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Demagnetization-borne microscale skyrmions
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Magnetic systems are an exciting realm of study that is being explored on smaller and smaller scales. One
extremely interesting magnetic state that has gained momentum in recent years is the skyrmionic state. It is
characterized by a vortex where the edge magnetic moments point opposite to the core. Although skyrmions
have many possible realizations, in practice, creating them in a laboratory is a difficult task to accomplish. In
this work, different methods for skyrmion generation and customization are suggested. Skyrmionic behavior was
numerically observed in minimally customized simulations of spheres, hemisphere, ellipsoids, and hemiellipsoids,
for typical Cobalt parameters, in a range approximately 40–120 nm in diameter simply by applying a field.
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I. INTRODUCTION

A skyrmion, theorized first by Skyrme in 1962,1 is a state
with a vectorial order parameter which is aligned at the
system boundary at an opposite direction to what the order
parameter assumes at the origin. Skyrmions may appear in
diverse arenas, such as elementary particles,1–5 liquid crystals,6

Bose-Einstein condensates,7–9 thin magnetic films,10 quantum
Hall systems,11–14 and potentially vortex lattices in type-II
superconductors.15,16 Being able to experimentally observe or
generate skyrmions is a current research thrust.1–19

In the arena of magnetic systems that we will focus on
in this work, earlier works examined large scale skyrmions20

including large scale textures in patterned vortices as in, e.g.,
the last figure of Kisielewski et al.21 (where interesting textures
are seen in the figure yet not realized to be skyrmionic).
These earlier works did not recognize the ubiquitous role of
demagnetization energy in creating skyrmions nor examine
the topological character of such created states. The effect
that we advance in this work constitutes a general simple
way of generating skyrmions. As we report in the current
article, skyrmions may be simply generated by merely applying
a field. This way of creating skyrmions is far simpler than
considerations presented in other recent works.

In this work we demonstrate, via micromagnetic simu-
lations, skyrmions can be simply achieved by creating a
nanoparticle (of a rather arbitrary geometry) that is large
enough to support a single vortex but small enough to prevent
multiple vortices when an external magnetic field is applied.
The demagnetization energy allows for the formation of a
vortex at zero field. We find that as the field increases such that
it lies in a direction opposite to the core, the magnetization at
the edges may realign itself parallel to the field direction more
readily than the magnetization next to the core. Immediately
prior to annihilation of the vortex (i.e., the flipping of the
magnetization at the system core to become parallel to the
applied field direction), the skyrmionic state is most notable.
We observed this, relatively universal, effect in systems with
disparate geometries—spheres, hemispheres, ellipsoids, and
hemiellipsoids. It may be possible to generalize this process
so as to experimentally synthesize a skyrmion lattice by
simply creating an array of nanoparticles with tunable size

and spacing, such as by self-organization.22,23 Preliminary
simulations of a 2 × 2 and 3 × 3 grids of Cobalt hemispheres
of radius 20 nm with varying interhemisphere separation
indicate that beyond a threshold distance of twice the radius,
an array of skyrmions is formed. As the center-to-center
separation is steadily increased, the skyrmionic state becomes
more lucid. For small separations, interactions partially thwart
the creation of the individual skyrmions.

As is well known, we can quantify a skyrmionic state by
calculating the Pontryagin index (also known as a winding
number) that is given by24

Q = 1

8π

∫
d2xεij M̂ · (∂iM̂ × ∂j M̂). (1)

In this expression, εij is the two-dimensional antisymmetric
tensor and M̂ is the normalized magnetization. For a single
skyrmion, this winding number (or topological charge) is
equal to unity. Skyrmions are characterized by the nontrivial
homotopy class π2(S2). This homotopy class is characterized
by an integer that, for this case, is the Pontryagin index. States
with different integer skyrmion number (the Pontryagin index)
cannot be continuously deformed into one another.

