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We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of
a system of interacting particles. Within this approach, the dynamics of the system is described with the use
of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced
through random Langevin-like forces with a specific power spectral density (the color noise). The color noise
describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of
thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination
of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one
can determine the temperature of such a system from the measured power spectrum and temperature- and
relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport
in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and
rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that
the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range
T < 500 K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably
less than that obtained within the description based on classical statistics of phonons. This conclusion is also
applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene
nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and
quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in
comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The
semiquantum molecular dynamics approach allows us to model the transition in the rough-edge nanoribbons
from the thermal-insulator-like behavior at high temperature, when the thermal conductivity decreases with the
conductor length, to the ballistic-conductor-like behavior at low temperature, when the thermal conductivity
increases with the conductor length. We also show how the combination of strong nonlinearity of periodic
interatomic potentials with the quantum statistics of phonons changes completely the low-temperature thermal
conductivity of the system.

DOI: 10.1103/PhysRevB.86.064305 PACS number(s): 44.05.+e, 65.80.−g

I. INTRODUCTION

Molecular dynamics (MD) is a method of numerical
modeling of molecular systems based on classical Newtonian
mechanics. It does not allow for the description of pure
quantum effects such as freezing out of high-frequency
oscillations at low temperatures and the related decrease to zero
of heat capacity for T → 0. In classical molecular dynamics
(CMD), each dynamical degree of freedom possesses the same
energy kBT , where kB is the Boltzmann constant. Therefore in
classical statistics the specific heat of a solid almost does not
depend on temperature when only relatively small changes,
caused by the anharmonicity of the potential, can be taken
into account.1 On the other hand, because of its complexity,
a pure quantum-mechanical description does not allow in
general the detailed modeling of the dynamics of many-body
systems. To overcome these obstacles, different semiclassical
methods, which allow us to take into account quantum effects
in the dynamics of molecular systems, have been proposed.2–8

The most convenient for the numerical modeling is the use
of the Langevin equations with color noise random forces.5,7

In this approximation, the dynamics of the system is described
with the use of classical Newtonian equations of motion, while
the quantum effects are introduced through random Langevin-
like forces with a specific power spectral density (the color

noise), which describe the interaction of the molecular system
with the thermostat. Below we give a detailed description of
this semiquantum molecular dynamics (SQMD) approach in
application to the simulation of specific heat and heat transport
in different low-dimensional nanostructures.

The paper is organized as follows. In Sec. II we describe
the temperature-dependent Langevin dynamics of the system
under the action of random forces. If the random forces
are δ correlated in time domain, this corresponds to the
white noise with a flat power spectral density. This situation
corresponds to high enough temperatures, when kBT is
larger than the quantum of the highest-frequency mode in
the system, kBT � h̄ωm. But for low enough temperature,
kBT � h̄ωm, the stochastic dynamics of the system should
be described with the use of random Langevin-like forces
with a nonflat power spectral density, which corresponds to
the system with color noise. In Sec. III we describe the
determination of temperature in quantum lattice systems,
to which the equipartition limit is not applied. We show
how one can determine the temperature of such a system
from the measured power spectrum and temperature- and
relaxation-rate-independent density of vibrational (phonon)
states. In Sec. IV we describe a method for the generation
of color noise with the power spectrum, which is consistent
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with the quantum fluctuation-dissipation theorem.1,9 In Secs. V
and VII we apply such a semiquantum molecular dynamics
approach to the simulation of the specific heat and phonon heat
transport in carbon nanotubes. In Sec. VI we apply this method
to the simulation of heat transport in a molecular nanoribbon
with rough edges. Previously, we have predicted analytically10

and confirmed by classical molecular dynamics simulations11

that rough edges of molecular nanoribbon (or nanowire) cause
strong suppression of phonon thermal conductivity due to
strong momentum-nonconserving phonon scattering. Here we
show that the rough edges and quantum statistics of phonons
change drastically the thermal conductivity of the rough-
edge nanoribbon in comparison with that of the nanoribbon
with perfect (atomically smooth) edges. The semiquantum
molecular dynamics approach allows us to model the transition
in the rough-edge nanoribbons from the thermal-insulator-like
behavior at high temperature, when the thermal conductivity
decreases with the conductor length, see Ref. 11, to the
ballistic-conductor-like behavior at low temperature, when the
thermal conductivity increases with the conductor length. In
Sec. VIII we apply this technique to the simulation of thermal
transport in a nanoribbon with strongly anharmonic periodic
interatomic potentials. We show how the combination of
strong nonlinearity of the interatomic potentials with quantum
statistics of phonons changes completely the low-temperature
thermal conductivity of the nanoribbon. In Sec. IX we provide
a summary and discussions of all the main results of the paper.

II. LANGEVIN EQUATIONS WITH COLOR NOISE

In the presence of a Langevin thermostat, equations of
motion of coupled particles have the following form:

Mnr̈n = − ∂

∂rn

H − Mn�ṙn + �n, (1)

where the three-dimensional radius vector rn(t) gives the po-
sition of the nth particle at the time instant t (n = 1,2, . . . ,N ,
N being the total number of particles), Mn is the particle mass,
H is the Hamiltonian of the system, and Fn = −∂H/∂rn gives
the force applied to the nth particle caused by the interaction
with the other particles, � = 1/tr is the friction coefficient
(tr being the relaxation time due to the interaction with the
thermostat), and �n = {ξα,n}3

α=1 are random forces with the
Gaussian distribution.

In the semiquantum approach the random forces do not
represent in general white noise. The power spectral density
of the random forces in that description should be given by the
quantum fluctuation-dissipation theorem:1,9

〈ξαnξβm〉ω = 2Mn�kBT δαβδnmp(ω,T ), (2)

where n,m = 1,2, . . . ,N , α,β = 1,2,3 are Cartesian compo-
nents, δnm and δαβ are Kronecker δ symbols. Here the positive
and even in frequency ω function

p(ω,T ) = 1

2

h̄ω

kBT
+ h̄ω/kBT

exp(h̄ω/kBT ) − 1

= h̄ω

2kBT
coth

(
h̄ω

2kBT

)
(3)

gives the dimensionless power spectral density at temperature
T of an oscillator with frequency ω. The first term in Eq. (3)
gives the contribution of the zero-point oscillations to the
power spectral density of random forces. With the use of
Eqs. (2) and (3), we get the correlation function of the random
forces as

〈ξαn(t)ξβm(0)〉 =
∫ +∞

−∞
〈ξαnξβm〉ωeiωt dω

2π

= 2Mn�kBT δαβδnm

∫ +∞

−∞
p(ω,T )eiωt dω

2π
. (4)

Let �max be the maximal vibrational eigenfrequency of the
molecular system. At high temperatures, T � h̄�max/kB , one
has p(ω,T ) = 1 and the molecular system will perceive the
random forces as a δ-correlated white noise:

〈ξαn(t)ξβm(0)〉 = 2Mn�kBT δαβδnmδ(t). (5)

Therefore for high enough temperatures we deal with molec-
ular dynamics with Langevin uncorrelated random forces.
But for low temperatures, the random forces are correlated
according to the function given by Eqs. (3) and (4). In other
words, for low temperatures the random forces in the system
represent the color noise with the dimensionless power spectral
density p(ω,T ) given by Eq. (3).

III. DETERMINATION OF TEMPERATURE
IN QUANTUM LATTICE SYSTEMS

In connection with the consideration of the thermodynamics
and dynamics of nonclassical lattices, in this section we discuss
possible determination of the temperature in the systems, to
which the equipartition limit is not applied. We start from
Eq. (1), rewritten as the equations of motion for the lattice
vibrational mode with eigenfrequency �n:

MnQ̈n + Mn�Q̇n + Mn�
2
nQn = �n, (6)

where �n = {ξα,n}3
α=1 are random forces with the spectral

density given by Eqs. (2) and (3).
From Eqs. (2), (3), and (6) we obtain

Mn

〈
Q2

n

〉
ω,T

= h̄ω

2
coth

(
h̄ω

2kBT

)
2�(

�2
n − ω2

)2 + ω2�2
, (7)

and power spectrum ẼT (ω) of lattice vibrations with 3N − 6
nonzero eigenmodes:

ẼT (ω) =
3N∑
n=7

1

2
Mn

(
ω2 + �2

n

)〈
Q2

n

〉
ω,T

=
3N∑
n=7

Mnω
2
〈
Q2

n

〉
ω,T

=
3N∑
n=7

Mn�
2
n

〈
Q2

n

〉
ω,T

= h̄ω

2
coth

(
h̄ω

2kBT

) 3N∑
n=7

�
(
ω2 + �2

n

)
(
�2

n − ω2
)2 + ω2�2

= h̄ω

2
coth

(
h̄ω

2kBT

) 3N∑
n=7

2�ω2(
�2

n − ω2
)2 + ω2�2

= h̄ω

2
coth

(
h̄ω

2kBT

) 3N∑
n=7

2��2
n(

�2
n − ω2

)2 + ω2�2
. (8)
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We can use 〈Q2
n〉ω,T and the power spectrum ẼT (ω), Eqs. (7)

and (8), to compute the average energy of the system. Taking
into account that the above quantities are even functions of
frequency ω, for positive ω the average energy of the system
can be computed as

E(T ) =
∫ ∞

−∞
ẼT (ω)

dω

2π
=

∫ ∞

0
ẼT (ω)

dω

π
. (9)

In the weakly dissipative limit, with � � �n for all �n,
which is realized in all the considered system, for positive ω

and �n one has, in the sense of generalized functions,

2�ω2(
�2

n − ω2
)2 + ω2�2

≈ 2��2
n(

�2
n − ω2

)2 + ω2�2

≈ �
(
�2

n + ω2
)

(
�2

n − ω2
)2 + ω2�2

≈ πδ(ω − �n).

