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Rotating quantum turbulence in superfluid 4He in the T = 0 limit

P. M. Walmsley and A. I. Golov
School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

(Received 2 July 2012; revised manuscript received 14 August 2012; published 31 August 2012)

Observations of quantum turbulence in pure superfluid 4He in a rotating container are reported. Large-scale
forcing through rotational oscillations of the cubic container and detecting of turbulence via monitoring ion
transport along the axis of rotation were used. Near the axial walls, with increasing forcing the vortex tangle
grows without an observable threshold. This tangle gradually develops into bulk turbulence at a characteristic
amplitude of forcing that depends on the forcing frequency and rotation rate. At higher amplitudes, the total
vortex line length increases rapidly. Resonances of inertial waves are observed in both laminar and turbulent bulk
states. On such resonances, the turbulence appears at smaller amplitudes of forcing.
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In superfluid 4He driven to the state of quantum turbulence
(QT), quantized vortex lines (each with a circulation of κ =
1.00 × 10−3 cm2/s) make a dynamic tangle.1 At length scales
smaller than the mean distance between the lines � = L−1/2,
where L is their total length per unit volume, QT differs
markedly from classical turbulence. In the zero-temperature
limit T = 0 viscosity vanishes, although finite dissipation2 is
still maintained, probably due to short-scale deformations of
vortex lines (Kelvin waves)—the cascade of energy to these
length scales is maintained by line reconnections. One thus
might need very small amplitudes of forcing to sustain steady
turbulence. As the rate and efficiency of reconnections are
expected to decrease with the alignment of neighboring lines,
to investigate the intrinsic mechanisms of dissipation of QT it
is instructive to study the case of vortex tangles polarized by an
imposed rotation. For instance, in classical fluids the rotation
modifies the dynamics of the energy cascade3 and generally
opposes turbulence.

In a rotating superfluid, the equilibrium state is that with an
array of parallel vortex lines of a uniform density L0 = 2�0/κ .
Low-frequency (ω � 2�0) excitations are expected to be
inertial waves4 (in essence, oscillations of compression and
bending of the vortex array), i.e., the same as in classical
fluids.3,5 Swanson et al.6 studied rotating superfluid 4He at high
temperatures, at which one can destabilize individual vortex
lines via an axial counterflow of the normal and superfluid
components. They observed two different turbulent states that
appear after exceeding the critical values of the counterflow
velocity. Using numerical simulations and disregarding vortex
pinning at the container walls, Tsubota et al.7 interpreted
the first transition as the proliferation of Kelvin waves on
isolated rectilinear vortex lines (a high degree of polarization,
L ≈ L0) and the second one as the onset of a vortex tangle
of low polarization (L � L0) caused by reconnections of
neighboring vortex lines.

The aim of this Rapid Communication is to observe and
investigate QT in a rotating superfluid 4He in the T = 0 limit,
driven at classical (��) length scales, for instance, whether
the critical amplitude of forcing is finite and if there could
be more than one turbulent regime. The experiments were
performed in isotopically pure liquid 4He at a temperature of
T � 0.2 K and a pressure of 0.1 bar. A cube-shaped volume
of side d = 45 mm was confined by six square electrodes (see

the side view of the inset in Fig. 1; details are in Ref. 8).
The whole cryostat could rotate around its vertical axis at a
computer-controlled angular velocity �(t).

To force turbulence, an ac component of frequency ω and
small amplitude �� was added to the dc angular velocity �0

of rotation of the cryostat, �(t) = �0 + �� sgn[sin(ωt)]. The
following mechanisms of turbulence generation are expected:
Large-scale vortices are created after each stroke due to the
flow separation near the corners of the lateral walls; quantized
vortices are agitated near the axial walls due to surface friction
(pinning and unpinning); and inertial waves induce large-scale
ac flow in the container (in resonance conditions, its velocity
can be much greater than ∼d��).

To detect turbulence in the middle of the container, we
monitored the connectivity of vortex lines in the axial direction
through measurements of the transport of ions trapped on them.
Negative ions (electrons in a bubble state) were injected from
the field-emission tip 1 mm below the center of the grid in the
bottom plate, by applying voltage to the tip Vtip = 525 V (thus
injecting the current of ∼100 pA that was mainly terminated
at the injector grid) for 0.1 s, and then reverting Vtip back to
zero. At the opposite wall, the currents separately collected by
the collector, Icoll(t), grid together with its frame, Igrid(t), and
top plate, Iplate(t), were converted into voltage and recorded.
The grid in front of the top collector, made of a square mesh of
wire of diameter w = 0.02 mm with period s = 0.5 mm, was
stretched on a metal ring frame of 13 mm i.d. and 19 mm o.d.
and was separated from the surrounding top plate by a 1 mm
gap, thus making the radius of its gridded part R1 = 6.5 mm
and the effective radius dividing the grid and outer top plate
R2 ≈ 10 mm. The time constant of the recording electronics
was 30 ms.

