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Tensor network states and ground-state fidelity for quantum spin ladders
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We have developed an efficient tensor network algorithm for spin ladders, which generates ground-state wave
functions for infinite-size quantum spin ladders. The algorithm is able to efficiently compute the ground-state
fidelity per lattice site, a universal phase transition marker, thus offering a powerful tool to unveil quantum
many-body physics underlying spin ladders. To illustrate our scheme, we consider the two-leg and three-leg
Heisenberg spin ladders with staggering dimerization, the two-leg Heisenberg spin ladder with cyclic four-spin
exchange, and the ferromagnetic frustrated two-leg ladder. The ground-state phase diagrams thus yielded are
reliable, compared with the previous studies based on the the exact diagonalization and the density matrix
renormalization group. Our results indicate that the ground-state fidelity per lattice site successfully captures
quantum criticalities in spin ladders.
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I. INTRODUCTION

Recently, tensor networks (TNs) provide a convenient
means to represent quantum wave functions in classical
simulations of quantum many-body lattice systems, such as
the matrix product states (MPSs)1–5 in one spatial dimension
and the projected entangled-pair states (PEPSs)6–8 in two
and higher spatial dimensions. The development of various
numerical algorithms in the context of the TN representations
has led to significant advances in our understanding of
quantum many-body lattice systems in both one and two spatial
dimensions.3–17 A remarkable aspect of these advances is rel-
evant to a fidelity approach to critical phenomena in quantum
many-body physics, which has emerged as a consequence of
the fact that fidelity, a basic notion in quantum information
science, is a measure of quantum state distinguishability. The
approach allows us to characterize critical phenomena in a
variety of quantum many-body lattice systems in any spatial
dimensions.18–27 As argued in Refs. 18–23, the ground-state
fidelity per lattice site is able to capture drastic changes of
the ground-state wave functions around a phase transition
point. This, in combination with the fact that many powerful
numerical algorithms have been developed in the context of
the TN representation, provides a powerful means to unveil
quantum criticality underlying quantum many-body systems.
In fact, a systematic scheme to study critical phenomena in
quantum many-body lattice systems consists of three steps,
as advocated in Ref. 28: First, map out the ground-state
phase diagram by computing the ground-state fidelity per
lattice site; second, derive local order parameters (if any) from
the reduced density matrices for a representative ground-state
wave function in a given phase; third, characterize any phase
without any long range order.

In the last decades, low-dimensional quantum spin systems,
such as spin ladders, have been the subject of extensive
experimental and theoretical interest.29,30 Many fascinating
features of the ladder systems have long been understood the-
oretically from both analytical and numerical approaches.31–58

Among them is an intriguing property that the existence
of an excitation gap depends on the number of legs: spin
excitations are gapful for an even-leg Heisenberg spin ladder
and gapless for an odd-leg Heisenberg spin ladder. There are

also a number of low-dimensional compounds of transition
metals, such as SrCu2O3 (Ref. 59), (VO)2P2O7 (Ref. 60),
La6Ca8Cu24O41 (Ref. 61), and (C5H12N)2CuBr4 (Ref. 62),
whose properties are well described adequately by multileg
spin ladders. Lying between quantum lattice systems in one
and two spatial dimensions, spin ladders often exhibit some
attractive behaviors, due to their rich critical properties. Given
the importance of spin-ladder systems in condensed-matter
physics, it is somewhat surprising that no efforts have been
made to develop any efficient algorithm in the context of the
TN representations, which enables us to efficiently compute
the ground-state fidelity per lattice site.

This paper aims to fill in this gap. We develop an algorithm
to generate efficiently ground-state wave functions for infinite-
size spin ladders. The two-leg and three-leg Heisenberg spin
ladders with staggering dimerization, the two-leg Heisenberg
spin ladder with cyclic four-spin exchange, and the ferromag-
netic frustrated two-leg ladder are investigated. First, for the
two-leg spin ladder with staggering dimerization, it yields
very accurate values of the ground-state energy per site, with
the accuracy reaching up to 10−4 already for the truncation
dimension up to 6. Then we evaluate the ground-state fidelity
per lattice site to identify critical points. The simulation
results for all four spin ladders are in good agreement with
the previous studies31–42 based on the exact diagonalization
and/or the density matrix renormalization group (DMRG).63

Therefore, the TN algorithm provides an efficient means to
evaluate the ground-state fidelity per lattice site, which in turn
successfully captures quantum criticalities in spin ladders.

The layout of the paper is as follows. In Sec. II, we develop
an efficient algorithm based on the TN representation suitable
to describe a ground-state wave function for an infinite-size
spin ladder, which is the adaptation of the infinite PEPS
representation to a spin ladder. In Sec. III, an efficient way
to evaluate the ground-state fidelity per lattice site is described
in the TN representation. In Sec. IV, we present our simulation
results for four infinite-size spin-ladder systems: the two-
leg and three-leg Heisenberg spin ladders with staggering
dimerization, the two-leg Heisenberg spin ladder with cyclic
four-spin exchange, and the ferromagnetic frustrated two-leg
ladder. Section V is devoted to a summary.
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II. TENSOR NETWORK REPRESENTATION
FOR SPIN LADDERS

Let us describe the TN representation suitable to describe
a ground-state wave function for an infinite-size spin ladder.
Actually, the TN is a particular case of the PEPS6 adapted to the
geometry of an infinite-size spin-ladder system. Suppose the
Hamiltonian is translationally invariant under shifts by either
one or two lattice sites along the legs: H = ∑

〈i,α〉 h〈i,α〉, with
the 〈i,α〉th plaquette Hamiltonian density h〈i,α〉 acting on sites
i and (i + 1) along the αth and (α + 1)th legs. Here, 〈i,α〉 runs
over all the possible plaquettes by taking i ∈ {−∞, . . . , +
∞}, and α = 1, . . . ,n − 1, with n being the number of the
legs. Assume that the TN representation for a wave function
enjoys the translational invariance under shifts by two lattice
sites along the legs. In the following, we focus on a detailed
description for a two-leg spin ladder, with a brief discussion
for an n-leg ladder system.

