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Level statistics for quantum k-core percolation
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Quantum k-core percolation is the study of quantum transport on k-core percolation clusters where each
occupied bond must have at least k occupied neighboring bonds. As the bond occupation probability p is
increased from zero to unity, the system undergoes a transition from an insulating phase to a metallic phase.
When the length scale for the disorder ld is much greater than the coherence length lc, earlier analytical calculations
of quantum conduction on the Bethe lattice demonstrated that for k = 3 the metal-insulator transition (MIT) is
discontinuous, suggesting a new type of disorder-driven quantum MITs. Here, we numerically compute the level
spacing distribution as a function of bond occupation probability p and system size on a Bethe-like lattice. The
level spacing analysis suggests that for k = 0, pq , the quantum percolation critical probability, is greater than pc,
the geometrical percolation critical probability, and the transition is continuous. In contrast, for k = 3, pq = pc,
and the transition is discontinuous such that these numerical findings are consistent with our previous work
to reiterate a new random first-order phase transition and therefore a new universality class of disorder-driven
quantum MITs.
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I. INTRODUCTION

With the exception of transition-metal compounds, there ex-
ist two conventional paradigms for metal-insulator transitions
(MITs): a Mott-Hubbard-type transition and an Anderson-type
transition. The former is a consequence of tuning the inter-
actions between electrons by changing the distance between
atoms, for instance, and the MIT is discontinuous.1 The latter
is a consequence of tuning the disorder in the material, and
the MIT is continuous.2,3 Recently, a discontinuous disorder-
driven MIT has been predicted for a model in which there
exists geometric constraints on the disorder.4 The model has
been dubbed quantum k-core percolation. Quantum k = 0 core
percolation, or quantum percolation (QP), has been studied
since the 1980s and exhibits a continuous, Anderson-type
MIT.5,6 Quantum percolation is defined accordingly. Consider
a lattice whose bonds are occupied independently and at
random with bond occupation probability p. An electron can
only hop between lattice sites i and j along an occupied bond
and cannot hop along an unoccupied bond. In addition, there
exists a constant on-site binding energy which is set to zero
for convenience. In total, the tight-binding Hamiltonian for
quantum percolation is

H =
∑
i,j

tij a
†
i aj + H.c., (1)

in which

tij =
{

1, with probability p,

0, with probability 1 − p,
(2)

and a
†
i and aj are electron creation and annihilation operators.

Quantum percolation exhibits a MIT as p is increased
from zero, at least for three dimensions and above.7–9 In
two dimensions, some studies indicate a transition,10–14 while
others do not.15,16 Analytical work on the Bethe lattice
indicates that the quantum percolation transition may be in the
same universality class as geometric percolation.17,18 However,

the transition probability pq , above which there exist extended
zero-energy wave functions is greater than the threshold above
which there exists a spanning cluster, pc.17,18 The geometric
percolation transition is continuous and therefore, presumably,
so is the quantum percolation transition.

Recently, we have studied quantum k-core percolation on
the Bethe lattice.4 The term k core refers to a geometrical
constraint where every occupied bond must have at least k − 1
occupied neighboring bonds.19–24 To enforce this constraint,
bonds are initially occupied independently and at random
with probability p. Then, those occupied bonds with less than
k − 1 occupied neighboring bonds are rendered unoccupied.
This removal procedure continues recursively throughout the
lattice until all occupied bonds satisfy the k-core constraint.
See Fig. 1 for an example on the Bethe lattice with coordination
number z. Classically, this geometric constraint may have
implications for glassy systems,25 jamming systems,23 and
even biological systems.26 Here, we investigate how such a
geometric constraint affects the quantum-mechanical wave
function embedded in this random geometry. We present a
possible experimental realization of this theoretical investiga-
tion in the discussion.

Given the newness of geometric (classical) k-core percola-
tion, we review its features before addressing the quantum-
mechanical version. For k � 2, the mean-field geometric
percolation transition is continuous; however, for k � 3, the
mean-field geometric percolation transition is discontinuous.
More specifically, the fraction of occupied bonds in the
spanning k-core cluster, P∞, scales with p as P∞ = P0 +
P1(p − pc)1/2 for p � pc (with pc − p � 1), where P0 and
P1 are constants and pc is the critical occupation probability
for classical (geometric) percolation. Note that above the
transition, the square-root scaling indicates a transition that
differs from an ordinary discontinuous transition, i.e., first-
order transition, where the scaling would be linear and
the transition driven by nucleation. The k � 3 mean-field
percolation transition is a random first-order phase transition
where there exists diverging length scales in addition to the
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FIG. 1. Here k = 3 and coordination number z = 4. Only occu-
pied bonds are shown. The shaded circles denote branches that are
k − 1 connected to infinity. The removal of bonds 1 and 2 eventually
triggers the removal of bond 3 and bonds emanating from vertex a,
including the shaded circles. The remaining three branches emanating
from the center site survive the removal process.