All charges, currents, and voltages are quoted with the
opposite sign (i.e., assuming the electron’s charge to be
positive). The voltage between the top collector and its grid
(and top plate), side plates, and bottom plate were 10, 100, and
190 V, respectively, making the mean axial field in the drift
space E = 40 V/cm.

In Fig. 1 we show Icoll(t), all at the same �0 = 1.5 rad/s
but for different amplitudes of forcing �� at a frequency of
ω = 1.5 rad/s. With increasing forcing, the amplitude I ∗ of the
peak of Icoll(t) first increases and then decreases. The peak’s
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FIG. 1. (Color online) Records of current to the top collector
Icoll(t) after a 0.1-s-long injection, beginning at t = 0, at the bottom
of the cell, for different amplitudes of agitation ��. �0 = 1.5 rad/s,
ω = 1.5 rad/s, T = 0.2 K, and E = 40 V/cm. Inset: Sketch of a
stationary cell with the vortex array (left); sketch of vortex lines in
the axial region of the cell at a moderate (center) and high (right)
level of forcing.

width at half maximum �t only begins to increase at high
amplitudes of forcing.

At T � 0.2 K all negative ions in 4He are bound to vortex
lines. During the injection they create a compact charged
vortex tangle near the tip that spreads through the bottom
grid. With little forcing, there is an array of rectilinear vortex
lines everywhere, except for this vortex tangle at the bottom
that feeds ions into the array. The ions’ time of flight along
straight vortices to the top, at a terminal velocity of ∼10 m/s,9

is just ∼4 ms. The position of the maximum at 0.20 s and
width at half height �t = 0.21 s of Icoll(t) (Fig. 1) reflect the
slower dynamics of the evolution of the charged vortex tangle
near the injector and not the ion emission duration 0.10 s: The
first ions cross the injector grid some 0.05 s after the beginning
of the injection, and the maximal current is fed into rectilinear
lines after another 0.15 s, followed by a nearly exponential tail
with a lifetime of some 0.25 s.

The total charges arriving at different electrodes Qcoll,
Qgrid, Qplate were obtained by integrating the corresponding
currents. These allowed us to quantify the fraction of ions
arriving outside the radius of R2 ≈ 10 mm (“lateral spread”),
σ = Qplate/(Qcoll + Qgrid + Qplate), and the transparency of
the grid assembly, θ = Qcoll/(Qcoll + Qgrid). The lateral and
axial spread parameters σ and �t are indicative of bulk
turbulence (at least when they grow above their no-forcing
values—see below), while the grid transparency θ is a local
measure of the state of vortex lines near the collector grid.
When the rectilinear vortex lines are not perturbed and their
density L0 is comparable to that of grid cells, s−2, many
lines terminate not at the collector but at the grid; hence,
only a fraction of ions reach the collector. This fraction
increases with increasing agitation of the vortex lines that
can cause intermittent reconnections of the lines between
pinned (terminated on grid) and unpinned (transparent for ions)
states. When these reconnections result in a vortex tangle of
density L � s−2 near the grid, most ions that arrive within

FIG. 2. (Color online) Analysis of the records of currents to the
top collector (Fig. 1), grid, and surrounding plate for �0 = ω =
1.5 rad/s. Left axis: Grid transparency θ (solid red circles), and
fraction of charge arriving outside the grid σ (open red squares).
Right axis: Width �t of the collector current pulses (�). The vertical
lines indicate the critical amplitudes of forcing ��c1 ≈ 0.01 rad/s
and ��c2 ≈ 0.03 rad/s.

the gridded radius do make it to the collector, except for those
heading to a grid’s wire head-on within a catching diameter
of w′ = w + γ �, where γ ∼ 1. Thus, if ions arrive uniformly
within a radius R2 ≈ 10 mm or greater,

θ ≈
[(

1 − w′

s

)
R1

R2

]2

= 0.24, (1)

evaluated for γ = 1 and L = �−2 = 104 cm−2.
The graphs of θ , �t , and σ vs ��, corresponding to the

records from Fig. 1, are shown in Fig. 2. There are two
limiting regimes and their crossover between the “critical”
amplitudes ��c1 and ��c2. The first (bulk laminar) regime,
at 0 < �� < ��c1, in which �t and σ stay unchanged and
only θ grows linearly with increasing ��, corresponds to local
vortex tangles near the top and bottom grid coexisting with an
array of rectilinear vortex lines elsewhere in the bulk.