For an infinite-size two-leg spin-ladder system, we need
only four different four-index tensors, As

�rd , Bs
�rd , Cs

�ru, and
Ds

�ru, to store the wave function.64 Here, As
�rd , Bs

�rd , Cs
�ru, and

Ds
�ru are made of complex numbers labeled by one physical

index s and four inner bond indices �, r , u, and d, where s =
1, . . . ,d, withd being the dimension of the local Hilbert space,
and �, r , u, d = 1, . . . ,D, with D being the bond dimension. A
four-index tensor As

�rd is visualized in Fig. 1(i), with a similar
pictorial representation for the tensors Bs

�rd , Cs
�ru, and Ds

�ru. A
TN representation for the ground-state wave function is shown
for an infinite-size two-leg spin ladder in Fig. 1(ii). There are
two different but equivalent choices of the unit cell for such an
infinite-size TN: One is chosen as A, B, D, and C clockwise
if i is even; the other is chosen as B, A, C, and D clockwise if
i is odd [see Fig. 1(iii)].
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FIG. 1. (Color online) (i) Four-index tensor As
lrd used to represent

a TN representation for the ground-state wave function for an infinite-
size two-leg spin ladder, with s being a physical index, l, r , and d

denoting the inner indices. (ii) Pictorial representation for a TN state
|ψ〉 with leg and rung bonds, which are used to absorb an operator
acting on the ith plaquette. (iii) Two different choices of the unit cell
for an infinite-size TN state, made of four four-index tensors A, B,
C, and D. (iv) A double tensor a�̃r̃d̃ is formed from the four-index
tensor As

�rd and its complex conjugate (A∗)s
�
′
r
′
d

′ , with �̃ ≡ (�,�
′
),

r̃ ≡ (r,r
′
), and d̃ ≡ (d,d

′
). (v) The TN representation for the norm of

a ground-state wave function in an infinite-size spin ladder. (vi) Two
different choices of the unit cells for the norm TN, consisting of four
double tensors a, b, c, and d .

Now let us turn to the computation of the norm for
a quantum state wave function. To this end, we introduce
double tensors a�̃r̃d̃ , b�̃r̃d̃ , c�̃r̃ũ, and d�̃r̃ũ, with �̃ ≡ (�,�

′
),

r̃ ≡ (r,r
′
), ũ ≡ (u,u

′
), and d̃ ≡ (d,d

′
). They form from the

four-index tensors As
�rd , Bs

�rd , Cs
�ru, and Ds

�ru, and their
complex conjugates; see Fig. 1(iv) for a pictorial representation
of the double tensors. With these double tensors, the TN for
the norm of a wave function is shown in Fig. 1(v). Again, we
have two different but equivalent choices for the unit cell of
the norm TN: One is a, b, d, and c clockwise if i is even; the
other is b, a, c, and d clockwise if i is odd [see Fig. 1(vi)].

The expectation value of an operator acting on a plaquette,
such as the ground-state energy per unit cell, also admits
a TN representation, which absorbs the operator acting on
a plaquette for an infinite-size spin-ladder system. For a
randomly chosen initial state |ψ0〉, the energy is expressed as

Eg = 〈ψ0|H |ψ0〉
〈ψ0|ψ0〉 . (1)

For different choices of the unit cell, we get two different
but equivalent forms of the zero-dimensional transfer matrix
E constructed from four double tensors a�̃r̃d̃ , b�̃r̃d̃ , d�̃r̃ũ, and
c�̃r̃ũ, one of which is shown in Fig. 2(i). The dominant left
and right eigenvectors of the transfer matrix E constitute the
environment tensors, visualized in Fig. 2(ii). This enables us to
absorb an operator acting on the ith plaquette A, B, D, and C

clockwise, if i is even, as shown in Fig. 2(iii), and compute the
energy per unit cell, as shown in Fig. 2(iv). The same procedure
may be used to compute the energy per unit cell for an operator
acting on the ith plaquette B, A, C, and D clockwise, if i is odd.

To update the TN representation, we compute the energy
gradient with respect to four-index tensors:

∂Eg

∂As
�rd

= ∂〈ψ0|H |ψ0〉/∂As
�rd

〈ψ0|ψ0〉 − Eg · ∂〈ψ0|ψ0〉/∂As
�rd

〈ψ0|ψ0〉 .

(2)

Here, a four-index tensor As
�rd is used to explain how to

efficiently evaluate the energy gradient in the context of the TN
representation for an infinite-size two-leg spin ladder, with the
details visualized in Fig. 3. Notice that the contributions to the
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FIG. 2. (Color online) (i) The transfer matrix E for an infinite-size
norm TN, which is constructed from four double tensors a�̃r̃d̃ , b�̃r̃d̃ ,
c�̃r̃ũ, and d�̃r̃ũ, with �̃ ≡ (�,�

′
), r̃ ≡ (r,r

′
), ũ ≡ (u,u

′
), and d̃ ≡ (d,d

′
).

(ii) The dominant left and right eigenvectors VL and VR of the transfer
matrix E. (iii) A unit cell with the Hamiltonian density hABDC acted on
the plaquette. (iv) The ground-state energy per unit cell is computed
from the eigenvectors VL, VR and four four-index tensors As

�rd , Bs
�rd ,

Cs
�ru, and Ds

�ru .
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FIG. 3. (Color online) The contribution to the energy gradient
for an infinite-size spin ladder consists of three parts (for a given
choice of a plaquette on which the Hamiltonian acts on): (i) the hole
cell with the tensor As

�rd removed and the Hamiltonian cell with the
Hamiltonian density acting on a plaquette locate on the same cell;
(ii) the hole cell locates on the right-hand side of the Hamiltonian
cell; (iii) the hole cell locates on the left-hand side of the Hamiltonian
cell. In the latter two cases, there are m cells between the hole and
Hamiltonian cells, where m ∈ (0,1,2,3, . . . ). Here, the hole cell is
visualized in (iv), with the tensor As

�rd removed. Note that only the
contribution from the plaquette “abdc”, as labeled here, is visualized.
However, there is also a contribution from the plaquette “bacd”.

energy gradient come from three parts (for a given choice of a
plaquette on which the Hamiltonian acts on): (i) the hole cell
with the four-index tensor As

�rd absent and the Hamiltonian
cell with the Hamiltonian density sandwiched locate on the
same cell; (ii) the hole cell locates on the right-hand side of
the Hamiltonian cell; (iii) the hole cell locates on the left-hand
side of the Hamiltonian cell. In both cases (ii) and (iii), there are
m cells between the hole cell and the Hamiltonian cell, where
m ∈ (0,1,2,3, . . . ). We stress that the contributions from both
plaquettes “abdc” and “bacd” to the energy gradient should
be summed up. As such, the four-index tensor As

�rd is updated
as follows:

As
�rd = As

�rd − δ
∂Eg/∂As

�rd

max(�,r,d)

∣∣∂Eg/∂As
�rd

∣∣ , (3)

where δ denotes the step size during updating. We stress that,
for a two-leg spin ladder, we should update four different
four-index tensors As

�rd , Bs
�rd , Cs

�ru, and Ds
�ru simultaneously.

Here, it is proper to point out that our updating procedure
is closely connected to the infinite PEPS algorithm8 and the
translationally invariant MPS algorithm.11

The above updating procedure yields new tensors As
�rd ,

Bs
�rd , Cs

�ru, and Ds
�ru for a two-leg spin ladder. Repeating this

procedure until the ground-state energy per unit cell converges,
we anticipate that the system’s ground-state wave function is
generated in the TN representation. In our implementation, the
initial value of δ is chosen to be any value between 0 and 1.
Actually, there are different ways to choose δ in order to get a
reliable ground-state wave function. Specifically, δ is reduced
gradually up to 10−6, until the energy reaches a fixed point
within a preset error tolerance. We find that the simulation
results are insensitive to either a chosen initial value of δ or the
way how to reduce it. The computation cost scales as D6, since
the truncation dimensions along rungs and legs are chosen to

be the same. However, one of the advantages of the algorithm
is that they may take different values.

