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Incommensurate matrix product state for quantum spin systems
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We introduce a matrix product state (MPS) with an incommensurate periodicity by applying the spin-rotation
operator of each site to a uniform MPS in the thermodynamic limit. The relation between the improvement of
the variational method due to the spin-rotation operators and the spontaneous symmetry breaking of the MPS is
studied. The optimized pitch of the rotational operator reflects the commensurate/incommensurate properties of
spin-spin correlation functions in the S = 1/2 Heisenberg chain and the S = 1/2 ferromagnetic-antiferromagnetic
zigzag chain.
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I. INTRODUCTION

An analysis of low-dimensional frustrated quantum spin
systems beyond the mean-field approximation (MFA) is one
of the attractive topics in quantum mechanics because rich
quantum phases can appear due to the coexistence of frus-
tration and strong quantum fluctuations. A typical example is
the spin S = 1/2 ferromagnetic-antiferromagnetic (FM-AFM)
zigzag Heisenberg/XXZ spin chain as a theoretical model of
quasi-one-dimensional edge-sharing cuprates. In theoretical
studies on this quantum Hamiltonian,1–8 the exact diagonaliza-
tion method (ED), the density-matrix renormalization-group
method (DMRG),9–12 and the infinite time-evolving block-
decimation method (iTEBD)13 were used as powerful methods
in order to determine novel quantum phases.

In the DMRG and the iTEBD methods, variational states
take the form of a matrix product state (MPS)14–16 and an
infinite MPS (iMPS),13 respectively. When the dimension of
the matrices constructing the MPS is 1, the MPS corresponds
to the MFA. As the dimension m increases, the optimum
variational state approaches the exact one systematically. In
addition, the MPS can handle infinite system size directly if we
suppose the spatial homogeneity of the MPS as in the iTEBD.
As a merit of the spatially uniform MPS or iMPS, there are no
boundary effects, which always appear in the DMRG.

In the zigzag chain,1–8 the helical magnetic order with
incommensurate period is known to be a solution of the
classical vector spin Heisenberg model, which is valid in
the large spin limit (S � 1). The incommensurate properties
appear due to the geometrical frustration. To deal with quantum
fluctuations, one can use the MPS. However, the spatially
uniform MPS with a finite dimension cannot express the helical
magnetic order because its local magnetic moment becomes
spatially uniform. On the other hand, the DMRG can deal with
a spatially inhomogeneous magnetic order, but the boundary
affects the incommensurate period of the order.

In this study, we propose a simple incommensurate (IC)
MPS with incommensurate periodicity applying spin rotation
operators17 to the spatially uniform MPS. This IC-MPS is
understood naturally as a quantum generalization of the
classical vector spin analysis. This framework is independent
of the type of numerical optimization process, and it is
applicable for various variational methods based on finite-
dimensional MPSs: DMRG,9–11 the wave function predictions

based on the product wave-function renormalization group
(PWFRG) method,18–22 the tensor product state (TPS),23,24

the projected entangled pair state (PEPS),25 iTEBD,13 the
infinite PEPS (iPEPS),26 the tree tensor network (TTN) state,27

the multiscale entanglement renormalization ansatz (MERA)
state,28 and so on. To demonstrate our lightweight modification
for the uniform MPS with a small dimension of matrices m,
the modified Powell method29 is used as a general purpose
optimization method in this paper.

A pitch angle which determines an incommensurate period
is a variational parameter in our approach. The pitch angle
plays an important role in the optimization of the variational
energy. This is caused by the finite-m effect because any state
can be expressed by the MPS with infinite m. However, in
the analysis of a quantum effect starting from the classical
vector spin model our approach shows a fast convergence with
respect to m, and a result obtained with a tiny m is consistent
with IC spin-spin correlation properties.1,3

The spatial periodicity and translational symmetry are
recent hot topics for the MPS and its generalization.30–34 Our
previous study34 showed that in the spatially uniform MPS
the translational symmetry breaking appeared in the principal
eigenvalues of its transfer matrix; that is, the degeneracy of
eigenvalues was consistent with the ground-state periodicity.
This means that we need a large dimension of matrices
for the spatially uniform MPS with one-site periodicity to
express a magnetic ordered state with p-site commensurate
periodicity. To reduce computational memory without losing
the numerical accuracy, p-site periodic MPS was effective.34

However, as shown in this study, we succeed in reducing more
computational memory using the IC-MPS.