With increasing forcing the density of the local tangle
eventually becomes much larger than L0, after which θ is
expected to saturate below the geometrical transparency of the
grid assembly 0.64. Above ��c1, we do observe leveling off
at θ ≈ 0.26, which, according to Eq. (1), corresponds to the
local density L ∼ 104 cm−2 (while L0 = 3 × 103 cm−2).

In the second regime, at �� > ��c2, most ions arrive at
the collector much later than the peak injection at 0.20 s, with
a large spread of arrival times �t and with a larger lateral
spread σ than for the injection into an array of rectilinear
vortex lines. This regime corresponds to a vortex tangle filling
the whole container (bulk turbulence). The crossover between
the local and bulk turbulence takes place gradually between
��c1 and ��c2. The first critical amplitude, ��c1, is set by
a comparison of local � near the collector grid with the grid
period s. The second one, ��c2, corresponds to �t and σ

becoming clearly greater than �t0 and σ0 set by the injection’s
intensity and rotation rate �0. For the example shown of �0 =
1.5 rad/s and ω = 1.5 rad/s, ��c1 ≈ 0.01 rad/s and ��c2 ≈
0.03 rad/s; however, for �0 = 1.5 rad/s and ω = 0.21 rad/s,
��c1 ≈ 0.04 rad/s and ��c2 ≈ 0.12 rad/s. For all studied
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FIG. 3. (Color online) The amplitude of the collector current peak
I ∗ vs �� for different �0 and ω. The vertical lines indicate the critical
amplitudes ��c1 and ��c2. The scale of the top horizontal axis (for
�0/ω = 3) is different from that of the bottom axis (for �0/ω = 1)
by a factor of 1.73. The solid lines guide the eye through the linear
part. The values of I ∗(��) for �0 = ω = 1.5 rad/s, calculated using
Eq. (2) and data from Fig. 2, are shown by asterisks.

frequencies ω and �0, we found that ��c2 ≈ 3��c1. The
saturated value of θ was always within 0.25 ± 0.1. With a
total injected charge of Qtot ≡ Qcoll + Qgrid + Qplate = 23 pC
and rotation rate �0 = 1.5 rad/s, the low-forcing values were
�t0 = 0.21 s and σ0 = 0.29. With decreasing �0, θ0 decreased
while �t0 and σ0 increased.

To investigate the observed regimes at different �0 and ω,
we monitored the amplitude of the collector peak I ∗, which
is related (asterisks in Fig. 3) to the quantities θ , σ , and �t

through

I ∗ ≈ 0.46Qtotθ (1 − σ )�t−1, (2)

where 0.46 is an empirical factor. At small �� < ��c1,
I ∗(��) grows linearly, I ∗ = I ∗

0 + g0��, due to the growing
θ (��). At larger �� > ��c2, I ∗(��) decreases chiefly
because of the increasing �t(��). As the maximum, I ∗

max,
is just above ��c1, the gradient of the linear part of I ∗(��),
g0, is inversely proportional to ��c1,

��c1 ≈ g−1
0 �I ∗

max, (3)

where �I ∗
max(�0) ≡ I ∗

max − I ∗
0 is independent of ω.

In Fig. 4 (top panel), we plot the dependences on the forcing
frequency ω of the ratio g0/�I ∗

max for three rates of rotation
�0. There are several broad peaks at frequencies ω that are
not fixed but are proportional to the rotation rate �0. This is
substantiated by plotting versus ω/2�0: At ω/2�0 � 0.6, all
three datasets collapse on the unique function ��−1

c1 (ω/2�0).
Resonances of inertial waves are indeed expected at certain

ω/2�0 � 1.5 These were calculated for an ideal liquid subject
to nonslip boundary conditions in a rotating cube10 but
generally disagree with the positions of our peaks. Whether
this disagreement is because of different boundary conditions
of the turbulent superfluid in the T = 0 limit or because our
cell is not truly cubic (gaps between the square electrodes at

FIG. 4. (Color online) Top panel: The ratio of the gradient g0 ≡
[I ∗(��) − I ∗

0 ]/�� of the linear part of I ∗(��) to �I ∗
max(�0) vs the

reduced forcing frequency ω/2�0 for three rates of rotation �0. g0

was measured at an amplitude �� = 0.0075 rad/s (except for the
open blue squares, for which �� = 0.015 rad/s). �I ∗

max(0.5 rad/s) =
1.95 pA, �I ∗

max(1.0 rad/s) = 5.0 pA, and �I ∗
max(1.5 rad/s) = 6.2 pA.