jump in the order parameter at the transition. For instance,
the correlation length associated with the likelihood of two
bonds some distance away from each other participating in the
same spanning (k � 3)-core cluster diverges with a correlation
length exponent of 1/4. This correlation length exponent
and the order parameter exponent of 1/2 (as well as other
exponents) constitute a new universality class for a percolation
transition.21,23

As for a quantum version of k-core percolation, once the
geometric k-core constraint has been implemented, we then
impose the usual quantum percolation property that electrons
can only hop along occupied bonds. On the Bethe lattice,
we can then compute the quantum conduction through the
system self-consistently after assuming that the electronic
wave function randomizes between bonds, i.e., the length scale
of the disorder ld is much greater than the coherence length lc.
Within this scheme, for k = 0,1, the model reduces to ordinary
quantum percolation, and we found that 1 > pq > pc, where

pc signals the onset of the geometric percolation transition
and pq signals the onset of quantum conduction. We also
found a random first-order transition for k > 2 and that,
interestingly enough, the critical threshold is the same as the
k-core geometrical percolation critical point. This transition
should be contrasted with the Anderson-type MIT, which
yields a continuous transition (as does the ordinary quantum
percolation transition on the Bethe lattice).

In this work, we numerically investigate the level statistics
of quantum k-core percolation to compare with our previous
analytical results on the Bethe lattice obtained in the limit
ld � lc. In other words, how robust are our previous results in
identifying a new universality class of disorder-driven MITs?
Level statistics and its roots in random matrix theory are
an important tool for studying universality, for example.27

Correlations between energy eigenvalues of an individual
quantum particle in a random potential in the conductive
regime agree with results from Gaussian matrix ensembles.28

In the localized regime, correlations between the energy eigen-
values are absent, and the level statistics become Poissonian.
Right at the MIT, however, the level statistics are distinct
from Gaussian matrix ensembles.29 While these results pertain
to the Anderson model where the disorder is on site, the
same analysis has been applied to quantum percolation on
a cubic lattice, where the disorder is off-diagonal, and similar
results have been found.30 In fact, the critical exponent for the
divergence of the localization length extracted from the level
statistics analysis is somewhat consistent with the Anderson
model. Therefore, we will implement a similar numerical
analysis for quantum k-core percolation on a Bethe-like lattice
to go beyond our previous approximation.4

We, however, will not investigate the level statistics of quan-
tum k-core percolation on finite-dimensional lattices for now. It
turns out that k-core percolation on finite-dimensional lattices
either exhibits properties of k = 0 geometric percolation or
no transition. See, for example, Ref. 31. One has to invoke
more sophisticated constraints to observe different universal
behavior from k = 0 geometric percolation,32 so we expect
the quantum behavior to be similar to quantum percolation
for finite-dimensional lattices, though this conjecture should
ultimately be tested.
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FIG. 2. (Color online) (left) The DOS for L = 15 and different bond occupation probabilities. (right) P (s) for L = 15 for different ps. The
Wigner and Poisson forms are also shown.
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FIG. 3. (Color online) (left) The function γ (p,L) for different system sizes. (right) Scaling collapse for the cubic lattice.

This paper is organized as follows. We review the methodol-
ogy and results for quantum percolation on the cubic lattice30

as a means for calibration and then present our results for
quantum (k = 0)-core percolation and quantum (k = 3)-core
percolation on a Bethe-like lattice. We conclude with a
discussion of the implications of our results, including a
possible experimental realization.

II. QUANTUM PERCOLATION ON THE CUBIC LATTICE

First, we analyze the level statistics for quantum percolation
on the cubic lattice. To do so, we diagonalize the Hamiltonian
defined by Eqs. (1) and (2) on the cubic lattice of length
L with periodic boundary conditions to obtain a sequence
of eigenvalues. This sequence is calculated for different
realizations and increasing system sizes. The average density
of states (DOS) for L = 15 as a function of occupation
probabilities is presented in Fig. 2. The sharp peaks are due to
small disconnected structures, as discussed in Ref. 30. Now,
one can apply the various measures of level statistics only if the
density of states is smooth. There exists a smooth energy range
around 0.4. The eigenenergies near this range are then arranged
from highest to lowest, and the nearest-neighbor level spacing
S is calculated and subsequently normalized by the average
nearest-neighbor level spacing; i.e., normalized level spacing
is denoted by s = S/〈S〉.

