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First-principles study of phase stability of Ti2N under pressure
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A first-principles study of phase stability of various phases of Ti2N under normal conditions and as a function
of pressure was carried out. Among the ε and δ′phases of Ti2N that are observed experimentally, ε-Ti2N
is the most stable. The δ′ phase can only exist at high temperature due to the soft acoustic modes at the
X point. The origin of the tetragonal structure of both the ε and δ′ phases is supposed to be caused by
the tetragonal local lattice distortion around a nitrogen vacancy. Based on the results of the total-energy and
phonon-spectrum calculations at zero temperature, the following sequence of phase transformation in Ti2N under
pressure is predicted: ε-Ti2N (space group P4/mnm), P = 77.5 GPa → Au2Te type (space group C2/m), P =
86.7 GPa → Al2Cu type (space group I4/mcm). The present study shows that, to correctly predict relative phase
stability, the peculiarities of the phonon spectra of the materials under investigation have to be properly accounted
for.
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I. INTRODUCTION

Titanium nitrides TiNx form a class of materials with the
NaCl-type crystal structure (B1) in the homogeneity range
0.38 < x < 1.15, and exhibit extremely high melting points,
hardness, and metallic conductivity.1,2 These materials are
widely used as main layers in ultrahard nano-composite
coatings.3 In transition metal compounds (TMC), nonmetal
vacancies are not randomly distributed, but instead display
long- or short-range order. In addition, vacancies induce small
local distortions of the lattice.2

In the present study, we focus on the titanium nitride
Ti2N, or TiNx with the composition x = 0.5. At low nitrogen
content (0.38 < x < 0.61), TiNx annealed below 1073 K
exhibits a δ′-Ti2N (TiNx , x = 0.5) superstructure (space group
I41/amd).4 This superstructure is metastable since, at 1023 K,
the following phase-transformation sequence has been directly
observed by neutron diffraction:5

Quenched δ − TiNx → δ + δ′ → δ′ − Ti2N → δ + δ′ + ε

→ δ − TiN0.65 + ε − Ti2N,

where δ is a distorted B1–TiNx structure, and ε-Ti2N (TiNx

x = 0.5) is a stable phase with the tetragonal antirutile structure
(space group P42/mnm).6

Recently, it was shown that the homogeneity ranges of the ε-
and δ′- phases of TiNx are 0.38 � x � 0.42, and 0.45 � x � 0.5,
respectively.7 This finding is not consistent with the results of
the previous structural investigations,4–6 in which the authors
found that both the ε and δ′ phases of TiNx could exist in
the range 0.38 < x < 0.61. Also, experimental investigations
disagree with regard to the stability of the ε and δ′ phases. In
particular, according to previous observations,8–10 δ′-Ti2N is
a metastable phase that exists in a narrow temperature range
900–1180 K, whereas in other instances this phase was found
to be stable below 900–1000 K (Refs. 6 and 11–13).

Band-structure and total-energy calculations of both phases
of Ti2N were carried out by Eibler using the full-potential lin-
earized augmented plane-wave (FLAPW) method.14,15 How-
ever, to our knowledge, electronic and phonon structures and

the phase stability of Ti2N under pressure were not investigated
at all.

In the present work, we plan to fill this gap by studying the
properties of Ti2N. We report on the results of first-principles
investigations of phase stability and the electronic and phonon
structures of Ti2N under pressure. The relative phase stability
of the ε and δ′ phases, as well as of other phases of Ti2N under
pressure was analyzed by taking into account the results of
both total energies and phonon spectra.

The paper is organized as follows. In Sec. II we present
our theoretical framework and the computational details.
Section III contains the results of our calculations together with
comments. Finally, Sec. IV contains the main conclusions.