(10)

We can introduce in this limit the density of vibrational
(phonon) states (for positive frequencies) as

D(ω) =
3N∑
n=7

2��2
n(

�2
n − ω2

)2 + ω2�2
≈ π

3N∑
n=7

δ(ω − �n). (11)

Then the power spectrum (for positive ω) consists of an array
of the δ functions at the system eigenfrequencies, weighted by
temperature,

ẼT (ω) ≡ h̄ω

2
coth

(
h̄ω

2kBT

)
D(ω)

= π

2
h̄ω coth

(
h̄ω

2kBT

) 3N∑
n=7

δ(ω − �n), (12)

and the average energy of the system (9) has the following
form:

E(T ) =
3N∑
n=7

[
1

2
h̄�n + h̄�n

exp(h̄�n/kBT ) − 1

]
. (13)

Here the first term in the sum gives the temperature-
independent contribution of zero-point oscillations to the
energy of the system. As one can see from Eqs. (11)–(13),
in the weakly dissipative limit the density of vibrational states,
power spectrum, and average energy of the system do not
depend explicitly on the relaxation rate �.

From Eq. (12) we get the “quantum definition” of tempera-
ture T through the power spectrum of lattice vibrations at the
given frequency:

T = h̄ω/

(
kB ln

[
1 + AT (ω)

1 − AT (ω)

])
, (14)

where

AT (ω) = h̄ωD(ω)/[2ẼT (ω)]. (15)

In the case when one omits the zero-point contribution to
the spectrum of the random forces, namely considers

p(ω,T ) = h̄ω/kBT

exp(h̄ω/kBT ) − 1
(16)

in Eqs. (2) and (6), the temperature can be determined from
the following equation:

T = h̄ω/ {kB ln [1 + 2AT (ω)]} , (17)

where in the definition of the function AT (ω) in Eq. (15) the
function ẼT (ω), in contrast to function ẼT (ω) in Eq. (8), does
not have now the zero-point contribution,

ẼT (ω) = h̄ω

exp(h̄ω/kBT ) − 1

3N∑
n=7

2��2
n(

�2
n − ω2

)2 + ω2�2
, (18)

and, correspondingly, one has

E(T ) =
3N∑
n=7

h̄�n

exp(h̄�n/kBT ) − 1
. (19)

In the equipartition limit, which is realized for T �
h̄�max/kB , one has ẼT (ω) = kBT D(ω), AT (ω) � 1, and both
Eqs. (14) and (17) turn into the identity T = T .

Therefore one can determine the temperature of the quan-
tum lattice system from the measured power spectrum ẼT (ω)
and temperature- and relaxation-rate-independent density of
vibrational (phonon) states D(ω). In Fig. 6 we show the power
spectrum, computed within the semiquantum approach with
� = 1/tr , tr = 0.4 ps, line 1, and in the limit, when the
spectrum is given by an array of the smoothed δ functions,
line 3. As one can see in this figure, the particular choice of
the (long enough) relaxation time tr = 1/� indeed does not
affect the presented results. The determination of temperature,
given by Eqs. (14) and (17), is valid for weakly anharmonic
systems, in which the power spectrum of lattice vibrations
is close to the one given by Eq. (8). Carbon-based materials
like carbon nanotubes, graphene and graphene nanoribbons,
and crystal structures with stiff valence bonds belong to such
systems. It is worth mentioning that the temperature, given
by Eqs. (14) or (17), does not depend on frequency ω only
in the case of equilibrium harmonic lattice excitations, driven
by random forces with power spectrum given by the Bose-
Einstein distribution, Eqs. (2) and (3). The anharmonicity of
the lattice can change the power spectrum of the excitations,
see Fig. 12(b) below. In such case the “phonon temperature”
starts to depend on frequency (similar to the frequency- and
direction-dependent temperature of photons in nonequilibrium
radiation; see Ref. 1), and “hot phonons” with nonequilibrium
high frequencies appear in the system; see Sec. VI below.

IV. COLOR NOISE GENERATION

For the implementation of the semiquantum approach in
molecular dynamics, random forces with the power spectral
density given by p(ω̄) must be generated. Existing numerical
techniques allow the generation of a random quantity from
a prescribed correlation function.12 This approximation was
used in Ref. 7 in the modeling of thermodynamic properties
of liquid 4He above the λ point. But universal methods
require in general the usage of high numerical resources. For
instance, the utilization of the method proposed in Ref. 12
requires the execution of the fast Fourier transform for every
random force value. We propose a technique which takes
into account the specific form of the dimensionless power
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spectral density p(ω̄), where ω̄ = h̄ω/kBT is a dimensionless
frequency.

In terms of ω̄, the dimensionless power spectral density of
random forces looks like

p(ω̄) = 1

2
ω̄ + ω̄

exp(ω̄) − 1
= 1

2
ω̄ coth(ω̄/2). (20)

The random force with dimensionless power spectral density,
given by Eq. (20), can be presented as a sum of two independent
functions, p(ω̄) = p0(ω̄) + p1(ω̄), where the first function,
p0(ω̄) = ω̄/2, has a linear power spectral density, while the
second one is p1(ω̄) = ω̄/[exp(ω̄) − 1].

To generate the color noise with a given dimensionless
power spectral density p(ω̄), we will construct the dimension-
less random vector functions Sn(τ ) = {Sα,n}3

α=1 = S0n(τ ) +
S1n(τ ) of the dimensionless time τ = tkBT /h̄, which will give
the power spectral density of the random forces in Eq. (1) as

〈ξαnξβm〉ω = 2Mn�kBT 〈SαnSβm〉ω̄, (21)

such that

〈ξαn(t)ξβm(0)〉 =
∫ +∞

−∞
〈ξαnξβm〉ωeiωt dω

2π

= 2Mn�kBT

∫ +∞

−∞
〈SαnSβm〉ω̄eiωt dω

2π

= 2

h̄
Mn�(kBT )2

∫ +∞

−∞
〈SαnSβm〉ω̄eiω̄τ dω̄

2π
,

(22)

and

〈SαnSβm〉ω̄ = 〈S0αnS0βm〉ω̄ + 〈S1αnS1βm〉ω̄. (23)

Here, the uncorrelated random functions S0n(τ ) and S1n(τ )
will generate, in a finite frequency interval, the power spectra
p0(ω̄) and p1(ω̄), respectively.

For a molecular system with maximal vibrational eigen-
frequency ωm, we will construct the dimensionless random
vector function S0n(τ ), whose power spectral density generates
p0(ω̄) in the frequency interval [0,ω̄m] (ω̄m = h̄ωm/kBT ).
Each component of this vector can be written as a sum of
dimensionless random functions,

S0αn(τ ) =
4∑

i=1

ci[ηαn,i(τ ) − ζαn,i(τ )]. (24)

The functions {ζαni}4
i=1 which generate the color noise, are the

solutions of the linear equations:

ζ ′
αni(τ ) = λi[ηαni(τ ) − ζαni(τ )], (25)

where ζ ′
αni(τ ) is the derivative with respect to τ . Here

ηαni(τ ) are dimensionless white-noise random forces, with
the correlation functions

〈ηαni(τ )ηβkj (0)〉 = 2δαβδnkδij δ(τ )/λi. (26)

By solving Eq. (25) in the frequency domain, ζαni can be
substituted in Eq. (24) and the power spectra of S0n can be

TABLE I. Value of the coefficients λi , ci , �̄i , �̄i .

Coefficient Value Coefficient Value

λ1/ω̄m 1.763 817 c5 1.8315
λ2/ω̄m 0.394 613 c6 0.3429
λ3/ω̄m 0.103 506 �̄5 2.7189
λ4/ω̄m 0.015 873 �̄6 1.2223
c1/ω̄m 1.043 576 �̄5 5.0142
c2/ω̄m 0.177 222 �̄6 3.2974
c3/ω̄m 0.050 319
c4/ω̄m 0.010 241

obtained as

〈S0αnS0βm〉ω̄ = δαβδmn

4∑
i=1

2c2
i ω̄

2

λi

(
λ2

i + ω̄2
) . (27)

The dimensionless parameters ci and λi can be found by
minimizing the integral

∫ 1

0

[
1

2
x −

4∑
i=1

2c̄2
i x

2

λ̄i

(
λ̄2

i + x2
)
]2

dx (28)

with respect to the parameters c̄1,λ̄1, . . . ,c̄4,λ̄4, where c̄i =
ci/ω̄m, λ̄i = λi/ω̄m. The coefficients ci , λi , i = 1, . . . ,4,
obtained within this procedure, are shown in Table I. For
these parameters, integral (28) reaches its lower value, equal
to 2.46 × 10−8.