For a three-leg spin ladder, one should introduce four
different four-index tensers As

�rd , Bs
�rd , Es

�ru, and F s
�ru, and two

different five-index tensers Cs
�rud and Ds

�rud . In this case, the
computation cost scales as D9, if the truncation dimensions
along rungs and legs are chosen to be the same. Similarly,
more tensors are needed for a multileg spin ladder. However,
the algorithm is applicable to a multileg spin ladder, as long
as the memory is sufficient to store the TN tensors. Although
the computational cost with D remains the same for a multileg
spin ladder, the cost is, roughly speaking, linearly increasing
with the increasing number of the tensors in the unit cell.

III. THE GROUND-STATE FIDELITY PER LATTICE SITE

For a spin-ladder system, we assume h is a con-
trol parameter. For two different ground states, |ψ(h1)〉
and |ψ(h2)〉, corresponding to two different values h1

and h2 of the control parameter h, the ground-state fi-
delity F (h1,h2) = |〈ψ(h2)|ψ(h1)〉| asymptotically scales as
F (h1,h2) ∼ d(h1,h2)N , with N the total number of the lattice
sites. Here, d(h1,h2) is the scaling parameter, introduced in
Refs. 18–20 for one-dimensional quantum lattice systems and
in Refs. 21 for two- and higher-dimensional quantum lattice
systems. In fact, d(h1,h2) characterizes how fast the fidelity
goes to zero when the thermodynamic limit is approached.
Physically, the scaling parameter d(h1,h2) is the averaged
fidelity per lattice site,

ln d(h1,h2) ≡ lim
N→∞

ln F (h1,h2)

N
, (4)

which is well defined in the thermodynamic limit even if
F (h1,h2) becomes trivially zero. It satisfies the properties in-
herited from the fidelity F (h1,h2): (i) normalization d(h,h) =
1; (ii) symmetry d(h1,h2) = d(h2,h1); and (iii) range 0 �
d(h1,h2) � 1.

Suppose a ground-state wave function has been generated
from the TN algorithm for a given value of h; one needs to
figure out an efficient way to evaluate the ground-state fidelity
per lattice site d(h1,h2), a universal marker to detect quantum
criticalities: A phase transition point is characterized by a pinch
point on the fidelity surface, which is defined as a function of
both h1 and h2. In Figs. 4(i) and 4(ii), we have visualized two
ground-state wave functions |ψ(h1)〉 and |ψ(h2)〉. In Fig. 4(iii),
a double tensor a

′
�̃r̃ d̃

(h1,h2), with �̃ ≡ (�,�
′
), r̃ ≡ (r,r

′
), and

d̃ ≡ (d,d
′
), is defined, which is formed from the four-index

tensor As
�rd (h1) and the complex conjugate of the four-index

tensor As
�rd (h2). Then, a pictorial representation of the ground-

state fidelity F (h1,h2) is shown in Fig. 4(iv), where the fidelity
transfer matrix E′ is defined for an infinite-size fidelity TN.
Therefore, the ground-state fidelity per lattice site d(h1,h2)
between two different states |ψ(h1)〉 and |ψ(h2)〉 is obtained
by computing the dominant eigenvalue λ1 of the transfer matrix
E′, as shown in Fig. 4(v). Indeed, we have d(h1,h2) = |λ1/4

1 |
for our choice of the unit cell. The same procedure also works
for a multileg spin ladder.

064401-3



LI, SHI, SU, LIU, DAI, AND ZHOU PHYSICAL REVIEW B 86, 064401 (2012)

Transfer Matrix

FIG. 4. (Color online) The pictorial representations for the
fidelity F (h1,h2) and the fidelity per lattice site d(h1,h2) between
two different ground states, |ψ(h1)〉 and |ψ(h2)〉, with h1 and h2

being two different values of the control parameter h, for an infinite-
size two-leg spin ladder. (i) A ground-state wave function |ψ(h1)〉
in the TN representation, which is translationally invariant under
two-site shifts, with the control parameter h = h1. Here, As

�rd (h1),
Bs

�rd (h1), Cs
�ru(h1), and Ds

�ru(h1) are the constituent tensors for the
ground-state wave function |ψ(h1)〉. (ii) Another ground state |ψ(h2)〉
in the TN representation, with the control parameter h = h2. Here,
As

�rd (h2), Bs
�rd (h2), Cs

�ru(h2), and Ds
�ru(h2) are the constituent tensors

for the ground-state wave function |ψ(h2)〉. (iii) A double tensor
a

′
�̃r̃ d̃

(h1,h2), with �̃ ≡ (�,�
′
), r̃ ≡ (r,r

′
) and d̃ ≡ (d,d

′
), is formed

from the four-index tensor As
�rd (h1) and the complex conjugate of

the four-index tensor As
�rd (h2). (iv) The TN representation for the

ground-state fidelity F (h1,h2) between two different ground states,
|ψ(h1)〉 and |ψ(h2)〉, for an infinite-size two-leg spin ladder. Here,
the transfer matrix E′ for the infinite-size fidelity TN is constructed
from four double tensors a

′
�̃r̃ d̃

(h1,h2), b
′
�̃r̃ d̃

(h1,h2), c
′
�̃r̃ ũ

(h1,h2), and

d
′
�̃r̃ ũ

(h1,h2). (v) The ground-state fidelity per lattice site d(h1,h2) is
obtained by computing the dominant eigenvalue λ1 of the fidelity
transfer matrix E′, with V ′

L and V ′
R being the left and right dominant

eigenvectors. As such, we have d(h1,h2) = |λ1/4
1 |.

IV. THE MODELS AND SIMULATION RESULTS

As an illustration, we test the algorithm on four different
infinite-size spin-ladder systems: the two-leg and three-leg
Heisenberg spin ladders with staggering dimerization, the two-
leg Heisenberg spin ladder with cyclic four-spin exchange, and
the ferromagnetic frustrated two-leg ladder.

A. Two-leg Heisenberg spin ladder

The two-leg Heisenberg spin ladder is described by the
Hamiltonian

H =
∑

α=1,2

∑
i

Jα,iSα,i · Sα,i+1 + J⊥
∑

i

S1,i · S2,i . (5)

Here, Jα,i is the interaction coupling along each leg α =
1,2, and J⊥ is the interaction along the rungs. To test the
TN algorithm, we choose the exchange interaction coupling
J⊥ ∈ 0.2,0.4,0.6,0.8,1.0. In addition, Jα,i = J if i + α is
odd and Jα,i = J ′ if i + α is even, with J = 1 and J ′ =
0,0.2,0.4,0.6,0.8, and 1.0.

In Table I, we list our simulation results for the ground-state
energy per site, for different values of J⊥ and J ′, with
the truncation dimension up to 6, against the infinite-size
ground-state energy per site from the extrapolated exact
diagonalization using the symmetric group approach (SGA) in
Ref. 31. The fact that they matches very well demonstrates that
the TN algorithm is reliable to yield very accurate ground-state
wave functions for spin ladders. Specifically, the accuracy for
the ground-state energy per site reaches up to 10−4 already for
such a small value of the truncation dimension.