II. COMPUTATIONAL ASPECTS

A first-principles pseudopotential procedure was employed
to investigate the cubic, tetragonal, hexagonal, monoclinic, or-
thorhombic, and triclinic structures of Ti2N. Scalar-relativistic
band-structure calculations within the density functional the-
ory (DFT) were carried out for different structures of Ti2N.
To investigate the lattice relaxation around a nitrogen vacancy,
the initial 64-atom (2 × 2 × 2) supercell of B1-type TiN was
constructed from the basic eight-atom cubic cell, and a single
vacancy was placed in the center of the supercell. Also,
we calculated the atomic configurations of the two clusters
NTi14N18 and Ti14N18. These structures were considered as
periodic cubic structures with a large lattice parameter of 17 Å,
which guarantees that the atoms interact only inside the same
unit cell.

The “QUANTUM-ESPRESSO” first-principles code16 was used
to perform the pseudopotential calculations with Vander-
bilt ultrasoft pseudopotentials to describe the electron-ion
interaction.17 In the Vanderbilt approach,17 the orbitals are
allowed to be as soft as possible in the core region so that
their plane-wave expansion converged rapidly. For titanium,
the semicore states were treated as valence states. Plane waves
up to a kinetic energy cutoff of 30 Ry were included in
the basis set. The exchange-correlation potential was treated
in the framework of the generalized gradient approximation
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(GGA) of Perdew-Burke-Ernzerhof (PBE).18 Brillouin-zone
integrations have been performed using sets of special points
corresponding to the (8 8 8) (the three-atomic cells) and (4
4 4) (the 6–12-atomic cells) Monkhorst-Park meshes.19 For
the large supercells, we considered the (2 2 2) mesh that,
although it generates a minimum number of k points, provides
an acceptable accuracy. Each eigenvalue was convoluted with
a Gaussian with width σ = 0.02 Ry (0.272 eV). All structures
were optimized by simultaneously relaxing the atomic basis
vectors and the atomic positions inside the unit cells using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.20

The relaxation of the atomic coordinates and of the unit
cell was considered to be complete when the atomic forces
were less than 1.0 mRy/Bohr (25.7 meV/Å), the stresses
were smaller than 0.025 GPa, and the total energy during
the structural optimization iterative process was varying by
less than 0.1 mRy (1.36 meV). The crystalline and energetic
parameters of the structures of Ti2N under investigation ob-
tained after structural optimization are summarized in Table I.
The electronic densities of states (DOS) and the Fermi surfaces
were calculated using the (12 12 12) mesh.

The above-described pseudopotential procedure was used
to study the phonon spectra of tetragonal, hexagonal, and
triclinic Ti2N in the framework of the density-functional
perturbation theory (DFPT) described in Refs. 16 and 21.
The first-principles DFPT calculations were carried out for
the (4 4 4) q mesh, and then the phonon densities of states
(PHDOS) were computed using the (12 12 12) q mesh
by interpolating the computed phonon dispersion curves.
Both the DOS and PHDOS were calculated with the tetra-

hedron method implemented in the “QUANTUM-ESPRESSO”
code.16

To verify an acceptability of the chosen conditions of
the calculations we estimate the heat of formation of TiN
and ε-Ti2N, Hf , using the expression Hf = Etot − ∑

ni Ei ,
where Etot is the total energy of the bulk compound with ni

atoms of all involved elements i (Ti and N) and Ei is the
total energy of the bulk hexagonal close-packed Ti (space
group P 63/mmc, No. 194), and half of the energy of the N2

molecule, respectively. The total energy and equilibrium bond
length of the N2 molecule were computed using the extended
two-atom cubic cell. The bond length of the N2 molecule was in
agreement with the experimental value (1.098 Å) within 1%.
The computed values of Hf for TiN and ε-Ti2N are −3.46
and −3.98, respectively, which are in good agreement with
the corresponding experimental values of 3.46 (Ref. 22) and
4.12 (Ref. 23) and theoretical values of 3.34 and 3.86 (Ref. 15),
respectively (in units eV/formula unit). It follows that ε-Ti2N
is stable over TiN + Ti since the heat of formation of this
reaction is −0.52 eV/formula unit.