In the current context, the skyrmionic state resides on a
two-dimensional plane. On each spatial point of the plane,
there is a three-dimensional order parameter which, in our
case, is the magnetization �M . Topologically, a skyrmion is a
magnetic state such that when it is mapped onto a sphere (via
stereographic projection) resembles a monopole or hairy ball.
This means that on mapping from a flat space to the surface
of a sphere, the individual magnetic moments will always
point perpendicular to the surface of the sphere, much like a
magnetic monopole.

The above topological classification is valid for an “ideal”
skyrmion on an infinite two-dimensional plane or disk with
the condition that the local moment �M(�r) at spatial infinity
(irrespective of the location �r on the infinite disk) all orient
in the same direction: limr→∞ M̂(�r) = M̂0. In such a case M̂0

corresponds to the magnetization at the “point at infinity.” On
applying a stereographic projection of the infinite plane onto a
unit sphere, M̂0 maps onto the magnetization at the north pole
of the unit sphere while the oppositely oriented M̂ at the origin
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corresponds to the magnetization at the south pole. In such a
case, the winding number is identically equal (in absolute
value) to unity. In many physically pertinent geometries,
including the systems simulated in this work, there are finite-
size limits which only allow the magnetization �M to exhibit
the trend of approaching a uniform value �M0 as one moves
away from the center of the system. In this case, the integral in
Eq. (1) is not an integer. However, it is clear that, in the limit of
infinite planar size, these states would become ideal skyrmions
and the winding number Q would approach an integer value.

The remainder of this paper is organized as follows. In
Sec. II, we provide necessary background. We briefly describe
the simulations employed in this work and discuss energetic
considerations. Section III reports on our central result–the
numerical observation of skyrmions. We discuss a higher
dimensional generalization and the possibility of generating
skyrmion lattices. We conclude in Sec. IV with a summary of
our results.

II. THEORY

A. Simulation theory

In this work of simulating magnetic states of nanoparticles,
the Object Oriented Micromagnetic Framework (OOMMF)
1.2a distribution as provided from NIST was utilized.25 The
OOMMF code numerically solves the Landau-Lifshitz ordinary
differential equation given by

d �M
dt

= −|γ̄ | �M × �Heff − |γ̄ |α̃
Ms

�M × ( �M × �Heff), (2)

where �M is the magnetization, γ̄ is the Landau-Lifshitz
gyromagnetic ratio, Ms is the saturation magnetization, α̃

is the damping coefficient, and Heff is the effective field
given by derivatives of the Gibbs free energy. Specifically,
�Heff = −∂G/∂ �M where the Gibbs free energy, in this case, is

given by26

G =
∫ (

1

2
A[( �∇α)2 + ( �∇β)2 + ( �∇γ )2] + wa

− 1

2
�M · �H ′ − �M · �H0

)
dV, (3)

where α, β, and γ are the direction cosines of the local
magnetization field �M within the volume and A is the
exchange constant and depends on the crystal structure, wa

is the crystalline anisotropy term, �H ′ is the demagnetization
field, and �H0 is the external magnetic field. The crystalline
anisotropy term can be expressed in terms of anisotropy
constants K1 and K2 and directional cosines as

wa = K1(α2β2 + β2γ 2 + γ 2α2) + K2α
2β2γ 2. (4)

In the simulations, a metastable state was determined
to have been reached when the maximum rate of change
of orientation experienced by any one magnetic moment,
measured in

◦
ns , dropped below 0.19. Once this rate of angular

velocity was reached, the magnetic state data were saved to a
file along with the other properties of the system, including but
not limited to, the energies associated with each contribution,
overall magnetization, and number of iterations. The magnetic

TABLE I. Parameters used in the simulations of particles in this
work. The exchange stiffness constant, saturation magnetization, and
crystalline anisotropy constant are material specific and are chosen
for cobalt.