One can then study the probability distribution for these
level spacings, P (s), as a function of p and L. When the system
is in the insulator regime, the eigenfunctions are localized and
therefore do not interact with each other such that P (s) is
Poisson distributed, i.e., P (s) = e−s . When the system is in
the metallic regime, Altshuler and Shklovskii28 argued that if
the width of the energy band of a sample E < Ec ≡ hD/L2,
where L2/D is the characteristic time for an electron to
diffuse through the sample, then the Hamiltonian of the
system is characteristic of a Gaussian orthogonal ensemble
(GOE) in the absence of a magnetic field or spin-orbit
scattering. More specifically, P (s) obeys the Wigner-Dyson
distribution, P (s) = πs

2 exp(−π
4 s2). The cubic conductance,

〈G〉 = e2

h
〈N (Ec)〉 = e2

h

Ec

〈S〉 , where N (E) is the number of levels
in a band of width E. The conductance tends to infinity when

L → ∞ in the metallic regime; thus E < Ec is satisfied,
and the level spacing distribution obeys the Wigner-Dyson
distribution for the GOE.

The plot of P (s) as a function of bond occupation probabil-
ity for L = 15 and an energy range of [0.2,0.6] is displayed in
Fig. 2. Figure 2 shows the expected transition from Wigner-like
behavior for large p to Poisson behavior for small p. Note
that all curves intersect at s 	 2, as observed in the Anderson
model.29 Other energy ranges studied yielded similar results. A
convenient way to obtain the critical exponent ν, characterizing
the diverging localization length at the transition, is to study
the parameter γ , defined as

γ =
∫ ∞

2 P (s)ds − e−π

e−2 − e−π
, (3)

which characterizes the transition from Wigner to Poisson
as p is decreased. Note that γ should increase from 0 to
1, as P (s) goes from Wigner to Poisson. Denoting ξ (p) as
the localization length [such that ξ (p) ∼ (p − pq)−ν], the
above parameter is expected to demonstrate scaling behavior,
γ (p,L) = f [L/ξ (p)]. In the vicinity of the critical quantum
bond probability pq ,

γ (p,L) = γ (pq) + C

∣∣∣∣ p

pq

− 1

∣∣∣∣L1/ν, (4)

where C is a constant.

FIG. 4. (Color online) An example of a Bethe-like lattice with
coordination number z = 3. Dotted curves indicate the random pairs.
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FIG. 5. (Color online) P (s) for the Bethe-like lattice for N =
1024 and k = 0 for different p.

Figure 3 plots γ as a function of p around pq for increasing
L. The curves intersect near a single point given by pq

∼=
0.334. This result is consistent with the result in Ref. 30.
The single crossing point indicates that there exists a metal-
insulator transition and one can apply the scaling collapse
suggested above. The optimal scaling collapse shown in Fig. 3
yields ν = 1.60 ± 0.05, which should be compared to 1.32 ±
0.08 obtained in Ref. 30. Our latest result is even closer to
the Anderson result than the previous work, where the most
precise measurement is ν = 1.58 ± 0.02.33

III. QUANTUM k-CORE PERCOLATION ON A
BETHE-LIKE LATTICE

To test our analytical results for quantum k-core conduction
on the Bethe lattice, a connected, loop-free graph with a fixed
coordination number, one should perform simulations on the
Bethe lattice. However, the surface effects on finite-size lattices
dominate over bulk effects, making the numerical results
difficult to interpret. So, following the procedure presented in
Ref. 34, we construct a Bethe-like lattice by first considering
a one-dimensional ring with N sites such that each lattice
site has two bonds emanating from it. Next, additional bonds

are constructed between different lattice sites at random. The
number of random pairs connecting different lattice sites
depends on the fixed coordination number z. More specifically,
there must be z bonds per site. See Fig. 4 for an example with
z = 3. As N increases, the average number of loops of length
l increases as (z − 1)l , such that the fraction of all lattice sites
belonging to any loop of length �l for l � ln(N )/ ln(z − 1)
is negligible. Therefore, the structure becomes increasingly
treelike as N increases. Moreover, the lack of a surface makes
the numerical interpretation of measurements performed on
this structure easier. We should also point out that this
Bethe-like lattice shares similar properties with random regular
graphs.35

A. k = 0

For k = 0, Harris18 gave a theoretical prediction of pq on
the Bethe lattice. One must simply solve 1 + (pqσ