III. RESULTS AND DISCUSSION

A. Ti2N structures at equilibrium

To predict possible stable structures of Ti2N, at first we
calculated the total energy of δ′-Ti2N and ε-Ti2N, as well
of different phases of Ti2N that were identified for other
TMC (V2N, Nb2N, Ti2C, V2C, W2C, Mo2C, Co2Si, etc.)1,2

at equilibrium. The unit cells of the most stable phases of
Ti2N are shown in Fig. 1. One can see from Table I that, at

TABLE I. Symmetry, structural parameters, and total energy (ET) (relative to ET of ε-Ti2N) of the calculated phases of Ti2N.

Phase Space group No Na a (Å) b (Å) c (Å) V (Å3/atom) �ET (eV/atom)

ε-Ti2N P42/mnm 136 6 4.928 4.928 3.021 12.228 0.000
Tetragonal (4.945)a (4.945)a (3.034)a (12.365)a

δ′-Ti2N I41/amd 141 6 4.132 4.132 8.806 12.523 0.011
Tetragonal (4.149)b (4.149)b (8.786)b (12.604)b

Cd2I(anti-CdI2) P-3m1 Hexagonal 164 3 2.983 2.983 4.760 12.225 0.017
Au2Tec C2/m 12 6 5.136 3.002 4.761

Monoclinic 90
◦

92.27
◦

90
◦ ∼12.225 0.017

(anti-AuTe2) P 1 1 3 2.974 2.974 4.761
Triclinic 88.04

◦
91.96

◦
119.39

◦

ε-Fe2N P-31m Hexagonal 162 9 5.123 5.123 4.759 12.024 0.051
Ti2Cc Fd-3m Cubic 227 48 8.389 8.389 8.389

R-3m 166 12 5.932 5.932 5.932 0.073
Rhombohedral 60

◦
60

◦
60

◦
12.298

Co2Si Pnma Orthorhombic 62 12 4.181 4.151 8.2998 12.003 0.196
Al2Cu I4/mcm Tetragonal 140 6 5.167 5.167 4.978 11.160 0.533
Ti2C R-3m 166 3 3.454 3.454 3.454 11.624 0.674

Rhombohedral 69.42
◦

69.42
◦

69.42
◦

Fe2P P-62m Hexagonal 189 9 6.048 6.048 3.120 10.978 0.712
ξ -Fe2N Pbcn Orthorhombic 60 12 5.168 6.512 4.211 11.807 0.742
Cu2Sb P4/nmm Tetragonal 129 6 3.248 3.248 6.262 11.010 0.796
Ge2Ta P 6222 Hexagonal 180 9 4.698 4.698 5.362 11.386 1.173
γ -W2C P63/mmc Hexagonal 194 6 4.153 4.153 4.845 9.881 1.307

aX-ray diffraction experiments (Ref. 6).
bNeutron diffraction experiments (Ref. 12).
cThese phases can be represented by two structures that have the same total energies and cell volumes.
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FIG. 1. (Color online) Primitive unit cells of (a) ε-Ti2N, (b) δ′-
Ti2N, (c) Cd2I-type Ti2N, (d) Au2Te-type Ti2N, and (e) Al2Cu-type
Ti2N.

zero pressure, ε-Ti2N is the most stable phase in agreement
with the experiment6 and previous total-energy calculations.15

The δ′-Ti2N phase has a slightly higher total energy and cell
volume than those for ε-Ti2N. The total energy difference
equal to 3.068 kJ/mol confirms the value determined by
Eibler (3.3 kJ/mol) (Ref. 15). The computed and experimental
structural parameters, lattice parameters, and cell volumes,
shown in Table I, agree very well.