This paper is organized as follows. In Sec. II, we review
the interaction-round-a-face (IRF)/vertex-type MPS34–36 and
propose the IC-MPS. The MFA limit of the IC-MPS is
discussed in Sec. III, where we show that the optimum
vertex-type IC-MPS with m = 1 in the S = 1/2 Heisenberg
chain is equivalent to the state from the MFA. In Sec. IV,
observing the m dependence of local magnetization in the
S = 1/2 Heisenberg chain, we confirm the IC-MPS takes
into account the quantum fluctuations gradually by increasing
m. In the same section, the effectiveness of the IC-MPS
is demonstrated in the magnetization curve of the S = 1/2
Heisenberg chain and the S = 1/2 FM-AFM zigzag chain
under uniform magnetic field. Then, we discuss the reduced
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computational cost by applying the spin rotation in the S =
1/2 Heisenberg chain and the commensurate-incommensurate
(C-IC) change with respect to the spin-spin correlation in the
zigzag chain.1–3,7,8

II. MATRIX PRODUCT STATE WITH AN
INCOMMENSURATE PERIOD

Let us recall the IRF/vertex-type MPS.34–36 An IRF-type
MPS with N sites is

|�〉 =
∑

σ

Tr

[
A

σNσ1
0

N−1∏
i=1

A
σiσi+1
i

]
|σ 〉, (1)

where σi is the index of spin at the ith site and σ =
σ1 · · · σN . The variables A

σNσ1
0 and A

σiσi+1
i are m × m square

complex matrices. The matrix A
σNσ1
0 is called the boundary

matrix.14,15,34,37 A vertex-type MPS is represented under the
constraints A

σNσ1
0 = AσN A0 and A

σiσi+1
i = A

σi

i . To handle the
thermodynamic limit (N → ∞), hereafter, we treat a uniform
MPS, namely, A

σiσi+1
i = Aσiσi+1 . As in our previous study,34

one can treat the p-site periodic MPS.
To construct an IC-MPS, we use a spin-rotational operator

at each ith site:17

R̂i(ni ,Qi) = exp(−iQi ŝi · ni), (2)

where i is a unit of a pure imaginary number and ŝi is the local
spin operator. The unit vector of the rotational axis and the
angle at each site are represented by ni and Qi , respectively.
In this paper, we limit ourselves to the simple case of ni = n
and Qi = iQ.

Then, the IC-MPS is given by

|�,n,Q〉 =
[∏

i

R̂i(n,iQ)

]
|�〉 = R̂tot(n,Q)|�〉. (3)

A schematic picture of the wave function of IC-MPS is
depicted in Fig. 1, where Ri is a matrix representation of
the operator R̂i .

The variational energy for a Hamiltonian Ĥ is given
bye(�,n,Q) = limN→∞ E(�,n,Q)/N, with

E(�,n,Q) = 〈�,n,Q|Ĥ |�,n,Q〉/〈�,n,Q|�,n,Q〉
= 〈�|Ĥ (n,Q)|�〉/〈�|�〉, (4)

Ĥ (n,Q) = R̂
†
tot(n,Q)Ĥ R̂tot(n,Q), (5)

where Ĥ (n,Q) is the spin-rotated Hamiltonian. Hereafter, we
just consider Ĥ (n,Q).

FIG. 1. (Color online) Graphical representations of vertex-type
IC-MPS and IRF-type IC-MPS. Solid circles and small solid squares
indicate contraction with respect to the local spin bases σi and the
local artificial bases αi of the matrix A, respectively.