2)−1 =
(pqσ )2/(σ−1), with σ = z − 1. By solving Harris’s self-
consistency equation above for z = 6, pq = 0.265. We can
test this result numerically with the level statistics analysis.
Figure 5 plots P (s) for different ps with N = 1024, z = 6,
and an energy range of [0.3,0.8]. Figure 6 plots γ (p,N ) for
z = 6. The curves intersect near p ∼ 0.3, which is close to the
analytical result for the Bethe lattice, though the agreement is
not precise. The difference between the analytical calculation
and our numerical calculation is presumably due to the nature
of the lattice such that the quantum mechanics is much more
sensitive to loops than geometric percolation. To test this
notion, when measuring the onset of geometric percolation on
the Bethe-like lattice, we do arrive at good agreement between
the analytical result, pc = 1/(z − 1), and our numerical result.

Moreover, the crossing point in Figure 6 indicates that
we can collapse the data by assuming that, instead of
γ (p,L) = f [L/ξ (p)] in the cubic lattice case, now γ (p,N ) =
f [N/N∗(p)], where N∗ is a crossover size similar to the local-
ization length in the three-dimensional case. In other words,
N∗ ∼ (p − pq)−ν ′

. Therefore, γ (p,N ) = f [N1/ν ′
(p − pq)].

It has been conjectured that ν ′ = duνMF , where du is the
upper critical dimension and νMF is the mean-field correlation
length exponent.36 For geometric percolation, du = 6 and
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FIG. 6. (Color online) (left) The function γ (p) for different system sizes. (right) The scaling collapse for γ (p).
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νMF = 1/2, such that ν ′ = 3. To date, the upper critical dimen-
sion of quantum percolation is not known. Interestingly, the
upper critical dimension for the Anderson model is potentially
infinite, such that the mean-field correlation length exponent
scales with dimension d.37 More precisely, ν = 1

2 + 1
d−2 .

Figure 6 shows the optimal scaling collapse to yield the
exponent ν ′ = 4.5 ± 0.2, assuming that pq = 0.300(1). If we
assume pq = 0.265, then we do not arrive at a good scaling
collapse. Regarding ν ′, if we assume the same mean-field
correlation length exponent of νMF = 1/2 as in classical
k = 0 percolation, which is consistent with the previous work
of Harris18 showing that the mean-field susceptibility for
zero-energy eigenstates diverges with the same exponent as
in the geometric percolation problem (with pq replacing pc),
then we extract an upper critical dimension of du = 9. If, on
the other hand, the upper critical dimension is infinite, as in
the case of the Anderson model, then a different analysis must
be undertaken.

B. k = 3

In Ref. 4, we gave an example of a MIT driven by
(k = 3)-core disorder on the Bethe lattice with z = 4. More
precisely, the quantum conduction as a function of occupation
probability p is a random first-order transition with pq = pc.
In other words, the quantum conduction jumps discontinuously
from zero at the transition and then increases with (p − pq)1/2.
To obtain this result, we assumed that the phase randomizes
between levels on the Bethe lattice, i.e., ld � lc. Here, we use
level statistics to test the robustness of our prior results. Since
the geometric critical percolation occupation probability pc

is 8/9, which is close to 1, we choose z = 6, k = 3, whose
pc = 0.603.19,22,23

We first tested this analytical result on the Bethe-like lattice.
Recall that to implement the geometric k-core constraint, one
first occupies the bonds at random and independently and
then begins the k-core culling procedure where bonds that
do not obey the k-core constraint are recursively culled until
all bonds obey the k-core constraint. With this culling process,
some samples may end up with no occupied bonds. Moreover,
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FIG. 7. (Color online) Fraction of remaining samples after
applying the k-core removal/culling procedure, F , vs occupation
probability on the Bethe-like lattice for z = 6, k = 3.
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FIG. 8. (Color online) γ as a function of p for different system
sizes for the z = 6, k = 3 Bethe-like lattice.

for k = 3 on the Bethe lattice, any samples with remaining
occupied bonds must form a spanning cluster. Therefore, if
we record the fraction of samples with occupied bonds after
the culling procedure, this approximates the probability of
spanning (since we are working with a Bethe-like lattice).
Figure 7 depicts the fraction of the remaining samples after
the k-core culling procedure, denoted by F , versus occupation
probability for z = 6, k = 3, and different system sizes. There
exists a well-defined crossing point such that in the infinite
system limit, all occupied bonds are removed due to the k-core
constraint for p < 0.604, while for p > 0.604, occupied bonds
remain. Note that pc = 0.604 is quite close to the analytical
pc for z = 6 and k = 3 for the classical problem.