The electronic band structure and densities of states (DOS)
of the ε and δ′-Ti2N phases are shown in Fig. 2. The lowest
bands are associated with the 2s states of N. The next band
around −5 eV originates from N 2p and Ti 3d states. Finally,
the broad Ti d band with a small admixture of N 2p states is
located above the minimum of the DOS (around −3.5 eV). One
can see that the electronic spectra of both phases are similar.
The Fermi level (EF) crosses the local DOS minimum in a
region of the spectrum formed by the Ti 3d states (the partial
DOS is not shown here). However, there is a difference: The
peak of the DOS just below EF in ε-Ti2N is located lower in
energy than in δ′-Ti2N, which indicates that the Ti–Ti bonds
in ε-Ti2N are stronger than in δ′-Ti2N, and this may explain
the stabilization of the ε phase instead of the δ′ phase at low
temperatures.

It is well known that δ′-Ti2N is derived from the B1
structure by assuming long-range order of the nitrogen
vacancies, and by allowing for a shift of the Ti atoms
along the fourfold tetragonal axis. A shift of the Ti atoms
away from the nitrogen vacancy (0.123 Å) (Ref. 12), as well
as towards the vacancy11 can be found in the literature. A
comparison of the computed structures of B1-TiN and δ′-Ti2N
clearly indicates the shift of the neighbor Ti atoms away
from the vacancy by 0.157 Å. We also performed additional
calculations to establish a possible origin of the tetragonal
lattice relaxation in the ε and δ′ phases of Ti2N. For this
purpose, we calculated the atomic configuration of the Ti32N31

structure that was represented by a 63-atoms cell of B1-TiNx

with a single nitrogen vacancy in the center. After relaxation,
we identified a uniform shift of the Ti atoms around the N
vacancy away from this vacancy by 0.107 Å, and a shift of the

FIG. 2. Band structure in some symmetry directions of the (a) BZ
and (b) densities of states (DOS) for ε-Ti2N and δ′-Ti2N. The dashed
line locates the Fermi level (EF), taken as zero of energy.

next neighbor atoms towards the vacancy by 0.015 Å. Since
the uniform lattice relaxation around the vacancy could be
related to the periodic boundary conditions (PBC) that were
imposed to the cell and to the small size of the unit cell, we
calculated a finite cluster Ti14N18 without imposing the PBC
(see Sec. II). We found an outward shift of the Ti atoms �x =
�y = 0.156 Å, �z = 0.157 Å. Although further work may be
required, the later results suggest that the tetragonal structure
of both the ε and δ′ phases of Ti2N is related to the tetragonal
local lattice distortion around the nitrogen vacancy.

Now let us address the following question: Can the δ′-Ti2N
phase be stable at low temperatures as was found in some
experiments? To answer this question, we calculated the
phonon dispersion curves along some symmetry directions
of the k space and the phonon densities of states (PHDOS)
for the ε and δ′ phases of Ti2N. The calculated phonon
spectrum and the PHDOS of these phases are shown in
Fig. 3. We note that the phonon spectrum of the ε phase
does not contain any soft modes, which explains why this
phase should be dynamically stable. On the contrary, a
softening of the acoustic phonon modes around the X point
is observed in the phonon spectrum of δ′-Ti2N, which implies
that this phase is dynamically unstable. We suppose that the
soft phonon frequencies will increase with temperature and,
correspondingly, the dynamically unstable δ′-Ti2N structure
should be stabilized at high temperatures in agreement with
experiments.8–10 A similar situation is observed for other
transition metal nitrides with the B1 structure, such as VN and

064109-3



IVASHCHENKO, TURCHI, SHEVCHENKO, AND OLIFAN PHYSICAL REVIEW B 86, 064109 (2012)

FIG. 3. Phonon dispersion curves along some high symmetry
directions of the BZ (a) and phonon density of states (PHDOS)
(b) for ε-Ti2N and δ′-Ti2N.