For general ni and Qi , the useful formulae of the spin-
rotated operator are summarized below. The rotated local spin
operator in general spin S is given by

ŝi(ni ,Qi) = R̂
†
i (ni ,Qi)ŝi R̂i(ni ,Qi) = D(ni ,Qi)ŝi , (6)

where the three-dimensional matrix D(ni ,Qi) is given by

[D(v,q)]ηη′ = vηvη′ + (δηη′ − vηvη′ ) cos q

− sin q
∑
η′′

εηη′η′′vη′′ (7)

for the unit vector v. The symbols δηη′ and εηη′η′′ represent
the Kronecker delta and the Levi-Civita symbol, respectively,
where η = x,y,z. From Eq. (7), we can immediately obtain
the relation D(ni ,Qi)t = D(ni ,−Qi).

For the simple case of ni = n and Qi = iQ, one can prove
the following equation:

ŝi(n,iQ) · ŝi+�(n,iQ + �Q) = ŝi · ŝi+�(n,�Q). (8)

The vanishing of the position dependence simplifies the
calculation of the Heisenberg Hamiltonian. For the S = 1/2
Heisenberg chain defined by

Ĥ1 =
∑

i

ŝi · ŝi+1, (9)

the spin-rotated Hamiltonian Ĥ1(n,Q) is written as

Ĥ1(n,Q) =
∑

i

ŝi · ŝi+1(n,Q) =
∑

i

ĥi(n,Q). (10)

This Hamiltonian has translational symmetry. Next, we apply
the same uniform MPS used in the previous study.34 If
the artificial translational-symmetry breaking does not occur,
we can neglect the boundary matrix, and the local energy
ei = 〈�|ĥi(n,Q)|�〉 becomes independent of position i in
the thermodynamic limit. The translational symmetry of the
spin-rotated Hamiltonian is recovered even for the zigzag and
bilinear-biquadratic Heisenberg chain for general spin S.

It should be noted that we can deal with the case where
the spin-rotated Hamiltonian does not have translational
symmetry. In this case, we can calculate the variational energy
by using the translational symmetry of the MPS |�〉 because
the position dependence of the local energy ei can be expanded
as

ei = e(0) +
∑
k �=0

e(k) exp(iikQ) (11)

and only e(0) gives a nonzero contribution after taking the
summation

∑
i ei if Q is not commensurate. For commensu-

rate Q, we must consider the contribution from e(k) for k �= 0.
Of course, one can treat more general position-dependent
rotations, for example, Q2i = 2iQa and Q2i+1 = (2i + 1)Qb,
where the expansion as in Eq. (11) becomes more com-
plex, namely, ei = e(0,0) + ∑

(ka,kb)�=(0,0) e
(ka,kb) exp[ii(kaQa +

kbQb)].

III. MEAN-FIELD APPROXIMATION LIMIT

We derive the mean-field limit of this method, which is
realized by the vertex-type IC-MPS with m = 1. In this limit,
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we can neglect the boundary A0, which has only two trivial
roles: normalization and phase factor. Then, the MPS becomes
a direct product state|�〉 = ∑

σ

∏
i(A

σi |σi〉), expressed by
two complex variables, A↑ and A↓, in S = 1/2 systems. As a
normalization, we assume

∑
σi

|Aσi |2 = 1.
To show that the mean-field limit corresponds to the

classical vector spin model, we consider the Heisenberg
Hamiltonian H1. The variational energy is given by

e(�,n,Q) = M · [D(n,Q)M], (12)

with an expectation value of local magnetic moment M =∑
σ,σ ′ Aσ∗Aσ ′ 〈σ |ŝ|σ ′〉.The local magnetization is obtained wit

|M| =
√

M2. After the optimization for fixed Q, one can
obtain

e(Q) = min
�,n

e(�,n,Q) = cos Q/4. (13)

Then, the optimization of e(Q) gives the Néel-type solution
Q = π . We stress again that this energy gain of e(Q) − e(0)
is due to finite m because any state can be expressed by the
uniform (p = 1,Q = 0) MPS accurately if we have a large
enough dimension m for the MPS. This finite dimensionality
also causes |M| = 1/2, which is always proved for any state
in the mean-field limit, while it is known that the exact ground
state does not have magnetization at zero magnetic field. In this
sense, the mean-field limit corresponds to the classical vector
spin model. In fact, as shown in Sec. IV, when we increase
m to express quantum fluctuations or entanglement, the local
magnetization |M| obtained after the optimization decreases
and approaches the exact value.