As one can see from Fig. 1, the function given by Eq. (27)
approximates with high accuracy the linear function p0(ω̄) =
ω̄/2 in the frequency interval 0.015 � ω̄/ω̄m < 1.1. On the
other hand, the random function S1αn(τ ), which will generate
the power spectral density p1(ω̄), can be approximated by a

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ω/ωm
−   −

− 
   

 −
p(

ω
)/

ω
m

0 0.02 0.04
0

10

20
x 10

−3

FIG. 1. (Color online) Power spectral density of color noise S0(τ )
(blue line). Red line shows Eq. (27), dashed line shows the linear
function p0(ω̄)/ω̄m = ω̄/2ω̄m. The two lines practically coincide in
the frequency interval 0.015 � ω̄/ω̄m � 1.1. The inset shows spectral
densities given by Eq. (27) (red line) and by linear function p0(ω̄)/ω̄m

(dashed line) in the frequency interval 0 � ω̄/ω̄m � 0.04. For color
noise generation, Eq. (25) was numerically integrated with the use
of fourth-order Runge-Kutta method with a constant integration step
�τ = 0.05/ω̄m.
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sum of two random functions with relatively narrow frequency
spectra:

S1αn(τ ) = c5ζαn5(τ ) + c6ζαn6(τ ). (29)

In this sum the dimensionless random functions ζαni(τ ),
i = 5,6, satisfy the equations of motion as

ζ ′′
αni(τ ) = ηαni(τ ) − �̄2

i ζαni(τ ) − �̄iζ
′
αni(τ ), (30)

where, as before, ηαni(τ ) are δ-correlated white-noise func-
tions:

〈ηαni(τ )ηβkj (0)〉 = 2�̄iδαβδnkδij δ(τ ). (31)

We can solve, as previously, Eq. (30) in the frequency domain
and insert ζαni into Eq. (29) to obtain the power spectrum of
S1αn:

〈S1αnS1βm〉ω̄ = δαβδmn

6∑
i=5

2c2
i �̄i(

�̄2
i − ω̄2

)2 + ω̄2�̄2
i

. (32)

The dimensionless parameters {ci,�̄i ,�̄i}6
i=5 can be found

by minimizing the integral

∫ ∞

0

[
ω̄

exp(ω̄) − 1
−

6∑
i=5

2c2
i �̄i

(�̄2
i − ω̄2)2 + ω̄2�̄2

i

]2

dω̄ (33)

with respect to the parameters c5,�̄5,�̄5,c6,�̄6,�̄6. The ob-
tained parameters are shown in Table I. For these parameters,
integral (33) reaches its lower value, equal to 2.3 × 10−4.
Since the integral (33) is determined by the rapid-descending
functions, the infinite integration limit [0,∞) can be replaced
by a finite one [0,ω̄m]. Numerical integration of the integral
(33) shows that its minimal value practically does not depend
on the upper integration limit for ω̄m > 20.

As one can see from Fig. 2, the function, given by Eq. (32),
approximates with high accuracy the function p1(ω̄) =
ω̄/[exp(ω̄) − 1] in the frequency interval 0 � ω̄ � 10.
Therefore in the semiquantum molecular dynamics approach
one has to solve the Langevin equations (1) with random forces

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

ω−

p(
ω

)
−

FIG. 2. (Color online) Power spectral density of color noise
S1(τ ), Eq. (32) (blue line). Red line shows the function p1(ω̄) =
ω̄/[exp(ω̄) − 1]. For color noise generation, Eq. (30) was numerically
integrated with the use of fourth-order Runge-Kutta method with a
constant integration step �τ = 0.02.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

ω−

p(
ω

)
−

FIG. 3. (Color online) Power spectral density of color noise
S0(τ ) + S1(τ ), given by the sum of Eqs. (27) and (32) (blue line).
Red line shows the function p(ω̄) = (ω̄/2) coth(ω̄/2). For color noise
generation, Eqs. (25) and (30) were numerically integrated with the
use of fourth-order Runge-Kutta method with a constant integration
step �t = 0.005. Maximal dimensionless frequency ω̄m = 10.

�n = {ξαn}3
α=1, whose power spectral density is determined as

〈ξαnξβm〉ω = 2Mn�kBT [〈S0αnS0βm〉ω̄ + 〈S1αnS1βm〉ω̄]

= 2Mn�kBT δαβδmn

[
4∑

i=1

2c2
i ω̄

2

λi

(
λ2

i + ω̄2
)

+
6∑

i=5

2c2
i �̄i(

�̄2
i − ω̄2

)2 + ω̄2�̄2
i

]
. (34)

From Eq. (22) we get the relation between the dimension
ξαn(t) and dimensionless Sαn(τ ) random forces: ξαn(t) =
ξαn(h̄τ/kBT ) = kBT

√
2Mn�/h̄[S0αn(τ ) + S1αn(τ )].

In Fig. 3 we show the comparison of the power spectral
density for the dimensionless frequency ω̄, given by the sum of
Eqs. (27) and (32), with the function (ω̄/2) coth(ω̄/2), Eq. (20).
We see a very good coincidence in the frequency interval
[0,ω̄m] for ω̄m = 10.

To describe the dynamics of molecular system with an
account for quantum statistics of molecular vibrations but
without an account for zero-point oscillations, one has to
keep only the last two terms, with i = 5,6, in Eq. (34) and to
solve numerically Eq. (30) in order to simulate random forces
in Eq. (1). Equation (30) plays the role of the filter, which
filters out the dimensionless high-frequency (“nonquantum”)
component of the white noise at low temperature.

It is worth mentioning in this connection that the considered
semiquantum approach permits one to obtain the correct
value of the energy of zero-point oscillations. A semiquantum
account for zero-point oscillations in the modeling of the
properties of liquid 4He above the λ point has allowed us
to describe correctly the liquid state of helium,7 while the
classical molecular dynamics description (without an account
for zero-point oscillations) predicts the solid state of helium at
the same low temperature.
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FIG. 4. Form of a single-walled carbon nanotube C300 with the
zig-zag structure, which consists of N = 300 carbon atoms.

V. TEMPERATURE DEPENDENCE OF SPECIFIC
HEAT OF CARBON NANOTUBE

For the illustration of the implementation of the semi-
quantum approach in molecular dynamics, in this section
we find the temperature dependence of specific heat of a
single-walled carbon nanotube. We consider the nanotube with
the (5,5) chirality index (the zigzag structure), which consists
of N = 300 carbon atoms; see Fig. 4. In the following we will
use the molecular-dynamics model of the carbon nanotube,
which was discussed in detail in Ref. 13.

To model nanotube dynamics at temperature T in the clas-
sical approximation, we will solve the Langevin equation (1)
with a white noise, where H is a Hamiltonian of the nanotube
and all Mn ≡ M , M being a mass of a carbon atom. The
correlation functions of the random forces �n, which describe
the interaction of an nth atom with the thermostat, are given
by Eq. (5).

We take the initial conditions, which correspond to the
equilibrium stationary state of the nanotube at T = 0, and
integrate a system of equations of motion (1) for the time
t = 20tr , during which the system will reach the equilibrium
state at finite temperature. The integration beyond this time
will allow us to find the average thermal energy of the system
〈H 〉 = E(T ). Then the specific heat of the molecular system
can be found from the temperature dependence of the average
thermal energy C(T ) = dE(T )/dT . As one can see in Fig. 5,
the average thermal energy of the carbon nanotube, placed
in a classical Langevin thermostat, is strictly proportional to
temperature, E(T ) = (3N − 6)kBT ≈ 3NkBT , line 1, and,
correspondingly, nanotube specific heat almost does not
depend on temperature, line 3. This result shows both the
correctness of the modeling and that carbon nanotubes are stiff
structures which possess weak anharmonicity of the dynamics
of the constituting atoms. One can also see in Fig. 5 that the
average thermal energy per mode e(T ) without an account
for zero-point oscillations has the feature that e(T ) � kBT in
general and e(T ) � kBT for temperature much less than the
Debye one. For instance, in the carbon nanotube e(T ) is almost
five times less than kBT at room temperature T = 300 K, see
also Figs. 11(b) and 11(c) below.

To obtain power spectra of the thermal oscillations of
the atoms in the carbon nanotube, one has to switch
off the interaction with the thermostat after the establishment
of the thermal equilibrium in the system. In other words, one
has to solve numerically the frictionless equations of motion,
Eq. (1), with � = 0 and �n = 0, with the initial conditions
for rn and ṙn, which correspond to the thermalized state of the
molecular system. By performing the fast Fourier transform
of the time-dependent particle velocities ṙn(t), one can get the
power spectrum ẼT (ω), Eq. (8). To increase the accuracy of
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FIG. 5. (Color online) Temperature dependence of the average
thermal energy per mode e = E/3NkB (a) and specific heat per mode
c = C/3NkB (b) of a single-walled carbon nanotube C300. Lines 1
and 3 show the dependencies, obtained with classical Langevin
thermostat, red circles give the result of numerical modeling. Lines 2
and 4 give the dependencies, obtained within the quantum description
with the use of eigenmode spectra without an account for zero-point
oscillations, Eqs. (19) and (35); blue circles give the result obtained
within the semiquantum molecular dynamics approach.

the measurement, it is necessary to perform the averaging of
the obtained results on different initial thermalized states of
the system. Power spectral density of the thermal vibrations
of the carbon nanotube atoms is shown in Fig. 6. As one can
see from this figure, all vibrational modes of the system are
excited in the classical Langevin thermostat.