Let us also compare the ground-state energies from our TN
algorithm with the corresponding ground-state energies from
the DMRG,65 for J⊥ = 0,0.2,0.4,0.6,0.8,1.0 and J ′ = 1.0.
Our results with the truncation dimension D = 6 outperform
those from the DMRG. Especially, the improvement is sig-
nificant for small J⊥’s. For instance, our ground-state energy
is lower than that from the DMRG, up to 1%, for J⊥ = 0,
indicating that very accurate ground-state wave functions are
yielded from our TN algorithm. Actually, further increasing the
truncation dimension D, more accurate ground-state energies
are anticipated.

TABLE I. Comparison between the ground state energies per
site from the symmetric-group approach (SGA) in Ref. 31 and our
TN algorithm for the infinite-size two-leg Heisenberg ladder. Here,
the data from the SGA are the extrapolated value from finite-size
counterparts.

J⊥ J ′ SGA Tensor network

0.2 0.0 − 0.376 974 493 6 − 0.376 974
0.2 − 0.379 293 24 − 0.379 293
0.4 − 0.386 139 − 0.386 139
0.6 − 0.39850 − 0.398 509
0.8 − 0.4181 − 0.418 215
1.0 − 0.4516 − 0.451 554

0.4 0.0 − 0.383 356 250 2 − 0.383 356
0.2 − 0.386 802 1 − 0.386 801
0.4 − 0.395 15 − 0.395 154
0.6 − 0.4096 − 0.409 689
0.8 − 0.4334 − 0.432 975
1.0 − 0.4712 − 0.471 242

0.6 0.0 − 0.395 048 41 − 0.395 048
0.2 − 0.400 60 − 0.400 597
0.4 − 0.4117 − 0.411 752
0.6 − 0.4304 − 0.430 514
0.8 − 0.4617 − 0.461 940
1.0 − 0.4994 − 0.499 637

0.8 0.0 − 0.413 56 − 0.413 564
0.2 − 0.4226 − 0.422 680
0.4 − 0.4397 − 0.439 913
0.6 − 0.4674 − 0.467 553
0.8 − 0.4995 − 0.499 617
1.0 − 0.5354 − 0.535 502

1.0 0.0 − 0.443 141 384 5 − 0.443 063
0.2 − 0.4629 − 0.463 080
0.4 − 0.4870 − 0.487 120
0.6 − 0.5143 − 0.514 348
0.8 − 0.5446 − 0.544 634
1.0 − 0.578 003 409 9 − 0.578 035
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Now we turn to a quantum critical point, at which the
ladder system undergoes a phase transition, with the staggered
dimerization Jα,i = J [1 + (−1)i+α�], α = 1,2. Here, we fix
� = 0.5, with the coupling constant J to be unity (J = 1),
and the exchange interaction coupling constant J⊥ to be a
control parameter. To this end, we compute the fidelity per
lattice site. In Fig. 5, the ground-state fidelity per lattice
site is plotted for the two-leg Heisenberg spin- 1

2 ladder with
staggering dimerization. A two-dimensional fidelity surface
embedded in a three-dimensional Euclidean space is shown
in the top panel, with a pinch point at (1.24,1.24), implying
that a continuous phase transition occurs at J⊥c � 1.24. In
the bottom panel, a contour plot is shown for the fidelity per
lattice site on the (J⊥1,J⊥2) plane. We stress that no significant
shifts are observed for the pinch point, when the truncation
dimension is increased up to 6. Therefore, we conclude that a
continuous phase transition takes place at J⊥c � 1.24, which
is very close to earlier results from the mean-field theory,32

exact diagonalization,33 and DMRG.34
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FIG. 5. (Color online) The ground-state fidelity per lattice site
d(J⊥1,J⊥2), as a function of J⊥1 and J⊥2 for the two-leg Heisen-
berg ladder with staggering dimerization. (Top) A two-dimensional
fidelity surface embedded in a three-dimensional Euclidean space. A
continuous phase transition point J⊥c � 1.24 is identified as a pinch
point (J⊥c,J⊥c) on the fidelity surface, as argued in Refs. 18–21. Here,
we have taken the truncation dimensionD = 6. (Bottom) The contour
plot of the fidelity per lattice site d(J⊥1,J⊥2), on the (J⊥1,J⊥2)-plane,
for the two-leg Heisenberg ladder with staggering dimerization.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

J⊥

O
od

d/
ev

en

 

 

O
odd

O
even

FIG. 6. (Color online) The string order parameters Oodd, and Oeven

for the two-leg Heisenberg ladder as a function of J⊥ at � = 0.5,
respectively. The phase transition takes place at J⊥c � 1.24. Here,
the truncation dimension is up to 6.

Note that the ground states in the ladder system lack long-
rang order in the conventional Landau-Ginzburg sense; thus,
there is no local order parameter. Instead, different phases can
only be distinguished by a nonlocal string order parameter,66,67

which is nonzero in one phase and vanishes in the other. The
so-called string order parameter was presented by den Nijs and
Rommelse.66 The two distinct string order parameters Oodd and
Oeven for two-leg spin ladders are given by

Oodd/even = − lim
|i−j |→∞

〈
Sz

o/e,i exp

{
iπ

j−1∑
l=i+1

Sz
o/e,l

}
Sz

o/e,j

〉
.

(6)

Here, the composite spin operators are defined as Sz
o,i ≡

Sz
1,i + Sz

2,i and Sz
e,i ≡ Sz

1,i + Sz
2,i+1. We calculate the odd and

even string order parameters for the z-component spins. For
a ladder system with no local order parameter, it turns out
that the intersection of the curves of two distinct string order
parameters implies a phase transition point.

In Fig. 6, we plot the odd and even string order parameters
Oodd, and Oeven for the two-leg Heisenberg spin- 1

2 ladder
with staggering dimerization � = 0.5. For the interaction
coupling constant J⊥ < 1.24 with � = 0.5, one has Oodd 
= 0
and Oeven = 0, implying the leg-dimer phase; while Oodd = 0
and Oeven 
= 0 for the interaction coupling constant J⊥ >

1.24, with � = 0.5, implying the rung-dimer phase. Indeed,
Oodd = 0 and Oeven = 0 for the interaction coupling constant
J⊥ � 1.24 with � = 0.5; thus, the phase transition takes place
at J⊥c � 1.24. Our results for the string order parameters
are in a good agreement with the previous studies from the
exact diagonalization.33 We stress that no significant shifts
are observed for the phase transition point, which is fixed at
J⊥c � 1.24 when the truncation dimension is increased up to
6. The critical point thus determined is identical to that from
the fidelity per site approach.