IV. NUMERICAL RESULT AND DISCUSSION

Before showing results, we summarize the details of our
numerical calculation. We prepare the m-dimensional complex
matrix Aσi,σi+1 for the IRF-type uniform MPS. The rotational
axis n is fixed as (0,0,1) to conserve the translational symmetry
of the rotated uniaxial Hamiltonian with the longitudinal
magnetic field Hz applied on the z axis. The pitch Q and
Aσi,σi+1 are optimized so that the variational energy e for
a given Hamiltonian Ĥ becomes the minimum by using
the modified Powell method.29 The number of optimization
parameters in the IRF-type IC-MPS under a fixed rotational
axis is 2d2m2 + 1, where the coefficient 2 comes from using
complex numbers and d is the degrees of freedom (DOF) of
local spin, namely, 2 in this work. The term +1 means the
DOF of the wave number Q. In the optimization, 10–2000
initial states are prepared and optimized in each Hamiltonian
parameter to avoid obtaining a local minimum.

The MPS gradually takes into account the quantum
fluctuations of the local magnetic moment in the S = 1/2
Heisenberg chain with increasing m, as shown in Fig. 2. The
rotational angle Q = π is obtained after the optimization. The
energy error 
E means the difference between optimized
variational energies as function of m and the exact energy
− ln 2 + 1/4.38 The energy error and the local magnetization
|M| are monotonically decreasing with respect to m. We
confirm that the IRF-type MPS can deal with nonzero quantum
fluctuations even if m = 1, while the vertex-type MPS with
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FIG. 2. (Color online) Energy error 
E as a function of local
magnetization |M| in the S = 1/2 Heisenberg chain Ĥ1. The number
near each symbol indicates the matrix dimension m. The dashed line
is guide for the eye, showing the power-law decay of 
E ∝ |M|4.

m = 1 gives the mean-field result. This is an advantage of
using an IRF-type MPS.

The magnetization Mz in the S = 1/2 Heisenberg chain
with the magnetic field Hz is shown in Fig. 3. As reference data,
we show the exact result for S = 1/2 from the Bethe ansatz38

and the result from two-site modulated MPS, called p = 2,
Q = 0, in our previous study.34 While the mean-field result
fails to obtain the correct criticality near the fully saturated
point, results for m = 3, which is not a very large dimension,
show enough accuracy.

This increasing of m leads to a great improvement in the
accuracy of estimating the magnetization curve. The relative
error of the magnetization curve from the IC-MPS with m = 3
in Fig. 3 is smaller than 3%, even though the error of local
magnetization |M| is of the order of that from the MFA, as
shown in Fig. 2; that is, the absolute error of Mz in Fig. 3
is less than 0.001, even though the error of |M| in Fig. 2 is
about 0.1.

Moreover, in the cases of both m = 1 and m = 3, the data
from IC-MPS with Q = π agree with those of the p = 2,Q =
0 MPS. This means that the number of optimization parameter
is reduced by 50% compared to our previous study.

How the rotational pitch Q = π is stabilized by the energy
gain, e(Q) − e(0), is shown in Fig. 4, which clearly shows
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FIG. 3. (Color online) Magnetization Mz curve as a function of
uniform magnetic field Hz in the S = 1/2 Heisenberg chain Ĥ1.