Carbon nanotube is a rigid structure in which the anhar-
monicity of atomic dynamics at room temperature is weakly
pronounced: as one can see from line 2 in Fig. 6, the character-
istic Debye temperature of the carbon nanotube is very high,
TD ∼ h̄ωm/kB ≈ 2400 K, where ωm ≈ 1640 cm−1 is the max-
imal phonon frequency in the system. Therefore we can obtain
the temperature dependence of the carbon nanotube specific
heat with the use of the spectrum of the harmonic (noninteract-
ing) vibrational eigenmodes: C(T ) = dE(T )/dT , where the
average energy of the system E(T ) is given by Eq. (13). To ob-
tain the eigenfrequencies �n, we have to find all the eigenval-
ues of the square symmetric matrix ∂2H/∂rn∂rm of the 3N ×
3N size: if λn is one of the eigenvalues, the eigenfrequency is
determined as �n = √

λn/Mn. For N = 300 atoms in the nan-
otube, we have 3N = 900 eigenmodes, from which the first six
modes, which describe rigid translations and rotations of the
nanotube, have zero frequency, �1 = · · · = �6 = 0, while the
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FIG. 6. (Color online) Power spectral density of thermal vibra-
tions of carbon nanotube C300 atoms at temperature T = 300 K.
Lines 1 (blue) and 2 (red) give the densities obtained within the
semiquantum and classical descriptions, respectively. Line 3 (black)
shows the density obtained with the use of Eq. (37) for the system
of quantum oscillators, where the discreteness of the spectrum was
smoothed for convenience. The frequency spectrum of the mean
kinetic energy per atom is shown.

other eigenfrequencies are nonzero and are distributed in the
interval 25.1 cm−1 � �n � 1640.0 cm−1, n = 7,8, . . . ,900.
We can obtain the temperature dependence of the nanotube
specific heat with the use of Eq. (13):

C(T ) = kB

3N∑
n=7

(
h̄�n

kBT

)2 exp(h̄�n/kBT )

[exp(h̄�n/kBT ) − 1]2
. (35)

As one can see in Fig. 5, the nanotube specific heat
in the quantum description monotonously goes to zero for
T → 0, and the effects of quantum statistics of phonons
are essential for the carbon nanotube in the whole temper-
ature range T < 500 K, in which the specific heat C(T ) of
the nanotube is considerably less than the classical-statistics
value (3N − 6)kB . This conclusion also applies to other
carbon-based materials and systems with high Debye tempera-
ture like graphene, graphene nanoribbons, fullerene, diamond,
diamond nanowires, etc.

To model the nanotube stochastic dynamics in the semi-
quantum approach, we will use the Langevin equations of
motion (1) with random forces �n = {ξαn}3

α=1 with the power
spectral density, given by 〈ξαnξβm〉ω = 2M�kBT 〈S1αnS1βm〉ω̄;
see Eq. (34). Here it is explicitly taken into account that
zero-point oscillations do not contribute to the specific heat
of the system, and therefore one needs to account only for the
random functions, given by Eq. (32).

Therefore the semiquantum approach in this case amounts
to the integration of Eqs. (1) and (30), to find the average
energy 〈H 〉 = E(T ) and the specific heat C(T ) = dE(T )/dT

of the system. As one can see from Fig. 5, the temperature
dependence of the carbon nanotube specific heat, obtained by
studying the nanotube stochastic dynamics with color noise,
coincides completely with the dependence, obtained from
the spectrum of the harmonic vibrational eigenmodes in the
system. Power spectral density of carbon atoms vibrations, see
Fig. 6, shows that the semiquantum approach describes the

thermalization of only the low-frequency eigenmodes, with
ω < ωT = kBT /h̄. In such a way, the approach models the
quantum freezing of the high-frequency eigenmodes at low
temperature T < TD . For the carbon nanotube, the classical
description is definitely not valid at room temperature T =
300 K, when the characteristic frequency ωT = 208.5 cm−1

is much less than the maximal one in the system, ωm =
1640 cm−1; see Fig. 6.

It is worth mentioning in this connection that the obtained
results for the temperature dependence of the specific heat
of the carbon nanotube C300 almost do not depend on the
relaxation time tr . All the five values of tr , tr = 0.1, 0.2, 0.4,
0.8, 1.6 ps, give the same average energy E(T ) and specific
heat C(T ) of the nanotube. One cannot use either too short
tr , when the system dynamics becomes the forced one, or too
long tr , which increases the computation time. We find that the
optimal relaxation time for the carbon nanotube is tr = 0.4 ps.

Above we have introduced and discussed the lattice tem-
perature of the system embedded in the Langevin thermostat
with color noise determined by the quantum fluctuation-
dissipation theorem; see Eqs. (14) and (17). But to compute
the thermal conductivity, one also needs to determine the local
temperature of the part of the molecular system, which is
placed between two thermostats with different temperatures. In
the classical-statistics approximation, the lattice temperature
can be determined as the average double kinetic energy per
mode (or per degree of freedom):

T = 1

3NkB

〈
N∑

n=1

M ṙ2
n

〉
, (36)

where N is a number of atoms and it is assumed that 3N − 6 ≈
3N . As we have shown in Sec. III, such determination of
temperature does not work in the semiquantum approximation
when one needs to deal with the density and population of
vibrational (phonon) states. In this case the determination
of temperature is given by Eq. (14) or (17). But in the MD
simulations, one can also use the determination of temperature,
which is equivalent to the integral presentation of Eq. (12).

Having in mind further simulation of thermal conductivity,
we omit in Eqs. (2) and (6) the zero-point contribution to the
spectrum of the random forces. With the use of Eqs. (9), (12),
(18), and (19), we find the average energy per mode (per degree
of freedom) as

e(T ) ≡ 1

3N
E(T ) = 1

3N

∫ ∞

0

h̄ω

exp(h̄ω/kBT ) − 1
D(ω)

dω

π

= 1

3N

3N∑
n=7

h̄�n

exp(h̄�n/kBT ) − 1
, (37)

where D(ω) is density of vibrational states; cf. Eq. (11).
From the MD simulations, we can also measure the spectral

density ẽkin(ω) of the average double kinetic energy per mode
ekin as

ekin ≡ 1

3N

N∑
n=1

〈
Mnṙ2

n

〉 =
∫ ∞

0
ẽkin(ω)

dω

π
. (38)

In the case of correct “quantum” level occupation, both
Eqs. (37) and (38) should correspond to the same value of
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temperature, therefore we obtain the following equation for
the (numerical) determination of the lattice temperature:

e(T ) = ekin. (39)

Since function e(T ) monotonously increases with T , Eq. (39)
has a unique solution for the temperature. A similar equation,
but with an account for zero-point oscillations, for the rescaling
of MD temperature for an effective one was used in Ref. 14
for quantum corrections of MD results. As we have mentioned
above in the discussion of Fig. 5, neglecting zero-point
oscillations in the computation of the average thermal energy
leads to the feature that ekin � kBT in general and ekin � kBT

for temperature much less than the Debye one; see also
Figs. 11(b) and 11(c) below.

Essentially one can use Eq. (39) for the determination of the
lattice temperature only for the quantum-statistics population
of all phonon states. But the situation can emerge when high-
frequency phonons have an excess excitation, in comparison
with the Bose-Einstein distribution for the given temperature;
see Sec. VII below. In this case the lattice temperature T can be
determined with the use of only part of the phonon spectrum:

1

3N

∫ ω2

ω1

h̄ω

exp(h̄ω/kBT ) − 1
D(ω)

dω

π
=

∫ ω2

ω1

ẽkin(ω)
dω

π
,

(40)

where [ω1,ω2] is the frequency interval with the Bose-Einstein
distribution of the average energy per mode ẽ(ω). For ω1 = 0,
ω2 > �max + � and kBT � h̄ω2, Eq. (40) gives the classical
definition of temperature, ekin = kBT . Clearly Eq. (39), which
is more convenient for the numerical modeling, gives the
correct value of lattice temperature only for ω1 = 0 and
ω2 � �max + �.

If the molecular system is completely embedded in the
Langevin thermostat with color noise random forces, their
spectrum, given by Eq. (3), provides the correct quantum
population of all the phonon states. As one can see in
Fig. 6, at T = 300 K the spectral density of the aver-
age energy per mode ẽkin(ω) in the C300 carbon nanotube
(red line 1) coincides exactly with the smoothed function
D(ω)h̄ω/[exp(h̄ω/kBT ) − 1]/3N (black line 3). In this case
Eq. (39) determines the temperature, which is exactly equal to
the one of the thermostat.

VI. THERMAL CONDUCTIVITY OF NANORIBBON
WITH ROUGH EDGES

First we apply the semiquantum approach for the molecular
dynamics simulation of thermal conductivity in the nanoribbon
with rough edges and harmonic interparticle potential. In such
a system the vibrational eigenmodes do not interact and the
considered semiquantum approach turns out to be the exact
one.

It was predicted analytically and confirmed by classical
molecular dynamics simulations that rough edges of molecular
nanoribbon (or nanowire) cause strong suppression of phonon
thermal conductivity due to strong momentum-nonconserving
phonon scattering.10,11 In the case of nonlinear interatomic
potential, the ribbon has a finite, length-independent thermal
conductivity, while in the case of harmonic interatomic poten-
tial, the thermal conductivity decreases with the ribbon length

n

k

FIG. 7. (Color online) Molecular ribbon made of K = 12 molec-
ular chains. Density and widths of rough edges are d = 0.95 and
K1 = 4, respectively. Lines connect the interacting atoms.

(and the ribbon behaves as a thermal insulator). Essentially for
both interatomic potentials, the thermal conductivity increases
with the length of the nanoribbon with perfect (atomically
smooth) edges. In the case of harmonic interatomic potential,
phonons in the nanoribbon with rough edges experience
effective localization due to strong antiresonance multichannel
reflection from side atomic oscillators in the rough edge
layers (the Anderson-Fano-like localization due to interference
effects in phonon backscattering); see Refs. 10 and 11. Appar-
ently such strong backscattering can localize phonons with the
wavelength shorter than the ribbon length. Within the classical
description, such effect does not depend on temperature. But
this picture will be changed if we take into account the quantum
effects. The latter result in thermalization and correspondingly
in participation in low-temperature thermal transport of long-
wave phonons only. The long-wave phonons are much less
affected by surface roughness than the short-wave phonons
and therefore the effect of thermal conductivity suppression
should decrease with the decrease of temperature. Below
we demonstrate this effect within the proposed semiquantum
approach.