B. Three-leg Heisenberg spin ladder

The three-leg Heisenberg spin ladder is described by the
Hamiltonian

H =
∑

α=1,2,3

∑
i

Jα,iSα,i · Sα,i+1

+ J⊥
∑

i

(S1,i · S2,i + S2,i · S3,i). (7)
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For the three-leg Heisenberg spin ladder with the staggered
dimerization, the exchange interaction coupling along the
αth leg takes the form Jα,i = J [1 + (−1)i+α�]. To capture
quantum criticality in the three-leg ladder, we compute the
ground-state fidelity per site by fixing � = 0.5, and J = 1,
with the exchange interaction coupling constant J⊥ as a control
parameter. In Fig. 7, we plot a two-dimensional fidelity surface
embedded in a three-dimensional Euclidean space, namely, the
ground-state fidelity per lattice site d(J⊥1,J⊥2) as a function of
J⊥1 and J⊥2, for the three-leg Heisenberg spin- 1

2 ladder with
staggering dimerization. It yields reliable results, with only the
truncation dimension up to 6. A continuous phase transition
point J⊥c � 0.96 is identified as a pinch point (J⊥c, J⊥c) on
the fidelity surface, consistent with the previous results from
the DMRG method.32,35

In this spin-ladder system, there is no local order parameter.
Different phases can only be distinguished by a nonlocal
string order parameter66,67 Oodd and Oeven in Eq. (6), with
the composite spin operators for three-leg ladders defined
as Sz

o,i ≡ Sz
1,i + Sz

2,i + Sz
3,i and Sz

e,i ≡ Sz
1,i + Sz

2,i+1 + Sz
3,i+2.

Given that the ladder system is translationally invariant under
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FIG. 7. (Color online) The ground-state fidelity per lattice site
d(J⊥1,J⊥2), as a function of J⊥1 and J⊥2 for the three-leg Heisen-
berg ladder with staggering dimerization. (Top) A two-dimensional
fidelity surface embedded in a three-dimensional Euclidean space. A
continuous phase transition point J⊥c � 0.96 is identified as a pinch
point (J⊥c,J⊥c) on the fidelity surface, as argued in Refs. 18–21. Here,
we have taken the truncation dimensionD = 6. (Bottom) The contour
plot of the fidelity per lattice site d(J⊥1,J⊥2), on the (J⊥1,J⊥2) plane,
for the three-leg Heisenberg ladder with staggering dimerization.

two-site shifts along the legs, we have two choices of the unit
cell for any odd j − i, depending on the locations of the sites
on which Sz

o,i act. Equivalently, there are also two different
choices for any even j − i. Here, we restrict ourselves to
consider an odd j − i. In contrast to the two-leg ladder system,
two different choices yield different results for the string order
parameters Oodd and Oeven as functions of J⊥, as depicted in
the top and bottom panels in Fig. 8. This is due to the fact that,
for the two-leg ladder, some symmetry exists to constrain two
values arising from two different choices of the unit cell to
be the same. In fact, the two-leg ladder is invariant under the
combined action of an operation to exchange the left and right
legs and the translation under one-site shifts along the legs.
In contrast, the three-leg ladder is simply invariant under an
operation to exchange the left and right legs, with the middle
leg remaining intact. Therefore, there is no operation, which,
combined with the one-site shifts along the legs, leaves the
three-leg ladder invariant.

For the first choice, Oodd 
= 0 and Oeven = 0 for the
interaction coupling constant J⊥ < 0.96 and Oodd = 0 and
Oeven 
= 0 for the interaction coupling constant J⊥ > 0.96.
For the second choice, Oodd = 0 and Oeven 
= 0 for J⊥ < 0.96
and Oeven = 0 and Oodd 
= 0 for J⊥ > 0.96. However, for both
choices, it is found that Oodd = 0 and Oeven = 0 for J⊥ � 0.96
with � = 0.5, implying that the phase transition point is
located at J⊥c � 0.96. Here, we note that our results for the
odd string order parameters corresponding to the first choice
are consistent with the previous results from the finite-size
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FIG. 8. (Color online) The string order parameters Oodd and Oeven

for the three-leg Heisenberg ladder as a function of J⊥ at � = 0.5,
respectively. Here, the top and the bottom panels correspond to two
different choices of the unit cell for the ladder system, which is
translationally invariant under shifts by two lattice sites along the legs,
respectively. For both choices, the phase transition point is located at
J⊥c � 0.96. Here, the truncation dimension is up to 6.
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DMRG method,35 and the phase transition point determined
is identical to that from the fidelity per site approach.

C. Two-leg Heisenberg spin- 1
2 ladder with cyclic

four-spin exchange

The ladder system is described by the Hamiltonian

H =
∑

α=1,2

∑
i

Jα,iSα,i · Sα,i+1 + J⊥
∑

i

S1,i · S2,i

+K
∑

i

(
Pi,i+1 + P −1

i,i+1

)
. (8)

Here, Sα,i (α = 1,2) denotes the spin- 1
2 Pauli operators at

site i on the αth leg, Ji,α is the intrachain coupling between
two neighboring spins in each chain, J⊥ is the interchain
coupling between two spins on each rung, and K is the cyclic
four-spin exchange interaction coupling. The cyclic four-spin
permutation operator Pi,i+1 (P −1

i,i+1) exchanges the four spins
around the ith plaquette as S1,i → S1,i+1 → S2,i+1 → S2,i →
S1,i , which can be decomposed in terms of the Pauli spin
operators involving bilinear and biquadratic terms:

Pi,i+1 + P −1
i,i+1 = S1,i · S1,i+1 + S1,i+1 · S2,i+1 + S2,i+1 · S2,i

+ S2,i · S1,i + S1,i · S2,i+1 + S1,i+1 · S2,i

+ 4(S1,i · S1,i+1)(S2,i+1 · S2,i)

+ 4(S2,i · S1,i)(S1,i+1 · S2,i+1)

− 4(S1,i · S2,i+1)(S1,i+1 · S2,i). (9)

Actually, this ladder system has been investigated by the exact
diagonalization42,43 and DMRG.36–39,42

For simplicity, we choose K = sin θ , and J⊥ = Jα,i =
cos θ , with θ ∈ [−π,π ]. In Fig. 9, we plot a two-dimensional
fidelity surface embedded in a three-dimensional Euclidean
space for the two-leg Heisenberg spin- 1

2 ladder with cyclic
four-spin exchange. As shown in the top panel, there are
six pinch points on the fidelity surface, implying six phase
transition points. In the bottom panel, the contour plot of the
ground-state fidelity per lattice site d(θ1,θ2) on the (θ1,θ2)
plane is shown, with the truncation dimension up to 4. There-
fore, we are able, by evaluating the ground-state fidelity per
lattice site, to identify six different phases: the ferromagnetic
phase, the rung singlet phase, the staggered dimer phase, the
scalar chirality phase, the dominant vector chirality region,
and the dominant collinear spin region. Notice that, among six
transition points, there are two first-order phase transitions at
θ ≈ −0.40π and θ ≈ 0.94π between ferromagnetic phase and
its adjacent phases: the rung singlet phase and the dominant
collinear spin region. The remaining four transition points
are continuous. These results are in good agreement with the
earlier analyses36,42 based on the exact diagonalization and
DMRG. Therefore, the TN algorithm yields reliable results
for the two-leg Heisenberg spin ladder with cyclic four-spin
exchange. In addition, the ground-state fidelity per lattice site,
as a universal marker to detect phase transitions, is able to
capture drastic changes of ground-state wave functions around
critical points for quantum spin ladders.