Parameter Value used in this work

Exchange stiffness constant (A) 2.5 × 10−11 J
m

Saturation magnetization (Ms) 1.4 × 106 A
m

Damping constant (α̃) 0.5
Landau-Lifshitz gyromagnetic
ratio (γ̄ ) 2.21 × 105 m

A s
Cutoff angular velocity 0.19

◦
ns

field was then changed to the next value and the iterations
continued until saturation of the magnetization was obtained.
The magnetic field steps were chosen such that half the steps
(typically, a few hundred) were during the increasing field
portion and the other half in the decreasing field portion.
The data stored in the file were used later to generate the
hysteresis plots, track the energy changes associated with the
field variations, and for the spatial orientations of the magnetic
moments. Unless specified otherwise, the parameters chosen
in the simulations correspond to those for cobalt, as shown in
Table I.

B. Energy considerations

In our simulations, we considered field, demagnetization,
and exchange energies. For simplicity, we neglected crystalline
anisotropy effects. The field tries to align the local magnetic
moments parallel to it while exchange effects favor an align-
ment of the magnetic moments with their nearest neighbors.
The (universally geometry borne) demagnetization energy di-
rectly relates to dipole-dipole interactions.26 Demagnetization
energy is often the dominant term for long-range behaviors
while exchange effects tend to dominate at short spatial scales.

As is well known, the competition between the long-range
and the short-range energy contributions leads to the creation
of domain walls. The demagnetization favors oppositely
oriented moments at the expense of exchange effects that favor
slow variations among neighbors. Ultimately, this tradeoff
gives rise to domain walls in micromagnetic systems.

The potential energy from demagnetization of a system is
given by

EM = −1

2

∑
i

�mi · �h′
i , (5)

where �h′
i is the effective field at position i that originates from

all other dipoles. This field can be written as

�h′
i = �H ′ + 4

3π �M + �h′′
i , (6)

where �H ′ is the megascopic field from the poles due to �M
outside of a physically small sphere around site i. The second
term subtracts the effective field inside an arbitrary small
region (or sphere) centered at point i, and �h′′

i is the field at site
i created by dipoles inside this region. In general, �h′′

i depends
on the crystal lattice structure. In the continuum limit, the sum
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becomes an integral of the form

EM = −1

2

∫
�M ·

(
�H ′ + 4

3
π �M + � · �M

)
dV. (7)

The tensor � in the third term depends only on the crystal
structure and local magnetization and can be grouped with
crystalline anisotropy. This tensor also vanishes for cubic
crystals identically. The second term in this expression is a
constant proportional to M2

s and can be ignored, leaving

EM = −1

2

∫
�M · �H ′dV. (8)

The demagnetization field �H ′ can equivalently be derived
from Maxwell’s equations. It can be expressed as the negative
gradient of a potential U that satisfies the equations

∇2Uin = γB
�∇ · �M, (9)

∇2Uout = 0, (10)

with the surface boundary conditions

Uin = Uout, (11)

∂Uin

∂n
− ∂Uout

∂n
= γB

�M · �n, (12)

where the constant γB is, in our units, 4π .
Last, the potential needs to be regular at infinity, such

that |rU | and |r2U | are bounded as r → ∞. Our simulations
directly capture the demagnetization field effects.

From the standpoint of energy, for a skyrmion to be possible,
the dimensions of the ellipsoid must be larger than the critical
dimensions at which vortices can nucleate in a given system.
For example, for the hemispherical geometry, with the typical
values of Table I, the critical radius was found to be 19 nm.
For larger radii, vortices are the preferred state before reaching
zero field. The vortex will nucleate such that the core is parallel
to the field and the remainder of the vortex lies in the plane
perpendicular to the field. Once the field begins to oppose
the direction of the moments at the core, the energy cost of
eliminating the core is significantly higher than allowing the
outer magnetic moments to align more with the field. When the
exchange energy cost of the skyrmionic state becomes greater
than the demagnetization energy for a uniform magnetization,
the core flips, annihilating the skyrmion, and the magnetization
saturates. Immediately, prior to this, though, a skyrmionic state
can be achieved.

Ezawa20 raised the specter of a skyrmionic state in thin films
via the computation of the energy of such assumed variational
states within a field-theoretic framework of a nonlinear σ

model. Dipole-dipole interactions may stabilize such a state
below a critical field. Our exact numerical calculations for the
evolution of the magnetic states demonstrate that not only are
skyrmionic states viable structures, but are actually the precise
lowest energy state for slices of hemispheres and other general
structures.

