit length
along the x axis has the form G = G0 + Gs(2κ/ϕ0)(h2

0 −
2hh0), where G0 is the free energy obtained without taking the
penetration of the magnetic field to the TP into account11,13

G0

Gs

=
[

4
√

2
∫ ϕ0

0

√
ϕ4 + 2tϕ2 + h2dϕ − 4ϕ2

0 − 2.06
√

κh3

]
.

From the obtained dependence G(h0) one can see that its
minimum corresponds to the case h0 = h and the resulting
free energy value is

G = G0 − Gs(2κ/ϕ0)h2. (7)

Thus it is energetically favorable for the magnetic field to
penetrate fully into the TP. Then solving numerically the
inequality G � 0 we obtain the temperature dependence of
the critical magnetic field hc(t), which is shown in Fig. 1 (red
solid curve).

Note that the magnetic field (6) does not affect the value
of the order parameter at the TP. Indeed substituting the
corresponding vector potential at z = 0 to the first integral
(5) and one can obtain that at the TP the order parameter
ϕ2(z = 0) = 2(1 − t) − h2/ϕ2

0 ≡ ϕ2
0 .

The expression for the local magnetic field (6) allows one
to calculate the correction to the magnetic moment of the TP,
which has the form [here we consider only the correction due
to the magnetic field (6) and restore the dimension of the
expression]

�M(I ) =
∫ ∞

−∞

B(z)

4π
dz = κHξs

2πϕ0
. (8)

Comparing this value in the limit h → 0 with the diamagnetic
moment Md(I ) (Ref. 1) due to the expulsion of the magnetic
field from the superconducting region we obtain that the ratio
η(I ) = |�M(I )/Md(I )| = κ(lnκ−1)−1√t/2(1 − t). Practically,
η(I ) � 1 for all temperatures where the TPS has the I type.
Indeed, for example, for tin with κ = 0.13 the condition
η(I ) ∼ 1 gives (1 − t) < 2 × 10−3. For such small values
of (1 − t) the obtained results are not applicable since for
(1 − t) < 2.7 × 10−2 the superconducting phase transition is
of the II type.1

Now let us generalize the obtained results for the case of TP
with finite but small transparency (we will assume that r−1 �
1). For finite r the TP is similar to the Josephson junction with
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FIG. 1. (Color online) Phase diagram of the type-I supercon-
ductors with absolutely opaque TP in the parallel magnetic field.
Penetration of the magnetic field into the TP leads to increase in the
critical magnetic field hc(t) (red solid curve) compared with the one
calculated with the assumption of exponentially small magnetic field
at the TP (Ref. 11) (blue dashed curve). In the inset we show the
fragment of these dependencies in more detail. In our calculations
we took κ = 0.13 corresponding to tin. Also critical magnetic fields
of the superconductor with κ = 0 (black solid curve) and for a bulk
superconductor (black dash dotted curve) are shown.

corresponding Gibbs free energy Gr/Gs ∝ r−1 + O(r−2).
Note that the boundary conditions for the order parameter ψ

at z = 0 should be modified to describe the transparent TP21

so that

∂zψ+ = −ψ+ + r−1(ψ+ − ψ−),
(9)

∂zψ− = ψ− + r−1(ψ+ − ψ−).

Note that the corrections to the order parameter modulus |ψ |
due to the changes in the boundary conditions have the order
of r−1. The corresponding corrections to the free energy have
at least the order of r−2 and can be neglected. Thus in what
follows we will assume that for weakly transparent TP the
spatial distribution of the order parameter module ϕ(z) is the
same as in case of the absolutely opaque TP. Then it is easy
to obtain the expression for the Josephson free energy of the
TP, which has the form Gr/Gs = (4ϕ2

0/r)
∫

(1 − cos�θ ) dx,
where �θ = θ+ − θ− and θ± = θ (x,±0).

It is natural to expect that the magnetic field can penetrate
into the TP in the form of Josephson-like vortices. Indeed the
magnetic field at the TP is defined by the phase difference on
the two sides of the TP and has the form h0(x) = (ϕ0/

√
2)∂x�θ

while the dimensionless Josephson current through the TP can
be written as

jz(x) =
√

2ϕ2
0

κr
sin�θ (10)

(here we use the value cHs/4πξs as the unit of current).
Then substituting h0(x) and jz(x) into the Maxwell equations
one can obtain the analog of the Ferrell-Prange equation
∂2
x�θ = λ−2

J sin�θ , where λJ = (κr/2ϕ0)1/2 is the Josephson

penetration depth. It is convinient to introduce the new
dimensionless coordinate x ′ = x

√
2ϕ0/κr . Then the magnetic

part of the Helmholtz free energy F = G + 2BH per unit
length can be represented in the standard form

F = Gs

4ϕ2
0

r

∫ {
(1 − cos�θ ) + 1

2
(∂x ′θ )2

}
dx ′. (11)