064438-3



HIROSHI UEDA AND ISAO MARUYAMA PHYSICAL REVIEW B 86, 064438 (2012)

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.2  0.4  0.6  0.8  1

e
(Q

) 
- 

e
(0

)

Q/π

S  = 1/2, m = 1
Hz = 0.0
Hz = 0.8
Hz = 1.6
Hz = 2.0

FIG. 4. (Color online) Rotational parameter Q dependence of the
variational energy in the S = 1/2 Heisenberg chain Ĥ1.

that the variational energy becomes minimum at Q = π for
any magnetic field except for Hz = 2.0 in the fully saturated
ferromagnetic region. Compared with e(Q) = cos Q/4 for
Hz = 0 in the mean-field limit, there is a flat energy region
in the small Q region for Hz = 0. In the flat region, we
confirm the state is a superposition of the Néel state, namely,
the linear combination of |↑↓↑ · · ·〉 and |↓↑↓ · · ·〉.34 This
state is invariant with respect to the spin rotation along the z

axis. The origin of the flat region is the quantum fluctuations
of the Néel state. This quantum fluctuations can be expressed
by the IRF even for m = 1.

Finally, we discuss the periodicity change appearing in the
S = 1/2 FM-AFM (J1 < 0 and J2 > 0) zigzag Heisenberg
chain with uniform longitudinal magnetic field,

Ĥ2 =
∑

i

( ∑
k=1,2

Jk ŝi · ŝi+k − Hzŝ
z
i

)
. (14)

The longitudinal magnetic field Hz is taken as 0 and 0.1 in this
analysis. At Hz = 0, there is a C-IC change at J1/J2 = −4. The
commensurate state for J1/J2 < −4 is a ferromagnetic state,
while the characterization of the ground state for J1/J2 > −4
is a difficult task. A recent study2 pointed out that the ground
state for J1/J2 > −4 is the Haldane-dimer phase, which is
characterized by a generalized string order parameter, where
ordinal spin-spin correlations behave incommensurately.3 This
incommensurate behavior is also found in the vector chiral
(VC) phase for nonzero magnetic fields.1

To demonstrate our approach for the C-IC change, the
optimized pitch Q is calculated for this frustrated Hamiltonian
Ĥ2, as shown in Fig. 5. In Fig. 5 there are three kinds of
the reference data. First, the dashed line is the result of the
mean-field approximation, Q = arccos(−J1/4J2). Second,
the solid line is the fitting line for the location of the maximum
of the zero-field spin structure factor with the ED,3 where
Q ∝ (J2 − 1/4)0.29. Finally, the solid circles are the result of
the DMRG at Mz = 0.05 in the VC phase.1 For Hz = 0, the
pitch Q approaches π/2 with increasing J1/J2 more rapidly
than that of the mean-field approximation, because the MPSs
with larger m can take into account more quantum fluctuations
than the MPS with smaller m. On the other hand, the C-IC
change point is completely converged at J1/J2 = −4. We find
the pitch in m = 3 is comparable to the result from ED3 in
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FIG. 5. (Color online) Rotational parameter Q as a function of
J1/J2 in the zigzag chain Ĥ2.

J1/J2 � −2.5. Around the transition point, the pitch is well
converged with respect to m on this scale. The m dependence
gradually becomes large with increasing J1/J2, where the
frustration due to J2 also gradually becomes large.

For Hz = 0.1, the pitch Q depicted by the open circle in
Fig. 5 has a jump around J1/J2 = −3.1, which is very close to
the SDW3-VC phase transition point.1 Unfortunately, the pitch
Q for small m fails to capture the two kinds of spin-density
wave (SDW2 and SDW3)1 states, where the ferromagnetic-
SDW3 phase transition occurs at J1/J2 ∼ −3.3 and the VC-
SDW2 phase transition occurs at J1/J2 ∼ −2.1 At the same
time, the characterization of the ground state at Hz = 0 is
difficult for our method at this stage. Nevertheless, a notable
point is that the incommensurate pitch Q of the IC-MPS for
the VC phase in J1/J2 > −3.1 shows reasonable agreement
with the DMRG result. For J1/J2 > −3.1, Q of the IC-MPS
is nearly independent of Hz, which is also consistent with the
DMRG analysis.1