NbN: these nitrides display soft phonon acoustic modes around
the X point,24,25 the reason for this being they can crystallize
with the stoichiometric B1 structure only at high temperatures,
or with a lower atomic composition on the nonmetal sublattice
leading to vacancy-stabilized phases.1,2

For some TMC, phonon anomalies are caused by a
resonance-like increase of the dielectric screening at specific
phonon wave vectors. This can be caused by the specific
“jungle-gym” topology of the Fermi surface (as in the case
of TMC with a valence-electron concentration equal to 9:
TiN, ZrN, VC, NbC),26,27 or by the resonance-like increase
of the electron-ion form factors at particular phonon wave
vectors q (as in the case of the TMC with a valence-electron
concentration equal to 10, e.g., VN, NbN, TiO).28 For the
latter compounds, the longitudinal electron-ion form factors
drastically increase for q = 2π/a (0 0 1) (X point), owing
to interband transitions between the W points.28 Given these
findings, let us return to the discussion of the origin of the
phonon anomalies in δ′-Ti2N. We calculated the Fermi surfaces
of several bands for both the ε and δ′ phases of Ti2N. The
computed Fermi surfaces are shown in Fig. 4. For δ′-Ti2N, a
thorough inspection of the Fermi surface topology showed
that any nesting regions that could cause a resonance-like
increase of the dielectric screening are lacking. It follows that,
for δ′-Ti2N, the soft acoustic modes at the X point are not a
consequence of the specific Fermi surface topology (cf. Fig. 4),
but instead are most likely caused by the abnormal dependence
of the matrix elements of the electron-phonon interaction at
the X point.

Since we have the information on the phonon spectra of
both the ε and δ′ phases of Ti2N, it would be reasonable to
estimate the structural stability of these phases taking into
account the vibrational contribution Fvib to the Helmholtz
free energy. We calculated Helmholtz free energy differences
�F (T ) = �Etot + �Fvib(T ) between these phases neglecting

FIG. 4. (Color online) Fermi surface of the (a) 12th band, (b)13th
band, and (c) 14th band for ε-Ti2N and of the (d) 13th band and
(e) 14th band for δ′-Ti2N.

the soft phonon mode contribution to Fvib in δ′- Ti2N (the
negative frequency region in the PHDOS, cf. Fig. 3). We
suppose that such an approach will be quite justified since
(i) the integrated PHDOS in this region approximates only to
0.01% of the value of the total integrated PHDOS and (ii) the
frequencies of the soft modes will increase with temperature.

Figure 5 shows that the δ′ phase will be more stable than
the ε phase at temperatures above the critical temperature of
1250 K. The decomposition of the vibrational free energy into
the internal energy and the entropy (not shown here) indicates
that the transition is driven by the vibrational entropy. Our
calculated value of the ε to δ′ transition temperature of 1250 K
is close to the experimental annealing temperature at which
the structural transformation is activated.5,8–10

FIG. 5. Free energy for the ε and δ′ phases of Ti2N (F ) and
free energy difference �F = F(ε-Ti2N)–F(δ′-Ti2N) as functions of
temperature.
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B. Ti2N structures under pressure

To predict possible stable phases of Ti2N under high
pressure we calculated the total energies (ET) of all the Ti2N
phases presented in Table I as functions of cell volume (V ).
An analysis of the calculated volume dependence of the total
energies ET(V ), 7.8–8.3 < V < 13.6–14.8 Å3/atom, enabled
us to identify the phases that could be derived from ε-Ti2N at
high pressure. The total energies of these phases as functions of
cell volume obtained by means of the six-order polynomial fit
to the data points calculated by the first-principles procedure16

are shown in Fig. 6. One can see from Fig. 6 that ε-Ti2N
will transform into Cd2I-type Ti2N (space group P-3m1), and
the second phase will transform into Al2Cu-type Ti2N (space
group I4/mcm) with increasing pressure. We should verify
whether these new pressure-induced phases are dynamically
stable. The phonon dispersion curves for Cd2I-type and Al2Cu-
type Ti2N at equilibrium and under pressure are presented in
Fig 6. The phonon dispersions clearly indicate that the Al2Cu-
type Ti2N phase is dynamically stable at equilibrium and under
pressure, whereas the Cd2I-Ti2N phase is dynamically unstable
at any pressures owing to the availability of the condensed
acoustic modes around the A and 	 points.