Once the ground-state phase diagram is known, we are
able to read out local order parameters (if any) from the
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FIG. 9. (Color online) (Top) A two-dimensional fidelity surface
embedded in a three-dimensional Euclidean space. (Bottom) The
contour plot of the ground-state fidelity per lattice site, d(θ1,θ2),
on the (θ1,θ2) plane, for the two-leg Heisenberg spin- 1

2 ladder
with cyclic four-spin exchange. There are six pinch points on the
fidelity surface. Therefore, six different phases are identified: the
ferromagnetic phase, the rung singlet phase, the staggered dimer
phase, the scalar chirality phase, the dominant vector chirality region,
and the dominant collinear spin region. The ground-state phase
diagram is as follows: the ferromagnetic phase for −1.06π (0.94π ) �
θ � −0.40π , the rung singlet phase for −0.40π � θ � 0.06π , the
staggered dimer phase for 0.06π � θ � 0.15π , the scalar chirality
phase for 0.15π � θ � 0.38π , the dominant vector chirality region
for 0.38π � θ � 0.80π , and the dominant collinear spin region for
0.80π � θ � 0.94π .

reduced density matrices for a representative ground-state
wave function in a given phase, as advocated in Ref. 28.

In the ferromagnetic phase, the non-zero-entry structure of
the one-site reduced density matrix shows that the 〈Sα,i〉 are
the same at all the lattice sites for the two-leg spin ladder.
Therefore, the local order parameter is

OF = |〈ψ0|Sα,i |ψ0〉|. (10)

As seen in Fig. 10, OF ≡ 0.50. That is, spins are fully polarized
in this phase. In fact, the spin correlations 〈Sα,i · Sα,i+1〉
between the nearest-neighbor spins on the legs and the
spin correlations 〈S1,i · S2,i〉 between spins on the rungs are
0.25. The ferromagnetic state minimizes the energy on each
plaquette separately for −1.06π (0.94π ) � θ � −0.40π .
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FIG. 10. (Color online) The local order parameters OF , OSD ,
OSC , OV C , and OCS in the ferromagnetic phase, the staggered dimer
phase, the scalar chirality phase, the dominant vector chirality region,
and the dominant collinear spin region and the string order parameters
Oodd, and Oeven in the rung singlet phase versus θ , respectively.
Note that Oodd = 0 and Oeven 
= 0 for −0.40π � θ � 0.06π , which
is characteristic of the rung singlet phase.

In the rung singlet phase, the ground-state wave function
may be approximated by the product of local rung singlets.
The ground state lacks long-range order in the conventional
sense, meaning there is no local order parameter; instead,
an exotic order occurs. In fact, the rung singlet phase and
the Haldane phase are essentially the same; namely, both are
characterized by the string order,66,67 which may be identified
by two distinct string order parameters Oodd and Oeven, as
defined in Eq. (6). Actually, the even and odd string order
parameters are mutually exclusive: When one is nonzero in
a phase, the other vanishes in the same phase. If Oodd 
= 0
and Oeven = 0, then it corresponds to the Haldane phase; if
Oodd = 0 and Oeven 
= 0, then it corresponds to the rung singlet
phase. As is shown in Fig. 10, our simulation results for Oodd

and Oeven for −0.40π � θ � 0.06π indicate that it is the rung
singlet phase.

In the staggered dimer phase, the non-zero-entry structure
of the two-site reduced density matrix exhibits a pattern, with
the local order parameter as follows,

OSD = 1
2 |〈ψ0|S1,i−1 · S1,i − S1,i · S1,i+1

+ S2,i · S2,i+1 − S2,i−1 · S2,i |ψ0〉|. (11)

Here, 〈ψ0|Sα,i · Sα,i+1|ψ0〉 = 〈ψ0|S1,1 · S1,2|ψ0〉 if α + i is
even; 〈ψ0|Sα,i · Sα,i+1|ψ0〉 = 〈ψ0|S2,1 · S2,2|ψ0〉 if α + i is
odd for two degenerate symmetry-breaking ground states in
this phase. The ladder is in the staggered dimer phase for
0.06π � θ � 0.15π (cf. Fig. 10).

In the scalar chirality phase, we need to study the non-zero-
entry structure of the three-site reduced density matrix. This
yields the local order parameter

OSC = |〈ψ0|S1,i · (S2,i × S1,i+1)|ψ0〉|. (12)

It breaks the spatial symmetries and the time-reversal symme-
try, but not the internal SU(2) symmetry. The scalar chirality
phase lies in 0.15π � θ � 0.38π , as seen from Fig. 10.

In the dominant vector chirality region, the non-zero-entry
structure of the two-site reduced density matrix yields the local

order parameter

OV C−leg = |〈ψ0|Sα,i × Sα,i+1|ψ0〉|, (13)

OV C−rung = |〈ψ0|Sα,i × Sα+1,i |ψ0〉|. (14)

It breaks the spatial symmetries and the time-reversal sym-
metry. In this phase, the spin correlations are strong between
bonds on rungs and legs, but the spin correlations are very
weak between diagonal bonds. The order parameter is plotted
in Fig. 10, which is nonzero between 0.38π � θ � 0.80π .

In the dominant collinear spin region, spins on the same leg
exhibit ferromagnetic correlations, while spins on the same
rung exhibit antiferromagnetic correlations. The non-zero-
entry structure of the one-site reduced density matrix yields
the local order parameter

OCS = 1
2 |〈ψ0|S1,i − S2,i |ψ0〉|. (15)

The dominant collinear spin region lies in 0.80π � θ �
0.94π .

Therefore, we are able to “derive”, by investigating the
non-zero-entry structure of the reduced density matrices for
representative ground-state wave functions from different
phases, the local order parameters for the ferromagnetic phase,
the staggered dimer phase, the scalar chirality phase, the
dominant vector chirality region, and the dominant collinear
spin region, with the local order parameter OF , OSD , OSC ,
OV C , and OCS explicitly shown in Fig. 10. In addition,
string order parameters Oodd and Oeven are detected in the
rung singlet phase, indicating that long-range order is lacking
in this phase. The ground-state phase diagram established
from the local order parameters coincides with that from the
ground-state fidelity per lattice site. That is, the ladder system
undergoes four continuous phase transitions at θ ≈ 0.06π ,
θ ≈ 0.15π , θ ≈ 0.38π , and θ ≈ 0.80π and two first-order
phase transitions at θ ≈ −0.40π and θ ≈ 0.94π .