We consider the system which consists of K parallel
molecular chains in one plane.11 Let k be the chain number,
n be the molecular number in the chain, then the equilibrium
position of the nth atom in the kth chain will be x0

k,n = na +
[1 + (−1)k]a/4, y0

k,n = bk, where a and b are, respectively,
the intra- and interchain spatial periods; see Fig. 7.

Only the longitudinal displacements are taken into ac-
count in a simplest scalar model of two-dimensional crystal:
xk,n(t) = x0

k,n + auk,n(t), yk,n ≡ y0
k,n, where uk,n is a dimen-

sionless longitudinal displacement of the (k,n)th molecule
from its equilibrium position. The Hamiltonian of the system
has the form of

H =
K∑

k=1

N∑
n=1

1

2
Ma2u̇2

kn + E0

K∑
k=1

N−1∑
n=1

V (uk,n+1 − uk,n)

+E0

K∑
k=1

Ek, (41)

where N is a number of molecules in each chain, M is a mass
of molecule, E0 is a characteristic interaction energy, V (ρ) is
the dimensionless potential of the nearest-neighbor intrachain
interactions, ρ describes relative displacements of the nearest-
neighbor atoms, Ek describes the interchain interaction.

Dimensionless energy of the nearest-neighbor interchain
interactions for odd k is

Ek =
N∑

n=2

U (uk,n − uk+1,n−1) +
N∑

n=1

U (uk+1,n − uk,n), (42)
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and for even k is

Ek =
N∑

n=1

U (uk,n − uk+1,n) +
N−1∑
n=1

U (uk+1,n+1 − uk,n), (43)

where U (ρ) is the dimensionless potential of the nearest-
neighbor interchain interaction.

We will consider a finite rectangular (1 � n � N,1 �
k � K) with free edges, and harmonic intra- and interchain
interaction potentials:

V (r) = r2/2, U (r) = r2/4. (44)

For the convenience of the modeling, we introduce the di-
mensionless quantities: temperature T̃ = T/T0, time t̃ = t/t0,
and energy E = H/E0, where T0 = h̄2/Ma2kB , t0 = h̄/kBT0,
and E0 = Ma2/t2

0 . Then the dimensionless Hamiltonian will
have the form as

H =
K∑

k=1

N∑
n=1

1

2
u̇2

m,n +
K∑

k=1

N−1∑
n=1

V (uk,n+1 − uk,n) +
K∑

k=1

Ek,

(45)

where the dot denotes the derivative with respect to the
dimensionless time t̃ .

For the dimensionless quantities, equations of motion will
take the form

ükn = − ∂H
∂ukn

−�̃u̇kn + ηkn, k = 1, . . . ,K, n= 1, . . . ,N

(46)

where �̃ = �t0 is the dimensionless friction, and the di-
mensionless random forces ηkn is the color noise with the
correlation functions

〈ηkl(s)ηmn(0)〉 = 2�̃T̃ δkmδln

∫ +∞

−∞
p(ω̃,T̃ ) exp(−iω̃s)

dω̃

2π
,

(47)

and dimensionless power spectral density

p(ω̃,T̃ ) = 1

2
(ω̃/T̃ ) + ω̃/T̃

exp(ω̃/T̃ ) − 1
, (48)

where ω̃ = ωt0 is the dimensionless frequency. In the follow-
ing we will deal only with the dimensionless quantities.

Phonons do not interact in the system with harmonic
interparticle potential. Therefore the zero-point oscillations
will not affect the thermal transport along the nanoribbon
and can be not taken into the account. In the latter case
we can consider the dimensionless random forces with the
power spectra, given by 〈ηknηlm〉ω̃ = 2�̃T̃ 〈S1knS1lm〉ω̄, cf.
Eq. (34). Random forces in Eq. (46) are ηkn(t̃) = ηkn(τ/T̃ ) =
T̃

√
2�̃S1kn(τ ).

Within this approach, we will describe the temperature
dependence of the nanoribbon thermal conductivity κ(T ).
We embed the left end of the ribbon with length Ne = 100
in the thermostat with temperature T+ = 1.1T and the right
end in the thermostat with temperature T− = 0.9T . In this
case the dynamics of the atoms with numbers n = 1, . . . ,Ne

is described by Langevin equations (46) with temperature
T = T+, the atoms with numbers n = N − Ne + 1, . . . ,N are
described by these equations with temperature T = T−, while

the atoms in the central part of the nanoribbon, with numbers
n = Ne + 1, . . . ,N − Ne, are described by the frictionless
equations (46) with �̃ = 0 and ηkn ≡ 0. We take the relaxation
time tr = 100, at which the edge effects at the interfaces
between the ribbon and the thermostats are not essential. We
integrate the equations of motion to find the stationary energy
flux J along the ribbon.

To determine the temperature profile, first we find energy
per mode at the longitudinal coordinate x = na by averaging
the distribution across the ribbon of the scalar-model double
kinetic energy:

ekin(n) = 1

K

K∑
j=1

〈
u̇2

n,j

〉
. (49)

Since in the ribbon with a constant average width the phonon
spectrum does not depend on the longitudinal coordinate and
the intermode interaction is absent in the harmonic system,
we can determine the local temperature from the equation
ekin(n) = e(Tn), similar to Eq. (39). Figure 8 shows the
distribution along the ribbon of energy flux J , kinetic energy
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FIG. 8. (Color online) Distribution of (a) local energy flux J ,
(b) local kinetic energy per mode ekin, and (c) local temperature T

along the rough-edge ribbon (ribbon length N = 400, width K = 12,
rough edges widths K1 = 4, porosity of rough edges p = 0.05). Gray
areas indicate the ribbon ends, embedded in semiquantum Langevin
thermostats with temperatures T± = 1 ± 0.1.
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per mode ekin, and temperature T . There is a stationary flux
in the area between the thermostats. Since the temperature
distribution of phonon frequencies in the ribbon with harmonic
interactions is determined by the Langevin thermostats with
Bose-Einstein color noise, we can uniquely determine the local
temperature Tn, which monotonously changes from the value
T+ at the left end to the value T− at the right end with a linear
gradient; see Fig. 8(c).

Then the dimensionless thermal conductivity of the finite-
length ribbon can be found as

κ(N,T ) = (N − 2Ne)J/[K(T+ − T−)]. (50)

In the ribbon with perfect (atomically smooth) edges,
phonons have infinite mean free path and therefore the energy
flux J does not depend on the length of the central part of
the ribbon Nc = N − 2Ne. In this case, as one can conclude
from Eq. (50) that the thermal conductivity increases linearly
with Nc and therefore such ribbon behaves as an ideal
(ballistic) thermal conductor. In the absence of anharmonicity
of interatomic interactions, this conclusion is valid for any
temperature.

We consider a ribbon which consists of K = 12 molecular
chains. To model the roughness of the ribbon edges, we delete
with probability p = 1 − d some atoms from the chains with
numbers k = 1, . . . ,K1 and k = K − K1 + 1, . . . ,K . Here
K1 is a width of the rough edges, 0 � d � 1 is their atomic
density, and the parameter p determines in fact the porosity
of the ribbon lattice in the defect edges. We take in the
following K1 = 4 and p = 0.05. We computed the thermal
conductivity κ(N,T ) for N = 400 (Nc = 200) and N = 600
(Nc = 400); see Fig. 9. As one can see from this figure, at
high (dimensionless) temperature the ribbon with the length
N = 600 has lower thermal conductivity than the ribbon with
length N = 400. This means that the ribbon behaves much like
thermal insulator, in which the thermal conductivity decreases
with the length of the system; see also Ref. 11. But the situation
is changed for low temperature, for T < 0.18, when the longer
ribbon has the higher thermal conductivity, as in the case of
perfect nanoribbons; see the inset in Fig. 9(a).

In this connection we can define the factor of ther-
mal conductivity suppression by rough edges r(T ,N ) =
κ1(N,T )/κ0(N,T ), where κ0(N,T ) is thermal conductivity of
a ribbon with ideal (atomically smooth) edges and length N ,
κ1(N,T ) is thermal conductivity of the rough-edge ribbon
with the same length and width. As one can see from
Fig. 8(b), the rough edges suppress the thermal conductivity
for all temperatures, r < 1 for T > 0, but the suppression
monotonously decreases with the decrease of temperature: for
T → 0 the thermal conductivities of the ideal- and rough-edge
ribbons flatten, r → 1. This means that long-wave acoustic
phonons are not scattered by surface roughness and therefore
at low enough temperature the rough-edge quantum ribbon
becomes an ideal (ballistic) thermal conductor, in which the
thermal conductivity increases with the conductor length. This
in turn means that at low enough temperature we approach the
limit of ballistic quantum thermal transport, when the value
of thermal conductance Gth = J/�T , the ratio of the thermal
flux J through the quasi-one-dimensional thermal conductor
to the temperature difference �T = T+ − T−, has a quantized
value π2k2

BT /3h (per each of the four massless acoustic modes
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FIG. 9. (Color online) (a) Thermal conductivity κ of rough-edge
ribbon (ribbon width K = 12, rough edge widths K1 = 4, porosity
of rough edges p = 0.05) versus temperature T for ribbon length
N = 600 (line 1) and N = 400 (line 2). Dashed lines 3 and 4 give the
dependencies for perfect nanoribbons (with zero porosity of edges,
p = 0) with N = 600 and N = 400, respectively. Inset shows the
low-temperature limit, T � 0.22. (b) Factor of thermal conductivity
suppression by rough edges r versus temperature for ribbon length
N = 600 (line 5) and N = 400 (line 6).

of the quasi-one-dimensional waveguide), which does not
depend on the material properties (and perfectness) of the
thermal conductor; see, e.g., Refs. 15–17. This property of
low-temperature thermal transport is in drastic contrast to that
in the classical high-temperature regime, in which the same
quasi-one-dimensional rough-edge nanoribbon behaves as a
thermal insulator, in which the thermal conductivity decreases
with the insulator length; see Ref. 11.