To determine a new structure that could be derived from
the Cd2I type Ti2N phase by a condensation of the soft
modes at the A and 	 points, we performed a symmetry
analysis using the ISOTROPY code.29 The possible structures
originated from Cd2I-type Ti2N are listed in Table II. Given
the sequence of the phonon frequencies at the A point:
2A3− < 2A3+ < A2− < A1+ < A2− < 2A3−, the structures that
could be originated from Cd2I-type Ti2N by means of a
condensation of the acoustic A3− mode should have the
following symmetries: No. 12, C2/m; No.15, C2/c; No. 2,
P -1. At the 	 point, the frequencies are sorted out as follows:
2	3− < 	2− < 2	3+ < 	1+ < 	2− < 2	3−. This means that a
deformation of the unit cell according to the acoustic mode
	3−, or a shift of the sublattices in accordance with the optical

FIG. 6. Total energy (ET) as a function of cell volume (V ) for
various phases of Ti2N.

TABLE II. Classification of the possible stable phases along
particular directions (order parameter space) (Ref. 29). a and b are the
amplitudes of the normal coordinate of the corresponding mode that
is characterized with a specific irreducible representation (IRREP) at
the A and 	 points of Cd2I-type Ti2N (space group P-3m1, No. 164).

IRREP (ISOTROPY) IRREP No. Space group Direction

A1+ A1g 164 P-3m1 P 1 (a)
A2− A2u 164 P-3m1 P 1 (a)

12 C2/m P 1 (a,0)
A3+ Eg 15 C2/c P 2 (0,a)

2 P-1 C1 (a,b)
12 C2/m P 2 (0,a)

A3− Eu 15 C2/c P 1 (a,0)
2 P-1 C1 (a,b)

	1+ A1g 164 P-3m1 P 1 (a)
	2− A2u 156 P3m1 P 1 (a)

12 C2/m P 1 (a,0)
	3+ Eg 2 P-1 C1 (a,b)

8 Cm P 1 (a,0)
	3− Eu 5 C2 P 2 (0,a)

1 P1 C1 (a,b)

modes 	3−, 	2−, 	3+, and 	2− should lead to the formation
of one of the structures listed in Table II. To find the most
stable structure that could be derived from Cd2I-type Ti2N,
one should compare the total energies of the different structures
that are listed in Table II. However, this is tedious work and is
out of the scope of the present study. Here, we calculated only
the Au2Te-type Ti2N structure (space group C2/m, No. 12) that
is listed in Table II to illustrate the formation of a new phase by
means of a condensation of the 	3+ or A3− modes in Cd2I-type
Ti2N. The phonon spectrum of the Au2Te-type Ti2N structure
at equilibrium is shown in Fig. 7. There are no imaginary

FIG. 7. Phonon dispersion curves along some high symmetry
directions of the BZ for Cd2I- and Au2Cu-type Ti2N at equilibrium,
and for Al2Cu-type Ti2N at (a) equilibrium and (b) under pressure
P = 120 GPa (higher than the transition pressure). The Au2Te-type
Ti2N structure represents a slightly distorted hexagonal version of the
Cd2I-type Ti2N structure; hence the same notation for the symmetry
points is used for both structures. “Negative” frequencies actually
mean “imaginary” (negative squared frequencies).
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TABLE III. Fitting parameters of the Murnaghan equation
(Ref. 30): V0—unit cell volume, E0—total energy, B0—bulk modu-
lus, B ′

0—bulk modulus derivative.

Phase V0 (Å3/atom) E0 (eV/atom) B0 (GPa) B ′
0

ε-Ti2N 12.396 0.000 203.8 3.715
Au2Te 12.412 0.017 197.7 3.553
Al2Cu 11.275 0.555 195.9 3.529

frequencies in the phonon dispersion curves of Au2Te-type
Ti2N at equilibrium and under pressure (not shown here), and
therefore this structure should be dynamically stable.