From the expression (11) it is easy to obtain the value of the
Josephson critical field hcJ which is the minimal field of the
vortex penetration into the junction.23 The expression for hcJ

reads as

hcJ (t) ≈ 4

π

1√
κr

[2(1 − t)]3/4 . (12)

To describe the temperature dependence of the critical
magnetic field which corresponds to field penetration into the
TP we use the results of Ref. 23, where the averaged magne-
tization MJ of the Josephson junction and the corresponding
Helmholtz energy FJ are calculated as implicit functions of
the external magnetic field h. Substituting these dependencies
into the Gibbs free energy G of the TP and performing
numerical calculations we obtain the dependence of the critical
magnetic field on temperature hc(t) which is shown in Fig. 2
(red solid curve). Obviously this dependence exceeds the
dependence hc0(t) corresponding to the condition G0 = 0
(see the blue dashed curve in Fig. 2) only for temperatures
where hc0(t) > hcJ (t). Note that the obtained dependence
hc(t) depends only on one fitting parameter r . In Fig. 3 we plot
the value �hc(t) = hc(t) − hc0(t) for different transparencies
r−1 of the TP. This value describes the increase in the critical
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FIG. 2. (Color online) Phase diagram of the type-I superconduc-
tors with weakly transparent TP (r = 25) in the parallel magnetic
field. Penetration of the magnetic field into the TP is energetically
favorable for temperatures below the point where the dependence
of the critical Josephson magnetic field hcJ (t) (green dotted curve)
crosses the critical field dependence calculated with the assumption
of the exponentially small magnetic field at the TP (Ref. 11) (blue
dashed curve). In this temperature region the resulting dependence
of the critical magnetic field is shown with red solid curve. In our
calculations we took κ = 0.13 (tin).
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FIG. 3. The increase �hc in the critical magnetic field of the
type-I superconductors due to the field penetration into the TP. The
number n of the curve corresponds to different transparencies of the
TP: r−1 = 0.01n. In our calculations we took κ = 0.13 (tin).

magnetic field due to the field penetration into the TP. We hope
that the high-accuracy measurements of the critical magnetic
fields can allow to estimate the values of the twinning plane
transparencies for different type-I superconductors.

Note also that the magnetic field penetration into the
TP can be detected experimentally in the Josephson current
measurements. Let us consider the pair of contacts which are
positioned parallel to the TP at a distance which is much
less than a width of superconducting region l ∝ t−1/2 near
the TP. Then the Josephson current through these contacts
would be extremely sensitive to the magnetic field at the TP.
Indeed without magnetic field the averaged over the TP length
Josephson current can be nonzero if �θ �= 0 [see Eq. (10)].
Otherwise in the case of the magnetic field penetration the
phase difference would increase with the increase in x and
the corresponding averaged Josephson current through the TP
would be negligibly small.

For the type-II superconductors the fact of full penetration
of the magnetic field into the center of the TP does not lead
to any substantial consequences since the TP in this case
weakly screens the external magnetic field. To calculate
the correction to the magnetic susceptibility one can use
the approach from Ref. 9. We will restrict ourselves for the
case of ultra type-II superconductors with κ 	 1, r = ∞

and the temperatures in the range 0 < t < 1. In this case
the magnetic field b(z) slightly differs from the external
field h which allows one to consider the field profile in
the form b(z) = h + δb(z), where |δb(z)| � h. Then the value
δb(z) satisfies the equation (u2 − 1)∂2

uδb = 2h/κ2, where
u = coth(

√
t |z| + p/2) and p = ln[(1 + √

t)/(1 − √
t)].

The boundary conditions in the case of full penetration
of the magnetic field into the TP are δb(u = 1) = 0 and
δb(u = t−1/2) = 0. Note that under the assumption that the
magnetic field has its minimum at the TP the last condition
should be replaced with9 ∂uδb(u = t−1/2) = 0. The exact
solution of the equation for δb allows one to obtain the
correction to the magnetic susceptibility due to the penetration
of the magnetic field into the TP. This correction has the form
(in dimensional units)

�M(II ) = Hξs

κ2

1

π (1 − √
t)

ln2

(
1 + √

t

2
√

t

)
. (13)

Note that at t → 0 the correction �M(II) ∝ ln2(t−1) and is
negligibly small since it has weak singularity compared to the
full diamagnetic moment Md(II) of the TP, which diverges like
t−1/2ln2(t−1) (see Ref. 9). At t → 1 the correction �M(II) ∝
(1 − t) and is also small.

Thus we have shown that in superconductors with twinning
planes with low transparency the penetration of the parallel
magnetic field into the twinning plane is energetically favor-
able. For the type-I superconductors this leads to the essential
increase of the critical magnetic field and to the broadening
of the temperature range where the TPS can exist. Our theory
does not contain any fitting parameters except r , so this can
provide an opportunity to estimate the r values for different
type-I superconductors on the basis of the critical magnetic
field measurements.
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