VII. MODELING OF HEAT TRANSPORT
IN CARBON NANOTUBE

The computation of the thermal conductivity can be
performed by two methods. In the first method, the system is
thermalized with the use of equilibrium molecular dynamics
and then the interaction with the thermostat is switched off. The
current-current correlation function in the system is computed
and the coefficient of thermal conductivity is found with the
help of Green-Kubo formula based on this correlation function.
In the second method, the method of nonequilibrium dynamics,
the direct modeling of thermal transport is performed. For this
purpose, two ends of the quasi-one-dimensional system are
embedded in two thermostats with different temperatures. The
stationary flux of energy is computed and the coefficient of
thermal conductivity is determined from the known energy
flux, temperature difference, and length of the system. In the
approach based on the nonequilibrium dynamics, the correct
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use of thermostats is important. The Langevin thermostat can
be used in such an approach.

Both methods model the heat transport within the classical
Newtonian dynamics and therefore do not allow us to take into
account the quantum effects. These methods can be justified
only for high enough temperature when the statistics of the sys-
tem becomes completely classical. Nevertheless the method of
the nonequilibrium dynamics can be easily adapted for the use
in the semiquantum approach to molecular dynamics modeling
of thermal transport. Below we demonstrate this by example
of a carbon nanotube.

For the classical modeling of heat transport, we consider
finite nanotube with chirality index (5,5) (see Fig. 4), and
embed its left end in a Langevin thermostat with temperature
T+ = 1.1T and the right end in a thermostat with temperature
T− = 0.9T , where T is a temperature at which the thermal
conductivity will be determined. For this purpose the dynamics
of the atoms at the left (right) end of the nanotube should
be described by the Langevin equations (1) with a white
noise with the correlation function given by Eq. (5) with
temperature T = T+ (T−). Dynamics of the atoms in the central
part of the nanotube we describe with the Hamilton equations

Mnr̈n = −∂H/∂rn. (51)

This allows us to find the distribution of temperature T (x) and
energy flux J (x) along the nanotube; see Fig. 10. The detailed
calculation of these quantities can be found in Ref. 13. In
the classical molecular dynamics description, temperature of a
particle can be determined through its average double kinetic
energy per mode (or per degree of freedom) as

T = M〈ẋ2 + ẏ2 + ż2〉/3kB ≡ ekin/kB, (52)

where M and (x,y,z) are particle mass and Cartesian coordi-
nates.

To illustrate the modeling of heat transport, we consider
a nanotube with a fixed length L = 75.04 nm (which corre-
sponds to N = 6020 atoms) and embed its ends with lengths
Le = L/3 in classical Langevin thermostats with temperature
T± = (1 ± δ)300 K, where δ = 0, 0.0125, 0.025, 0.05, 0.1.
For the relaxation time, we take tr = 0.4 ps. As one can see in
Fig. 10, for δ = 0 when the ends have the same temperature
T+ = T− = 300 K, the temperature is a constant along the
whole nanotube [T (x) ≡ 300 K] and there is no heat flux
in the circuit [J (x) ≡ 0]. For T+ > T− (δ > 0), the linear
temperature gradient T (x) and heat flux are formed in the
central part of the nanotube: J (x) ≡ J > 0 for Le � x �
L − Le. This allows us to determine the thermal conductivity
of the nanotube of length L as

κ(L,T ) = (L − 2Le)J/S(T+ − T−), (53)

where S = πr2 is nanotube cross section [the radius r is equal
to 0.335 nm for the (5,5) single-walled nanotube]. One can
obtain a more accurate estimate for the thermal conductivity
from the temperature profile in the central part of the nanotube:

κ̄ = (L − 2Le)J/S[T (Le) − T (L − Le)], (54)

where T (x) is a distribution of the particle kinetic energy
(temperature) along the nanotube. The definition of thermal
conductivity, given by Eq. (54), allows one to separate bound-
ary resistances from the thermal resistance of the nanotube
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FIG. 10. (Color online) Distribution of (a) local energy flux J and
(b) local temperature T along the carbon nanotube (5,5) C6020; x axis
is along the nanotube axis. Nanotube length is L = 75.04 nm. Gray
areas indicate the nanotube ends, embedded in classical Langevin
thermostats with temperatures T± = (1 ± δ)300 K, for δ = 0; 0.0125;
0.025; 0.05; 0.1 (curves 1 and 6; 2 and 7; 3 and 8; 4 and 9; 5 and 10,
respectively).

by itself. The boundary (Kapitza) resistance causes a finite
difference between the temperatures in the bulk of the heat
reservoir and just at the interface with the nanotube; see
Fig. 10(b). Since one has T (Le) < T+ and T (L − Le) > T− at
the interfaces between the ends embedded in the thermostats
and the central part of the nanotube, Eq. (54) always gives
higher values of thermal conductivity than Eq. (53) does:
κ̄ > κ . Dependencies of the obtained values of κ and κ̄

on the temperature difference at the ends of the nanotube,
�T = 2δ × 300 K, are presented in Table II.

As one can see in Table II, for �T � 60 K the halving
of the temperature difference results in the halving of the
energy flux J . Since in this case the flux is proportional to
the temperature difference, the determination of the thermal
conductivity κ (κ̄) does not depend on the value of �T . It
is worth mentioning that the accuracy of the determination
of the energy flux J decreases with the decrease of �T .
Therefore the most convenient for the MD modeling of thermal
conductivity are the values of the temperatures at the nanotube
ends as T+ = 1.1T and T− = 0.9T , although a relatively high
gradient of temperature is formed in this case (0.8 K/nm for
T = 300 K).

For the semiquantum MD modeling of heat transport, we
must use the Langevin equations (1) with the random forces
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TABLE II. Heat flux J , thermal conductivities κ and κ̄ of the
(5,5) carbon nanotube of length L = 75.04 nm versus temperature
difference at the ends �T = T+ − T− [mean temperature is T =
(T+ + T−)/2 = 300 K, lengths of the embedded in thermostats ends
are Le = L/3, relaxation time is tr = 0.4 ps]. The values were
obtained with the use of classical molecular dynamics (CMD) and of
semiquantum molecular dynamics (SQMD). The values of κ and κ̄

have been calculated with the use of Eqs. (53) and (54).

CMD SQMD

�T (K) J (eV Å/ps) κ (κ̄) (W/mK) J (eV Å/ps) κ (κ̄) (W/mK)

60.0 1.714 260.0 (448) 0.659 99.9 (260)
30.0 0.856 259.5 (447) 0.315 95.4 (249)
15.0 0.426 258.6 (443) 0.154 93.4 (244)
7.5 0.210 257.1 (436) 0.077 93.0 (243)

ξαn with the power spectral density, given by 〈ξαnξβm〉ω =
2M�kBT 〈S1αnS1βm〉ω̄, see Eq. (34), with temperature T =
T+ or T = T−. The color noise is determined as ξαn(t) =
ξαn(h̄τ/kBT±) = kBT±

√
2M�/h̄S1αn(τ ). The zero-point os-

cillations do not contribute to the thermal transport, and
therefore they will not be taken into account in the following
and in all the formulas below we will put S0αn(τ ) ≡ 0. The
thermal conductivity κ can be found with the use of Eq. (53).

In the semiquantum MD modeling, the mean value of
particle kinetic energy ekin does not coincide with the tem-
perature. This value depends not only on the temperature,
but also on the density of phonon states. For example, the
carbon atoms at the end hemispheres of the nanotube have
different vibrational spectrum than the atoms in the central
part of the nanotube. As one can see in Fig. 11(b), at
the very ends of the nanotube, for x close to 0 and to 75 nm,
the mean kinetic energy of carbon atoms is higher than
that in the central part of the nanotube. In the central part
of the nanotube, all the atoms have the same vibrational
spectrum. Here ekin depends unambiguously on temperature
and therefore the distribution of kinetic energy along the
nanotube characterizes unambiguously the distribution of
temperature.

The carbon nanotube is a stiff molecular system with
weakly nonlinear dynamics. One can compute its vibrational
spectrum and then use Eq. (39) to determine the local
temperature in the system.

We consider the nanotube of length L = 75.04 nm,
whose ends with the length Le = L/3 are embedded into
semiquantum Langevin thermostats with temperatures T± =
(1 ± δ)300 K (when δ = 0, 0.0125, 0.025, 0.05, 0.1). As one
can see in Fig. 11(b), for T+ = T− = 300 K (δ = 0) the mean
particle kinetic energy ekin is not constant along the nanotube.
In the central part, which does not interact directly with the
thermostats, particles have higher thermal energy than in the
end parts, which do interact directly with the thermostats. For
the end parts the mean kinetic energy is ekin(T±) = 53.5 K,
while in the central part one has ekin(T±) � ekin(x) < 55.5
K. The surplus kinetic energy �ekin(x) = ekin(x) − ekin(T±),
which is 0 � �ekin(x) < 2 K, is an artefact of the semiquan-
tum molecular dynamics approach when the latter is applied
to nonlinear lattice, but it does not produce any thermal flux:
J (x) = 0 for Le < x < L − Le; see Fig. 11(a).
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FIG. 11. (Color online) Distribution of (a) local energy flux J (x),
(b) local kinetic energy per mode ekin(x), and (c) local temperature
T (x) along the carbon nanotube (5,5) C6020 axis x. Nanotube length
is L = 75.04 nm. Gray areas indicate the nanotube ends, embedded
in semiquantum Langevin thermostats with temperatures T± =
(1 ± δ)300 K, for δ = 0; 0.0125; 0.025; 0.05; 0.1, curves 1, 6 and
11; 2, 7 and 12; 3, 8 and 13; 4, 9 and 14; 5, 10 and 15, respectively.
Thin lines show distributions of average particle energies ēkin(x) in
the central part of the nanotube without the artefact surplus thermal
energy �ekin(x). Local temperature T (x) in (c) is determined from
Eq. (39) with the use of ēkin(x), given by thin lines in (b).