To clarify in more detail the phase transformations in ε-Ti2N
under pressure taking into account the finding discussed above,
we calculated the enthalpies (H ) and cell volume (V ) of ε-
Ti2N, Au2Te-Ti2N, and Al2Cu-Ti2N. For this purpose, we used
the traditional Murnaghan equation of states.30 There are four
fitting parameters in the Murnaghan equation that correspond
to an equilibrium state: V0—unit cell volume, B0—bulk mod-
ulus, B ′

0—bulk modulus derivative, E0—total energy. These
parameters obtained from the Murnaghan fit are included in
Table III. In Fig. 8 we show the values of H and V as functions
of pressure (P ). Given these results, as well the results of the
total energy and phonon spectrum calculations for various
phases of Ti2N under pressure, we predict the following
sequence of phase transformations in ε-Ti2N under pressure:
ε-Ti2N (space group P4/mnm), P = 77.5 GPa → Au2Te-type
(space group C2/m), P = 86.7 GPa → Al2Cu-type (space

FIG. 8. Difference of enthalpies (a) �H = H (ε-Ti2N)-H (Au2Te-
type Ti2N) and (b) �H = H (Au2Te-type Ti2N)-H (Al2Cu-type Ti2N)
and cell volume (V ) for various phases of Ti2N as functions of
pressure (P ).

FIG. 9. Density of states (DOS) of the Cd2I-, Au2Te-, and Al2Cu-
type phases of Ti2N at equilibrium. The vertical line locates the Fermi
level (EF), taken as zero of energy.

group I4/mcm). All these phase transformations are first
order in nature since the cell volumes change abruptly at the
transition points. We note that the transition pressure obtained
from the six-order polynomial fit was 79.7 and 86.2 GPa for
the first and second transformations, respectively. The small
differences in the transition pressures are supposed to be likely
due to the different ranges of cell volumes considered in the
two procedures.

Let us investigate the electronic structure of these new
pressure-induced phases. The densities of states of the Cd2I-,
Au2Te- and Al2Cu-type Ti2N phases at equilibrium are shown
in Fig. 9. Below, we will attempt to estimate phase stability
following the simple rule: The lower the density of states is at
the Fermi level, the more stable is the structure. The motivation
of this is that the high DOS at the Fermi level causes the
existence of soft phonon modes in the long-wave region, and
their collapse leads to a structural transformation. Figures 2
and 9 show that the Fermi level for all the computed structures
of Ti2N is located in a local minimum of the DOS except for
Cd2I-type Ti2N, where a high DOS is associated with the Fermi
level. Thus, the high DOS at the Fermi level in Cd2I-type Ti2N
can be one of the reasons of the dynamical instability of this
phase. It is seen that the small lattice distortion in Cd2I-type
Ti2N resulting in the formation of the Au2Te-type phase of
Ti2N, in turn, leads to a splitting of the peak of the DOS near
the Fermi level.

IV. CONCLUSION

First-principles calculations of the electronic and phonon
structures were performed and, on their basis, the phase
stability of various phases of Ti2N at equilibrium and under
pressure was examined. The analysis of the dependencies of
enthalpy and phonon spectra on the pressure of these Ti2N
phases enabled us to bring the following conclusions. ε-Ti2N
at zero pressure is the most stable phase in agreement with
the experiment and previous total-energy calculations. The
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δ′-Ti2N phase can only exist at high temperature due to the
availability of soft acoustic modes at the X point. We supposed
that the tetragonal structure of both the ε and δ′ phases of Ti2N
is caused by a tetragonal local-lattice distortion around the
N vacancy. The following phase transformations in ε -Ti2N
under pressure at zero temperature are predicted: ε-Ti2N (space
group P4/mnm), P = 77.5 GPa → Au2Te-type (space group
P-3m1), P = 86.7 GPa → Al2Cu-type (space group I4/mcm).
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