D. The ferromagnetic frustrated spin- 1
2 two-leg ladder

We consider the frustrated spin- 1
2 two-leg ladder, as

depicted in Fig. 11, on an infinite-size lattice. The Hamiltonian
takes the form

H = Hleg + Hrung + Hdiag, (16)

where

Hleg = Jl

∑
i

(S1,i · S1,i+1 + S2,i · S2,i+1), (17)

Hrung = Jr

∑
i

S1,i · S2,i , (18)

Hdiag = J×
∑

i

(S1,i · S2,i+1 + S2,i · S1,i+1). (19)

rJ

lJ

J

FIG. 11. An infinite-size frustrated spin- 1
2 two-leg ladder with

exchange interaction constants Jl , Jr and J× along the leg, rung, and
diagonal directions, respectively.
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Here, Sα,i (α = 1,2) denotes the spin- 1
2 Pauli operators at

site i on the αth leg, Jl is the intrachain coupling between
two neighboring spins in each chain, Jr is the rung coupling
between two spins on each rung, and J× denotes the next-
nearest-neighbor interchain coupling.

For this ladder system, we choose Jl to be positive. The
system is frustrated with two competing interchain exchanges,
the rung coupling Jr and the diagonal coupling J×. If the
coupling parameters Jr and J× are varied, the system exhibits
two cases: for Jr > 0 and J× > 0, it corresponds to two com-
peting antiferromagnetic interchain couplings;40,48–58,67–70 for
Jr < 0 and J× < 0, it becomes two competing ferromagnetic
interchain couplings.40,41

We fix the intrachain antiferromagnetic exchange Jl to be
unity, and focus on two cases for Jr < 0 and J× < 0: (i)
Jr = −1.6, and choose J× as a control ferromagnetic exchange
parameter from J× = −1.00 to J× = −0.40; (ii) Jr = −4.0,
and choose J× as a control parameter from J× = −1.00
to J× = −0.60. Thus, Hleg describes two isotropic Heisen-
berg chains, Hrung and Hdiag describe frustrated interchain
interactions, with two competing interchain ferromagnetic
exchanges.
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FIG. 12. (Color online) (Top) A two-dimensional fidelity surface
embedded in a three-dimensional Euclidean space for the frustrated
spin- 1

2 two-leg ladder with a fixed Jr = −1.6 and the diagonal
coupling −1.00 � J× � −0.40. Here, the truncation dimension D is
16. There are two pinch points on the fidelity surface. Therefore, three
different phases are identified: the rung singlet phase, the columnar
dimer phase, and the Haldane phase. The ground-state phase diagram
is as follows: the rung singlet phase for J× < −0.78, the columnar
dimer phase for −0.78 < J× < −0.58, and the Haldane phase for
J× > −0.58, for a fixed Jr = −1.6. (Bottom) The contour plot of
the fidelity per lattice site d(J×1,J×2), on the (J×1,J×2) plane, for
the frustrated spin- 1

2 two-leg ladder with a fixed Jr = −1.6, and
−1.00 � J× � −0.40.

The ground states of the frustrated spin- 1
2 two-leg ladder

with Jr = −1.6 and Jr = −4.0 for different values of J× < 0
are computed in the context of the TN representations for an
infinite-size spin ladder. As it turns out, the simulation results
are in a good agreement with the previous studies from the
DMRG method and the analytical RG results in Ref. 40. Here,
we focus on the computation of the ground-state fidelity per
lattice site, with the truncation dimension D = 16.

In Fig. 12, the ground-state fidelity per lattice site,
d(J×1,J×2), is plotted for the frustrated spin- 1

2 two-leg ladder
with a fixed Jr = −1.6, and −1.00 � J× � −0.40, with the
bond truncation dimension D = 16. In the top panel, we see
two pinch points at (−0.78, − 0.78) and (−0.58, − 0.58),
which clearly indicates that there are two phase transitions at
J×c1 � −0.78 and J×c2 � −0.58, respectively. In the bottom
panel, a contour plot is shown for the fidelity per lattice site
on the (J×1,J×2) plane. These results are in a good agreement
with the earlier analysis based on DMRG and the analytical
RG results in Ref. 40.

Therefore, we need to characterize three different phases
separated by these two transition points. As advocated in
Ref. 28, once the ground-state phase diagram is known, we
are able to read out local order parameters (if any) from
the reduced density matrices for a representative ground-state
wave function in a given phase. As it turns out, three phases are
the rung singlet phase, the columnar dimer (CD) phase, and
the Haldane phase, respectively. We notice that two continuous
phase transitions occur at J×c1 � −0.78 and J×c2 � −0.58
between the CD phase and its adjacent phases: the rung singlet
phase and the Haldane phase, respectively.

In the CD phase, the non-zero-entry structure of the
two-site reduced density matrices yields a local order

FIG. 13. (Color online) The CD phase local order parameter OCD ,
and the string order parameters Oodd and Oeven, as a function of J×
for the frustrated spin- 1

2 two-leg ladder, respectively, for Jr = −1.6.
Here, we choose J× as a control parameter from J× = −1.00 to
J× = −0.40. The CD phase is characterized by the local order
parameter OCD , whereas the Haldane phase and the rung singlet
phase are characterized by the string order parameters Oodd and Oeven,
respectively. The system undergoes two continuous phase transitions
at J×c1 � −0.78 and J×c2 � −0.58, respectively, exhibiting the CD
phase for −0.78 � J× � −0.58, the Haldane phase for J× � −0.58,
and the rung singlet phase for J× � −0.78. The string order
parameters are featureless for the CD phase: The even string order
parameter Oeven is nonzero, while the odd string order parameter Oodd

vanishes. Here, the truncation dimension is D = 16.
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parameter,

OCD = 1
2 |〈ψ0|S1,i−1 · S1,i + S2,i−1 · S2,i

− S1,i · S1,i+1 − S2,i · S2,i+1|ψ0〉|. (20)

Here, 〈ψ0|Sα,i · Sα,i+1|ψ0〉 = 〈ψ0|S1,1 · S1,2|ψ0〉 if i is odd,
〈ψ0|Sα,i · Sα,i+1|ψ0〉 = 〈ψ0|S2,1 · S2,2|ψ0〉 if i is even, for two
degenerate symmetry-breaking ground states in this phase.
Indeed, the CD phase is spontaneously dimerized, which
breaks translational symmetry (along the chain direction). The
CD order is plotted in Fig. 13, while it vanishes in the rung
singlet and the Haldane phases.