The appearance of the surplus kinetic energy in the
nonlinear system is related with phonon interaction caused
by the anharmonicity, which induces the transfer of energy
from the low-frequency modes to the high-frequency ones.
In the nanotube ends, such transfer is suppressed by viscous
friction, but in the central part of the nanotube it can result in
the surplus excitation of the high-frequency modes. In the case
of the white-noise heat baths, such intermode transfer does not
occur because of the equipartition excitation. The intermode
transfer results in surplus excitation of high-frequency modes
in the central part of the nanotube, whose ends are embedded
in color noise thermostats. The analysis of the vibrational
spectrum shows that weakly anharmonic interparticle potential
in the carbon nanotube results in a slight accumulation of
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FIG. 12. (Color online) Power spectral density of thermal vibra-
tions in carbon nanotube (5,5) with length L = 75.04 nm (a) for the
atoms at the left end with temperature T+ = 330 K (curve 2, red), right
end with temperature T− = 270 K (curve 1, blue). (b) Line 3 (red)
gives vibrational spectral density in the central part of the nanotube,
which does not interact with the thermostats; line 4 (blue) gives the
spectral density given by Eq. (37) for the corresponding system of
quantum oscillators. The frequency spectrum of the mean kinetic
energy per atom is shown.

energy in the high-frequency modes, with ω > 900 cm−1,
while the low-frequency modes, with ω < 900 cm−1, follow
the Bose-Einstein distribution; see Fig. 12. As it was explained
above in connection with the quantum definition of the lattice
temperature, see Eqs. (14) and (17), this means that the
high-frequency modes possess higher effective temperature
(and therefore are “hot phonons”) then the lattice temperature,
which is determined in turn by the Bose-Einstein distribution
of the low-frequency modes.

For the system with the harmonic interparticle potential,
the Bose-Einstein distribution is valid for all phonon modes in
all the lattice system with the ends, embedded in color noise
thermostats. Indeed, as we have shown in Sec. V, there is no
surplus excitation of high-frequency modes in the central part
of the nanoribbon with the harmonic interparticle potential.

For T+ > T− (δ > 0), a constant heat flux is formed in
the central part of the nanotube [J (x) ≡ J > 0 for Le < x <

L − Le], which is proportional to the temperature difference
�T = T+ − T−; see Table II. As one can see in Fig. 11(b),
the distribution of local kinetic energy per mode ekin(x) has a
nonlinear form for Le < x < L − Le. But after the subtraction
of the artefact surplus contribution �ekin(x) from the average
kinetic energy ekin(x), the remaining local energy ēkin(x) has

a linear slope. If one determines the local temperature T (x)
from the distribution of the local energy ēkin(x) with the use of
Eq. (39), one gets the linear distribution of local temperature
along the tube; see Fig. 11(c). The same linear distribution
of local temperature can also be obtained from Eq. (40),
in which the integration over frequencies is performed in
the low-frequency domain ω1 = 0 � ω < ω2 = 900 cm−1.
As one can see in Fig. 12, in this frequency domain the
vibrational spectrum has a correct Bose-Einstein distribution,
which allows the correct definition of temperature with the use
of Eq. (39) in all parts, embedded ends and free central part,
of the nanosystem. The linear distribution of local temperature
along the tube allows us in turn to determine more accurately
the thermal conductivity of the system with the use of Eq. (54).

As one can see from Table II, for �T < 60 K the value
of thermal conductivity changes only weakly with the change
of temperature difference. Thus for the numerical modeling,
one can use T± = (1 ± δ)T with δ = 0.1. Such temperature
difference allows one to find rather fast the distribution of the
heat flux and temperature along the nanotube, and the obtained
value of the thermal conductivity κ differs little from the values
obtained for smaller δ.

Now we turn to the analysis of the vibrational frequency
spectrum of carbon atoms near the nanotube ends embedded
in thermostats with different temperatures, T+ = 330 K and
T− = 270 K, and in the nanotube central part. As one
can see in Fig. 12, the power spectral density of thermal
vibrations at the nanotube ends corresponds to the quantum
statistics of phonons. But there are some distinctions in the
nanotube central part, namely that the high-frequency modes
with frequencies ω > 900 cm−1 are excited more strongly.
This effect is related with the phonon interaction caused by
anharmonicity, which induces the transfer of energy from
the low-frequency vibrations to the high-frequency ones. In
the nanotube ends, such transfer is suppressed by viscous
friction, but in the central part of the nanotube it can result in
the surplus (artefact) excitation of the high-frequency modes.
As one can see from Fig. 12(b), this effect is rather weak.
It does not change the heat flux considerably for the used
values of the nanotube length. It is worth mentioning in this
connection that the high-frequency modes, which are revealed
in Fig. 12(b) for ω > 900 cm−1, determine, via Eqs. (14)
or (17), the effective temperature of hot phonons, which is
higher than the temperature of the equilibrium, Bose-Einstein,
phonons. But the surplus hot-phonon temperature, similar to
the surplus kinetic energy of the particles in the central part
of the nanotube, shown in Fig. 11(b), does not contribute to
the linear distribution of the temperature and therefore to the
thermal conductivity of the nanotube.

The difference in the power spectral density close to zero
frequency in the end, Fig. 12(a), and central, Fig. 12(b), parts
of the nanotube is related to the use of the effective fixed-
end and free-end boundary conditions in the simulation of
corresponding spectra.

We would like to mention that the obtained results for
the temperature dependence of the specific heat and thermal
flux in the considered carbon nanotubes almost do not
depend on the considered relaxation times tr = 0.1, 0.2, 0.4,
0.8 ps. The longer relaxation time increases the computation
time. The steady-state heat transport established longer time
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FIG. 13. (Color online) Temperature dependence of thermal
conductivity κi (i = 1,2) of the carbon nanotube (5,5) with length
L = 50.08 nm: solid lines 1 and 2 are obtained within the classical
and semiquantum descriptions, respectively; dashed line 3 gives the
temperature dependence c(T )κ1(T ), where c(T ) = C(T )/3NkB is
dimensionless specific heat of the carbon nanotube at temperature T .

and the computation of the mean values requires the integration
along longer phase-space trajectories. With shorter relaxation
time the effective viscosity smears out vibrational spectra of
particles interacting with the thermostats. It can also increase
the reflectivity of high-frequency phonons at the interfaces
between the nanotube central part and the thermostats. The
optimal relaxation time for the carbon nanotube is tr = 0.4 ps.

Now we consider the nanotube of the fixed length L =
50.08 nm (which corresponds to N = 4020 atoms), with
Le = L/4 and tr = 0.4 ps. Temperature dependence of the
thermal conductivity of such nanotube is shown in Fig. 13. As
one can see from this figure, within the classical description
the thermal conductivity κ1 monotonously increases with the
decrease of temperature. This property of “classical” thermal
conductivity is related to the decrease of anharmonicity of
lattice dynamics with the decrease of temperature, which in
turn results in the increase of the phonon mean free path. But
the situation changes drastically with an account for quantum
statistics of phonons. In the semiquantum description, thermal
conductivity κ2 first increases with the decrease of temperature
from the high enough one but then it reaches its maximal value
at T = 350 K and monotonously decreases to zero (κ2 → 0
for T → 0). Such temperature dependence of thermal conduc-
tivity, which is characteristic for solids,18,19 is related with the
quantum decrease of the specific heat of the system. This is
confirmed by the property that at low temperature T � 250 K
the thermal conductivity of the nanotube in the semiquantum
approach κ2(T ) is described with high accuracy by the relation
κ2(T ) ≈ c(T )κ1(T ), where κ1(T ) is thermal conductivity of the
carbon nanotube computed within the classical description,
c(T ) = C(T )/3NkB is nanotube dimensionless specific heat
at temperature T ; see Figs. 5 and 13.

Length dependence of the nanotube thermal conductivity is
shown in Fig. 14. As one can see from this figure, both methods
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FIG. 14. (Color online) Thermal conductivity κ versus length of
the central part Lc = L − 2Le of the carbon nanotube (5,5) obtained
with the use of classical (solid line 1) and semiquantum (solid line 2)
descriptions, and thermal conductivity c(T )κ1(T ) (dashed line 3, as
line 3 in Fig. 11) at T = 300 K. The length Lc is measured in Å, the
thermal conductivity κ , in W/mK.

give a monotonous increase of the thermal conductivity with
the nanotube length. The semiquantum description gives a
lower value of the conductivity than the classical one for all
the considered nanotube lengths. As one can see from this
figure, line 2 lies below line 3 for relatively short nanotubes,
which is consistent with Fig. 13. But at some nanotube length
line 2 intersects line 3. This means that for longer nanotube
lengths the mean free path of “semiquantum” phonons is larger
than that of purely classical phonons. This in turn is related
with the decrease in general of phonon mean free path with
phonon frequency and the property that the mean frequency of
semiquantum phonons is always lower than that of classical
phonons. The intersection at some nanotube length of line
2 with line 3 in Figs. 13 and 14 means that short enough
nanotubes effectively filter out the high-frequency and short
mean free path phonons, as it occurs in mesoscopic one-
dimensional samples; see, e.g., Ref. 15. Line 2 should intersect
line 1 at even longer lengths, when thermal conductivity of
the “semiquantum” nanotube will become larger than that
of the purely classical nanotube. Figure 15(b) below shows
that a similar situation can also be realized in a nanoribbon.
Concerning carbon nanotubes, at T = 300 K such intersection
can be realized only in very long nanotubes because of their
very high Debye temperature (which in fact exceeds the
melting temperature of the material).