Now we address the quantum results. Figure 8 plots γ as
a function of p for different system sizes. With no remaining
occupied bonds for p < pc, the system is insulating in a trivial
sense and not in the sense that γ → 1. We observe that γ

decreases with increasing system size, as expected. Moreover,
the increasing size of the error bar with increasing system size
indicates less remaining occupied samples due to the k-core
constraint. What happens for p > pc? The data indicate that γ

tends to 0 as the system size increases for p > pc, indicating
that it is a metallic system. There is no crossing point above
pc such that pc must equal pq as was obtained previously.
Note that we could have observed a crossing point somewhere
above pc to indicate that pq > pc, but we do not. The data
imply a discontinuous transition since γ tends towards zero as
N becomes large for p � pc = pq .

IV. DISCUSSION

We have analyzed the level statistics for quantum k-core
percolation. Our results for k = 0 core on the cubic lattice are
consistent with previous results from Ref. 30. For quantum
(k = 0)-core percolation on a Bethe-like lattice, by measuring
γ (p), a parameter that defines how the level statistics go from
Poissonian to Wigner as the system becomes metallic, we find
a threshold probability that differs somewhat from Harris’s
Bethe lattice result.18 This difference is due to the sensitivity
of quantum mechanics to loops occurring in the Bethe-like
lattice and warrants further investigation. Moreover, our result
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is presumably the first numerical test of a closed-form result for
quantum (k = 0)-core percolation. In addition, for quantum
(k = 0)-core percolation on a Bethe-like lattice, a scaling
collapse of γ (p) with varying system sizes yields a new
quantum critical exponent, ν ′ = 4.5(2) = νMF du. Assuming
the correlation length exponent is the same as the mean-field
result for geometric percolation, which is consistent with the
Harris calculation,18 the upper critical dimension is du = 9.
On the other hand, this new quantum critical exponent differs
from the geometric one where ν ′

g = 3, again demonstrating
the quantum sensitivity to loops.

We have also demonstrated the robustness of our previous
work for quantum (k = 3)-core percolation on the Bethe lattice
where we found a random first-order MIT.4 In going beyond
the random-phase approximation made in Ref. 4, the level
statistics on the Bethe-like lattice shows pq = pc, as before.
In fact, for p < pc, all bonds are removed, and the system
is trivially an insulator. For p � pc, the data suggest that the
system immediately goes to the Wigner-Dyson regime without
going through a different regime at the transition, indicating a
discontinuous transition, which also agrees with our previous
work.4

Therefore, our work provides an important counterexample
for the Mott versus Anderson MIT paradigm, where disorder-
driven (Anderson) MITs are continuous and interaction-driven
(Mott-Hubbard) MITs are discontinuous. Our counterexample
is due to the correlations in the disorder as a result of the
k-core constraint. Correlations in the disorder have been
shown previously to “complicate” matters. For instance, in
one-dimensional wires with long-range, correlated disorder,
there exists a MIT that does not happen in the short-range,
uncorrelated disorder case.38 Of course, the quantum (k = 3)-
core percolation transition is not a typical discontinuous tran-
sition, as indicated in Ref. 4, where the quantum conduction
increases as (p − pq)1/2 beyond the transition. We expect to

find a diverging correlation length in the quantum conduction,
though more work needs to be done to confirm this.

As for experimental implications, there are many ex-
periments in the realm of classical transport on ordinary
percolating systems. See, for example, Ref. 39 for a recent
one on nanowire composites. In addition, transport in undoped
graphene is linked to classical electronic transport on perco-
lating networks, though quantum effects are also relevant.40

However, can a quantum (k = 3)-core percolation transition
ever be realized? An experiment has already been conducted
with a two-dimensional collection of silver quantum dots
sitting on top of a Langmuir monolayer at room temperature.41

As the interparticle spacing decreases by compressing the
floating particles together, the electronic transport goes from
hopping to tunneling to ordinary metallic transport. The
authors argue that disorder in the particle size and in the
charging energy probably does not drive the transition and,
instead, conjecture a possible first-order Mott transition at
room temperature. However, in light of the analysis of the
onset of classical conduction for a k = 3 core, where k encodes
the scalar aspect of local mechanical stability in particle
packings,23 we argue for a possible classical (k = 3)-core
percolation transition in conduction. A quantum analog of
this experiment can potentially be realized in low-temperature
packings of metallic nanoparticles such that at least three
particles are needed for mechanical stability as encoded by
the (k = 3)-core constraint. Such an experiment would allow
one to search for this new universality class of quantum
disorder-driven MITs.
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