In the rung singlet phase, rung pairs form singlets,
the ground-state wave function can be approximated by the
product of local rung singlets. However, the ground state
lacks long-range order in the conventional sense; thus, there
is no local order parameter. Instead, an exotic order occurs.
While in the Haldane phase, the ground-state wave function
may be local rung triplets, whose ground states are a direct
product of triplet states in each rung, with two spin- 1

2 ’s on
the rung forming an effective spin-1. In fact, the rung singlet
phase and the Haldane phase are essentially the same, for
both are characterized by the string order.66,67 In Fig. 13,
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FIG. 14. (Color online) The ground-state fidelity per lattice
site, d(J×1,J×2), for the frustrated spin- 1

2 two-leg ladder with a
fixed Jr = −4.0, and −1.00 � J× � −0.60. Here, the truncation
dimension D is 16. (Top) In a three-dimensional Euclidean space,
the two-dimensional fidelity surface clearly indicates that there is
a phase transition point, as a pinch point occurs at J×c3 � −0.81.
(Bottom) The contour plot of the fidelity per lattice site d(J×1,J×2),
on the (J×1,J×2) plane, for the frustrated spin- 1

2 two-leg ladder with
a fixed Jr = −4.0, and −1.00 � J× � −0.60 with the truncation
dimension D = 16.

we plot the order parameters for different phases, including
local order parameter OCD for the CD phase and the string
order parameters Oodd and Oeven in Eq. (6) for the rung
singlet phase and the Haldane phase, as a function of J×
for the frustrated spin- 1

2 two-leg ladder, with Jr = −1.6. In
the absence of a local order parameter, it is known that,
for Oodd 
= 0 and Oeven = 0, it corresponds to the Haldane
phase; for Oodd = 0 and Oeven 
= 0, it corresponds to the
rung singlet phase. Therefore, the rung singlet phase lies in
J× � −0.78, the Haldane phase lies in J× � −0.58, and the
CD phase lies in −0.78 � J× � −0.58. Notice that, in the
CD phase, the even string order parameter Oeven is nonzero,
while the odd string order parameter Oodd vanishes. However,
the even string order parameter Oeven is nonzero in both the
CD phase and the rung singlet phase; thus, it is unable to
distinguish them. As we see, the ground-state phase diagram
established from both the local order parameter and the string
order parameters coincides with that from the ground-state
fidelity per lattice site. That is, the frustrated spin- 1

2 two-leg
ladder system undergoes two continuous phase transitions at
J×c1 � −0.78 and J×c2 � −0.58 for a fixed Jr = −1.6, and
−1.00 � J× � −0.40.

In Fig. 14, the ground-state fidelity per lattice site,
d(J×1,J×2), is plotted for the frustrated spin- 1

2 two-leg ladder
with Jr = −4.0, and −1.00 � J× � −0.60. Here, the trun-
cation dimension D is 16. In a three-dimensional Euclidean
space, the two-dimensional fidelity surface clearly indicates
that there exists a phase transition point, shown as a pinch
point at (−0.81, − 0.81) in the top panel. The contour plot of
the fidelity per lattice site d(J×1,J×2) on the (J×1,J×2) plane
is shown in the bottom panel. Hence, the computation of the
ground-state fidelity per lattice site enables us to conclude that
a continuous phase transition takes place at J×c3 � −0.81,
which is in a good agreement with the earlier results from
Ref. 40.

In Fig. 15, we plot the local order parameter OCD for the CD
phase, as defined by Eq. (20), and the string order parameters

FIG. 15. (Color online) The local order parameter OCD for the CD
phase, and the string order parameters Oodd and Oeven for the Haldane
phase, as a function of J× for the frustrated spin- 1

2 two-leg ladder
with Jr = −4.0 and −1.00 � J× � −0.60. The system undergoes
a continuous phase transition at J×c3 � −0.81, exhibiting the CD
phase for J× � −0.81, and the Haldane phase for J× � −0.81. Note
that, for the CD phase, the even string order parameter Oeven 
= 0,
while the odd string order parameter Oodd = 0. Here, the truncation
dimension is D = 16.
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Oodd and Oeven for the Haldane phase, as defined by Eq. (6), as
a function of J× for the frustrated spin- 1

2 two-leg ladder, with
Jr = −4.0. Similar to the Jr = −1.6 case, the Haldane phase
lies in J× � −0.81 and the CD phase lies in −1.00 � J× �
−0.81 for Jr = −4.0. Here, for the CD phase, we find that the
even string order parameter Oeven is nonzero, while the odd
string order parameter Oodd vanishes. Again, the ground-state
phase diagram established from the order parameters coincides
with that from the ground-state fidelity per lattice site. That
is, the frustrated spin- 1

2 two-leg ladder system undergoes a
continuous phase transition at J×c3 � −0.81 for Jr = −4.0,
and −1.00 � J× � −0.40.

V. CONCLUSIONS

We have developed an efficient TN algorithm to compute
ground-state wave functions for infinite-size quantum spin
ladders. For all the models investigated, the phase transition
points detected by means of both the ground-state fidelity per
lattice site and the order parameters coincide with each other
and are consistent with those from the ED and/or DMRG.
For the two-leg Heisenberg spin ladder with staggering
dimerization, we compare the ground-state energies with
those from both the ED and the DMRG and find that our
results are comparable to the previous DMRG results. Indeed,
the TN algorithm even outperforms the DMRG in some
specific situations for a quite small truncation dimension.
Unfortunately, except for the two-leg Heisenberg spin ladder
with staggering dimerization, no numerical DMRG results
for the ground-state energy for infinite-size spin ladders
are available to be compared with. Given that, for a TN
algorithm, a larger truncation dimension yields a more accurate
result, one may anticipate that the TN algorithm outperforms
other approaches, since the computational cost is relatively
lower.

In addition, it is worthwhile to mention that, similar to a
gapless phase, a gapful phase with a finite but quite small gap,
such as the scalar chirality, the vector chirality phase, and the
Haldane phase, as expected, are more difficult to simulate than
a gapful phase with a larger gap, such as the ferromagnetic
phase. However, our algorithm still converges well in these
phases. In fact, the ground-state energy relative error between
the truncation dimensions D = 6 and D = 8 reaches up to
10−4 for these phases. In comparison, for the ferromagnetic
phase, it reaches up to 10−6. Another point we would like to

mention is that, even if we choose the truncation dimension D
to be as small as 4, we are still able to detect all the relevant
phase transition points quite accurately, compared to those
with larger truncation dimensions. As a typical example, for
the ferromagnetic frustrated spin- 1

2 two-leg ladder model, no
significant shift is observed for the phase transition points
detected withD = 4, compared to those detected withD = 16.
In this sense, it is sufficient to simulate a spin-ladder system
with a relatively small truncation dimension for the detection
of phase transition points in terms of the ground-state fidelity
per lattice site.

Our investigation lends further support to the observation
that the ground-state fidelity per lattice site is able to character-
ize critical phenomena in quantum many-body systems. It also
demonstrates that the developed TN algorithm for spin ladders
makes it possible to efficiently compute the ground-state
fidelity per lattice site. This is systematically tested for the
two-leg and three-leg Heisenberg spin ladders with staggering
dimerization, the two-leg Heisenberg spin ladder with cyclic
four-spin exchange, and the ferromagnetic frustrated two-leg
ladder. Our simulation results clearly indicate that the TN
algorithm yields reliable results for spin-ladder systems. In
addition, the ground-state fidelity per lattice site, a universal
marker to detect phase transitions, shows its capability to
capture drastic changes of ground-state wave functions around
phase transition points for quantum spin-ladder systems. Last
but not least, we are able to “derive” local order parameters
(if any) from the reduced density matrices for a representative
ground-state wave function in a given phase and characterize
a phase without any long-range order in terms of the string
order parameters.
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