V. SUMMARY

In summary, we introduced the IRF-type MPS with the
incommensurate pitch parameter Q and the rotational axis n
as a generalization of the uniform MPS, which can be used for
various variational methods based on the MPS. Two param-
eters, Q and n, allow us to evaluate an incommensurability
of the spin chain in the thermodynamic limit directly. Our
approach with a small dimension of matrices is connected
to the classical vector spin Heisenberg model, which is valid
in the large spin limit (S � 1). For the exact ground state,
the helical magnetic order obtained in the classical limit
is expected to be destroyed by quantum fluctuations in the
quantum limit S = 1/2. However, we emphasize the quantum
effects on some quantities are rapidly converged with respect
to the matrix dimension. Our approach opens a way for a
lightweight analysis based on the classical vector spin model
to include quantum fluctuations. Using this approach, one can
treat translational symmetry-broken states, such as the helical
magnetic order, in the thermodynamic limit, which cannot be
handled by known iMPS with translational symmetry.

We demonstrated the efficiency of this IRF-type IC-MPS
in two types of Hamiltonians: (i) the magnetization in the
S = 1/2 antiferromagnetic Heisenberg chain under uniform
magnetic field and (ii) the C-IC change in the S = 1/2
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FM-AFM Heisenberg zigzag chain under uniform magnetic
field. In the former Hamiltonian, we have succeeded in obtain-
ing the same result as a two-site modulated MPS. This means
a 50% reduction in the number of optimization parameters.
In the latter Hamiltonian, we have succeeded in detecting the
C-IC change of the correlation properties with increasing m.
The pitch Q near the C-IC transition point is immediately
converged with respect to m and shows a reasonable agreement
with the ED study3 and the DMRG study,1 despite the
small m.

On the other hand, the sufficiently converged Q is not
obtained around the strongly frustrated region, namely, |J1| ∼
J2. To discuss the details of Q, an analysis with larger m is
necessary. For this problem, we can apply other optimization
methods using the Trotter decomposition,13 the matrix product
operator,39 and the time-dependent variational principle40 to
update the MPS under given Qi and ni . We stress again
that the framework of IC-MPS is independent of the type
of numerical optimization process. In this paper, the modified
Powell method was chosen as an optimization method because
it is a general-purpose method and all parameters are optimized
easily. The modified Powell method is enough to clarify the
effectiveness of our lightweight modification but becomes
a bottleneck when we increase m. To study larger m, the
convergence properties and numerical efficiencies of these
updating methods should be discussed. This problem should
be addressed in future work.

Another future issue is to change the constraint of the
rotational axis and pitch parameter in order to represent the
magnetization plateau state or the SDW state, for example,
ni = nmod[i,p] and Qi = Qmod[i,p]. This method uses the spin-
rotational operator, which maps the classical helical state to

the fully saturated ferromagnetic state. The uniform direct
product state including the fully saturated ferromagnetic state
can always be described by the uniform MPS with m = 1.
A generalization of this method is to find another kind
of spin-rotational operator which maps the ground state to
the uniform direct product state. The role of this operation
is similar to disentanglers in the MERA.28 In this sense,
it is interesting to consider the valence bond solid state,
which cannot be rotated by the spin-rotational operators17

and is known to have Kennedy-Tasaki transformation, which
converts the string order to the ferromagnetic order as a global
topological disentangler.41,42

In general, the classical magnetic order can be found
easily in higher-dimensional systems. In this case, the spin
rotation becomes effective. Moreover, in higher-dimensional
systems, the dimension of the matrix/tensor is restricted
due to the computational resources. Therefore a small-m
analysis based on our approach is an interesting approach for
the incommensurate TPS for two-dimensional quantum spin
systems, which is another issue for the future. In addition to
TPS, our approach can be applied to various methods.
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