FIG. 1. (Color online) Vector plot of the skyrmion state for the
bottom slice of a hemisphere of radius 24 nm. Not all local magnetic
moments are shown, for the sake of clarity.

III. RESULTS AND DISCUSSION

A. Observation of a skyrmion

As our numerical simulations vividly illustrate, just prior
to the annihilation of the vortex, the magnetic moments at the
edge of the system start to orient themselves in a direction
opposite to that in the core. On increasing the radius of the
simulated hemispheres and spheres, the configurations next to
the basal plane better conformed to the full skyrmion topology
(i.e., that on an infinite plane). It should be noted here that
as the radius of a hemisphere increases, the crossover to a
double vortex state will eventually occur, but if one vortex is
maintained, in the limit of large radii, a full skyrmion would
be expected. This may be possible in materials with large
exchange constant and small saturation magnetization. In what
follows, we will employ the typical values appearing in Table I.
The skyrmion state for the bottom layer (basal plane) of a
hemisphere of radius 24 nm is shown in Fig. 1.

A similar configuration was observed in simulation runs
for nanospheres. For a sphere, symmetry does not favor any
particular direction, but that symmetry is broken once a field
is applied. Skyrmions were observed in runs of spheres large
enough to support a vortex which corresponds to a radius
of ≈15 nm. As the radius of the sphere increases, the edge
magnetic moments and the core magnetic moments become

FIG. 2. (Color online) Vector plot of the skyrmion state in a sphere
of radius 59 nm. The slice is along the equator of the sphere. Only a
subset of local magnetic moments is shown for clarity.
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FIG. 3. (Color online) Vector plot of the skyrmion state in an
ellipsoid with major axis of 20 nm and minor axis of 15 nm. The
slice is along the equator of the ellipsoid. Only a subset of local
magnetic moments is shown for clarity.

more antiparallel. A skyrmion in a sphere of radius 59 nm is
shown in Fig. 2.

Once skyrmions were observed in these systems, it begged
the question, “Do these occur in ellipsoids and hemiel-
lipsoids?” Upon examining this, indeed skyrmions can be
observed in oblate ellipsoids and hemiellipsoids as shown in
Figs. 3 and 4.

To verify that these structures approach those of skyrmions
and to quantitively monitor their deviations from an ideal
skyrmionic state (for which the Pontragin index is unity), we
computed the Pontryagin index at different cross sections of the
hemisphere. These cross sections were those of the hemisphere
with planes parallel to the basal plane (i.e., that at the base of
the hemisphere). For a hemisphere with radius 30 nm, we
calculated the skyrmion number Q for 30 individual parallel
layers vertically separated by 1 nm. We numerically evaluated
the integral of Eq. (1) for all of these layers and examined how
it changes as the field increases from 0 to 0.6 T. These data
are shown in Fig. 5.

Visualizing this in the geometry of the hemisphere specif-
ically, one can look at how the Pontryagin index varies along
various planes of a hemisphere, starting from the equator and
moving to the pole. It can be clearly seen that the skyrmionic
behavior exists for most of the height of the hemisphere and
only the cap deviates from the rest of the system. The size of
this cap depends on the given field strength as can be seen

FIG. 4. (Color online) Vector plot of the skyrmion state in a
hemiellipsoid with major axis of 20 nm and minor axis of 15 nm.
The slice is along the base of the hemiellipsoid. Only a subset of
local magnetic moments is shown for clarity.

FIG. 5. (Color online) Plot of the Pontryagin index versus the z

coordinate of the slice taken from the hemisphere of radius 30 nm.
These are shown for increasing field from zero field (dark blue dot-
dash line), 0.2 T (green dotted line), 0.4 T (red dashed line), and
0.6 T (teal solid line).

in the case of 0 field [Fig. 6(a)] and with a field of 0.6 T
[Fig. 6(b)]. At higher fields, prior to the annihilation of the
vortex, the Pontryagin index approaches a non-zero integer
value, as expected for an ideal skyrmionic state.