VIII. THERMAL CONDUCTIVITY OF NANORIBBON
WITH PERIODIC INTERATOMIC POTENTIALS

In order to demonstrate the characteristic temperature
dependence of thermal conductivity of a quantum low-
dimensional system with strongly nonlinear interatomic in-
teractions, we consider a nanoribbon with periodic inter-
atomic potentials and perfect (atomically smooth) edges, cf.
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FIG. 15. (Color online) (a) Specific heat c of an ideal-edge
ribbon with periodic interatomic potential (55) versus temperature T ,
obtained within the classical (line 1) and semiquantum (line 2)
descriptions. Dashed lines 3 and 4 show the dependencies for the
nanoribbon with the harmonic interatomic potential (44) within,
respectively, the classical and semiquantum descriptions. (b) Thermal
conductivity κ versus temperature T for the ribbon with length N =
800 and width K = 2 (the length of each of the two ends embedded
into the thermostats with different temperatures is Ne = 300): lines 5
and 6 give the results obtained within the classical and semiquantum
descriptions, respectively.

Eqs. (41)–(44):

V (r) = ε1[1 − cos(r)],U (r) = ε2[1 − cos(r)]. (55)

In the following we will consider ε1 = 1, ε2 = 0.5, when for
small relative displacements of the nearest-neighbor atoms r

the potentials (55) will coincide with the harmonic potentials
given by Eq. (44). With the periodic interatomic potentials,
given by Eq. (55), the ribbon becomes a system of coupled
rotators.

A chain of coupled rotators presents a unique translation-
ally invariant one-dimensional system with a finite thermal
conductivity.20,21 In such a system rotobreathers can be ex-
cited, which causes strong momentum-nonconserving scatter-
ing of phonons and results in finite thermal conductivity of the
translationally invariant system. The density of rotobreathers
increases with temperature increase and correspondingly the
phonon mean free path decreases. In the classical description,

this causes the monotonous decrease of thermal conductivity
κ with the increase of temperature: κ → 0 for T → ∞.
In the opposite limit T → 0, the phonon mean free path
monotonously increases and therefore the thermal conductivity
diverges: κ → ∞ for T → 0.

We consider a ribbon with a width K = 2 and length
N = 800. We embed the ribbon ends with length Ne = 300
each into Langevin thermostats with the color noise with
temperature T+ = 1.1T and T− = 0.9T in the left and right
edge, respectively. For the relaxation time, we take tr = 100.
Integration of Eqs. (46) for n = 1, . . . ,Ne and n = N − Ne +
1, . . . ,N , and of frictionless equations (46) with �̃ = 0 and
ηkn, for n = Ne + 1, . . . ,N − Ne, allows us to find an average
energy flux along the ribbon J . With the use of Eq. (50),
we then obtain the thermal conductivity of the finite-length
nanoribbon.

Results of numerical modeling are presented in Fig. 15.
As one can see from the temperature dependence of the
nanoribbon specific heat, Fig. 15(a), within the semiquantum
description the anharmonicity of atomic dynamics starts to
show up for T > 0.5. Just at this temperature specific heat of
the ribbon with the nonlinear interatomic potentials (55) starts
to deviate from the specific heat of the ribbon with harmonic
potentials (44); see Fig. 15(a), line 2. It is worth mentioning
that in the classical description the anharmonicity of lattice
dynamics starts to show up for lower temperatures than in
the semiquantum approach. This is related to the property
that the anharmonicity is more pronounced in the dynamics
of short-wave phonons and therefore the quantum freezing
out of the high-frequency oscillations results in the effective
decrease of the dynamics anharmonicity (nonlinearity) at low
temperature.

In the classical description, the thermal conductivity of the
ribbon with nonlinear interatomic potentials (55) decreases
monotonously with the increase in temperature: κ → 0 for
T → ∞; see Fig. 15(b), line 5. Within the semiquantum de-
scription, the ribbon thermal conductivity reaches its maximal
value at T = 0.6. For the lower and higher temperatures,
the thermal conductivity decreases, κ → 0 for T → 0 and
κ → 0 for T → ∞; see Fig. 15(b), line 6. For the low
temperature T < 0.5, system dynamics becomes almost linear
when phonons propagate along the ribbon almost ballistically
and the decrease of thermal conductivity is related with the
quantum decrease of the specific heat. In this low-temperature
limit the thermal conductance of a short enough ribbon, in
which the phonon mean free path is longer than the ribbon
length, can reach the lowest (quantum) value which has a
linear temperature dependence; see line 6 in Fig. 15(b) and
compare the corresponding limit for the rough-edge ribbons,
shown in Figs. 9(a) and 9(b).

For temperature T > 0.4, the semiquantum description
gives a higher value for the thermal conductivity than that
of the classical description. This is also related to the quantum
freezing out of the high-frequency oscillations, which results
in the decrease of the mean frequency of thermal phonons and
correspondingly in the increase of the phonon mean free path
and phonon thermal conductivity. Therefore for T > 0.4 the
effect of the increase of the phonon mean free path exceeds
the effect of the decrease of low-temperature specific heat.
At high temperature, when phonons can be described with
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the classical statistics, the thermal conductivities given by
the classical and semiquantum descriptions merge, but the
conductivity given by the semiquantum description is always
higher because of the higher phonon mean free path under
the equal, classical, and semiquantum, specific heats. The
temperature dependence of thermal conductivity, given by
line 6 in Fig. 15(b), reminds us of the known temperature
dependence of thermal conductivity in insulators, when the
temperature of maximal thermal conductivity separates the
low-temperature boundary-scattering regime from the high-
temperature anharmonic umklapp-scattering regime; see, e.g.,
Refs. 18, 19, 22, and 23. In the case of the nanoribbon
with periodic interatomic potentials and perfect edges, the
maximal thermal conductivity, clearly displayed by curve 6 in
Fig. 15(b), is reached for the temperature, at which the phonon
mean free path, which is determined in this system by the
anharmonic scattering, levels off with the ribbon length. For
the higher temperature, the phonon mean free path becomes
shorter than the ribbon length. Figure 15(b) presents one of
the main results of this work.

IX. SUMMARY

In summary, we present a detailed description of semiquan-
tum molecular dynamics approach in which the dynamics of
the system is described with the use of classical Newtonian
equations of motion while the effects of phonon quantum
statistics are introduced through random Langevin-like forces
with a specific power spectral density (the color noise). We
describe the determination of temperature in quantum lattice
systems, to which the equipartition limit is not applied. We
show that one can determine the temperature of such a system
from the measured power spectrum and temperature- and
relaxation-rate-independent density of vibrational (phonon)
states. We have applied the semiquantum molecular dynamics
approach to the modeling of thermal properties and heat
transport in different low-dimensional nanostructures. We have
simulated specific heat and heat transport in carbon nanotubes,
as well as the heat transport in molecular nanoribbons with
perfect (atomically smooth) and rough (porous) edges, and
in nanoribbons with strongly anharmonic periodic interatomic
potentials. We have shown that the effects of quantum statistics
of phonons are essential for the carbon nanotube in the whole
temperature range T < 500 K, in which the values of the

specific heat and thermal conductivity of the nanotube are
considerably less than that obtained within the description
based on classical statistics of phonons. This conclusion is
also applicable to other carbon-based materials and systems
with a high Debye temperature like graphene, graphene
nanoribbons, fullerene, diamond, diamond nanowires, etc.
We have shown that quantum statistics of phonons and
porosity of edge layers dramatically change low-temperature
thermal conductivity of molecular nanoribbons in comparison
with that of nanoribbons with perfect edges and classical
phonon dynamics and statistics. The semiquantum molecular
dynamics approach has allowed us to model the transition in
the rough-edge nanoribbons from the thermal-insulator-like
behavior at high temperature, when the thermal conductivity
decreases with the conductor length, see Ref. 11, to the
ballistic-conductor-like behavior at low temperature, when the
thermal conductivity increases with the conductor length. We
have also shown that the combination of strong nonlinearity of
the interatomic potentials with quantum statistics of phonons
changes drastically the low-temperature thermal conductivity
of the system. The thermal conductivity in such samples
demonstrates very pronounced nonmonotonous temperature
dependence, when the temperature of maximal thermal
conductivity separates the low-temperature ballistic phonon
conductivity from the high-temperature anharmonic-scattering
one. At the temperature of maximal thermal conductivity,
the phonon mean free path levels off with the length of
the perfect-edge anharmonic quasi-one-dimensional system.
Such nonmonotonous temperature dependence of thermal
conductivity is known in bulk insulators and is very different
from monotonously decreasing with temperature conductivity
of nanoribbons with the same interatomic potentials and
classical phonon dynamics and statistics; cf. Refs. 20 and 21.
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