Performing similar analysis on the hemiellipsoids and
visualizing the Pontryagin index and its variance with height, it
can be seen that the same behavior exists in a less extreme way
than the hemispheres. This behavior can be seen in Fig. 7 for
hemiellipsoids of fixed 30-nm major axis and varying minor
axis.

In examining the hysteresis behavior of the hemiellipsoids,
one can see a trend as the z dimension goes from the
hemisphere radius (20 nm) to the minimum simulated size
of 5 nm. This trend shows a movement from extensive vortex
and skyrmionic behavior in the more hemispheric geometries
and less vortex and skyrmionic behavior in the more ellipsoidal
geometries.

Although it will not be considered in this work, crystalline
anisotropy could influence the formation of skyrmions in a
number of ways. In the case of a single crystal, the vortex state
would be more difficult to nucleate and thus the skyrmionic
state is less energetically favorable. When many crystalline
grains are present, the results discussed here are valid as the
large number or randomly oriented crystals will, on average,
not favor any direction, and thus will not favor any one
direction.

B. Generalization to a hedgehog

These results lead to the question of whether this can
be generalized to more than two dimensions. The natural
generalization from the two-dimensional skyrmion to a three-
dimensional magnetic state would be the hedgehog. Amongst
many other systems, hedgehogs27 (and other related non-
trivial configuations) have been observed in nematic liquid
crystal droplets.28 The hedgehog resides in three spatial
dimensions coupled with a three-dimensional order parameter.
The canonical example of a hedgehog is �M = Msr̂ where the
magnetization always points outwards. A skyrmion is related
to a hedgehog via a stereographic projection from the sphere
onto a plane where the south pole of the hedgehog projects
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FIG. 6. (Color online) Three-dimensional plots of the Pontryagin index for a hemisphere of radius 30 nm at (a) zero field and (b) 0.6 T.

to the core of the skyrmion on the plane and the north pole
of the hedgehog projects to the points at infinity on the plane.
Calculating the demagnetizing field for this state in a sphere
gives rise to a potential and field equal to

U (r) = γBMs(r − R), (13)

�H = −γBMsr̂, (14)

FIG. 7. (Color online) Plots of the Pontryagin index and how it varies with height inside hemiellipsoids of 30-nm radius major axis as
the minor axis varies from 15 nm (a) to 10 nm (c) to 5 nm (e). This is shown for (a) field equal to 0.2 T pointing in the negative z direction
(perpendicular to the face of the hemiellipsoids). As will be noted, the existence of skyrmionic behavior is not prevalent in the more flattened
hemiellipsoids and vanishes at this field between minor axis 15 and 10 nm. The associated hysteresis loops for each of these hemiellipsoid runs
are shown in (b), (d), and (f), respectively.
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where r is the radial coordinate and R is the radius of the
hedgehog.

Plugging this into Eq. (8), one finds the energy of the
hedgehog to be 2πM2

s (4π/3)R3. Comparing this to the energy
of the uniformly magnetized state, (1/2)(4π/3)2M2

s R3, it
can easily be seen that the hedgehog has three times the
energy of the uniform state. This, combined with the fact
that the exchange energy and the field energy will favor the
uniform state, the hedgehog state will not be possible in a
sphere.

If one were to continuously deform the hedgehog by
rotating the local magnetic moments by π/2 such that
�M = Msf (z)φ̂ where f (z) is a function that goes to 0 as z → 0

such that the exchange energy does not diverge, one would find

FIG. 8. (Color online) Vector plot of a 2 × 2 array of hemispheres
with radius 20 nm and center-to-center separation 80 nm at fields of
0.12 T pointing in the negative z direction (a) and 0.1 T pointing in
the negative z direction (b). Color scale corresponds to z component
of the local magnetic moment in units of A/m.

the demagnetization energy of that state to be identically 0. The
field energy in this system is also 0 for a field that is applied
along the z axis. The exchange energy is given by (4π/3)RA

where A is the exchange stiffness constant. The total energy of
this state is equal to the exchange energy, and comparing this
to the uniform state, a hedgehog of this form is favorable for

R �
√

A

2πμ0M2

3 − MH0

. (15)

For A = 2.5 × 10−11 J/m and Ms = 1.4 × 106 A/m as it is
for cobalt, at 0 field, this radius works out to be ≈3.5 μm.

C. Skyrmion array

It is illuminating to consider the possibility of an array of
skyrmions. As briefly discussed below, we find that effective
particle interactions may thwart the creation of a skyrmion
lattice when these particles are not far separated. However, for
sufficiently large center-to-center separations, a Skryme lattice
may be achieved. In preliminary simulations of nanoparticle
arrays, simulations of a 2 × 2 grid of hemispheres of radius
20 nm with a variable separation show that a center-to-center
separation of four times the radius is close enough that the
nanoparticles still interact magnetically and prevent the forma-
tion of an array of skyrmions. As expected, further separation
should approach the single-particle result of skyrmions, as we
briefly discuss next.

FIG. 9. (Color online) Vector plot of a 3 × 3 array of hemispheres
with radius 20 nm and center-to-center separation 80 nm at fields of
0.1 T pointing in the negative z direction (a) and 0.08 T pointing in
the negative z direction (b). Color scale corresponds to z component
of the local magnetic moment in units of A/m.
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FIG. 10. (Color online) Plot of critical field at which skyrmions
are no longer energetically favorable versus the center-to-center
separation.

The transition from the array of particles which support
individual vortices to the array of particles that are clearly
interacting with each other can be seen in Fig. 8. In this figure,
the annihilation of the vortices can be seen as the particles
realign their magnetization to form a state where the local
magnetization orients in the counterclockwise direction from
particle to particle, yet within each particle, when moving
in the counterclockwise direction, the local magnetization
changes from oriented in the negative z direction to the
positive z direction.

In repeating these simulations for a 3 × 3 array of
hemispherical nanoparticles as shown in Fig. 9, the same
behavior was observed. This array was similar to the 2 × 2
array in that it had nanoparticles with diameters of 40 nm
and center-to-center separation of 80 nm. The annihilation of
the vortices occurred at a slightly larger field (0.08 T rather
than 0.1 T).

The stability of the skyrmion state depends on the separation
distance between the nanoparticles. Existence of these states
has been studied at a range of center-to-center separations
spanning 50–200 nm, and the critical field at which the
skyrmions are no longer energetically favorable is plotted
versus the center-to-center separation in Fig. 10.

IV. CONCLUSION

We conclude with a brief synopsis of our findings. We
carried a systematic numerical study of the magnetization of
small nanoparticles in the presence of an external magnetic
field. These systems were simulated for different sizes and ge-
ometry (sphere, hemisphere, ellipsoids). Our analysis ignored
anisotropy (crystalline, strain, etc.) effects, except for shape.
We find that, as has been widely reported in the literature,29,30

beyond a critical diameter, the particles enter into a single
vortex state under zero external field; multiple vortices are
possible for much larger particles. Our key result concerns the
creation of skyrmions by merely applying a field in the single
vortex state. As the field is increased, vortex annihilation is ac-
companied by the formation of a skyrmionic state wherein the
magnetization of the vortex core points to a direction opposite
that at the edge of the nanoparticle. Our result illustrates how
geometry plays a pivotal role in triggering skyrmion formation.
The geometry of the nanoparticles affords additional length
scales and enables a diversity in possible magnetic structure
sizes as compared to homogeneous bulk theories where, in
the absence of additional interactions, fewer viable length
scales are present. The field driven microscale systems which
we reported in this work, are simple by comparison to
more involved physical mechanisms for the generation of
skyrmions in bulk theories. It is conceivable that certain elastic
deformations in bulk systems may locally emulate surface
geometrical effects. Spheres and hemispheres more readily
achieve skyrmionic states than higher eccentricity ellipsoids.
Our preliminary results suggested that for center-to-center
separations larger than twice the particle diameters, an array of
skyrmions may be realized. More detailed studies of skyrmion
lattices for such particle arrays are planned for the future.
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