The right axis shows the corresponding critical amplitudes ��c1

from Eq. (3). Resonances are indicated by vertical lines. Bottom
panel: g ≡ [I ∗(��) − I ∗

0 ]/�� vs ω/2�0 for �0 = 1.50 rad/s and
four different values of ��. The right axis shows the amplitudes
��c1 = 6.2 pA/g for �0 = 1.5 rad/s. The horizontal lines indicate
the values of ��c1(g) = �� beyond which the linear growth I ∗(��)
(i.e., g = g0) breaks down; from top to bottom, �� : 0.015, 0.030,
and 0.045 rad/s (the colors of the lines and symbols for the same ��

are the same).

the edges of the cube and circular holes in the centers of the
four electrodes for injectors and collectors of ions) is an open
question.

The nonmonotonic behavior of I ∗(��) at �� > ��c1

is presented in Fig. 4 (bottom panel). Here we plot g ≡
[I ∗(��) − I ∗

0 ]/��. When �� > ��c1(ω/2�0), g no longer
coincides with the gradient g0 but falls below it. For
each forcing amplitude ��, this limiting value of g, g0 =
�I ∗

max(�0)/��, is indicated by a horizontal line; these lines
are in a good agreement with the observed plateaus (“chopped-
off peaks”) in g. When �� exceeds ��c1(ω/2�0), the peaks
in g0(ω/2�0) correspond to troughs in g(ω/2�0).

We found that not only ��c1(ω,�0) stays the same if the
ratio ω/�0 is kept constant, but all I ∗(��) for the same �0

collapse on a single curve if plotted versus ��/��c1(ω,�)
(Fig. 3). This reflects the fact [Eq. (3)] that all functions
θ (ω,�0), σ (ω,�0), and �t(ω,�0) collapse on single curves
when plotted this way (this was confirmed independently).
In the investigated range of resonant frequencies, 0.05 �
ω/2�0 � 0.5, the peak (on resonance) values of ��c1 seem
to scale as ∝ω−1/2, which can be summarized as follows:
��c1 ∼ 0.01(ω/�0)−1/2 rad/s. At the troughs, although
never farther away from a resonance than one linewidth,
��c1 ≈ 0.04 ± 0.01 rad/s is roughly independent of the
forcing frequency. In the limit of high-frequency forcing
ω/2�0 > 1, where inertial waves cannot propagate, all ��c1

keep increasing in a manner that is perhaps compatible with the
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FIG. 5. (Color online) Mean values of vortex line density L,
measured in the transverse direction, vs forcing amplitude �� for
various �0. Solid lines indicate the no-forcing limit L0 = 2�0/κ .
The arrows indicate the values of ��c1 and ��c2 = 3��c1, where
��c1 = �I ∗/g0 for particular values of ω/2�0 were calculated
using the data for �0 = 1.5 rad/s: �I ∗ = 6.2 pA and (see Fig. 4,
bottom panel) g0 = 300 pC/rad for ω/2�0 = 1, g0 = 600 pC/rad
for ω/2�0 = 0.5, and g0 = 300 pC/rad for ω/2�0 = 0.33.

common scaling law ��c1 ∝ (ω/�0)1/2,12 but they eventually
saturate at different values that are seemingly proportional
to �0. At the highest frequency studied, ω = 10 rad/s (at
�0 = 1.5 rad/s), ��c1 was about ten times greater than that at
the strongest inertial wave resonance (at ω/2�0 = 0.49 rad/s).

To confirm that in a turbulent state the length of the vortex
tangle L exceeds L0, we measured its mean value along a
horizontal axis of the cube via scattering of charged vortex
rings11 of average radius R = 1.6 μm sent from the left injector
to the right collector. In Fig. 5, one can see that at forcing
amplitudes smaller than ��c2 the vortex line length, measured
far from the horizontal walls, is only slowly increasing from the
equilibrium L0 = 2�0/κ . But at �� > ��c2, L(��) starts
to grow faster and rapidly becomes much greater than L0.
This supports our interpretation that, at �� > ��c2, a vortex
tangle of low polarization develops in the bulk.

In the limit of slow rotation, the dependence L(��) in
the turbulent regime (Fig. 5) is steeper than at ��/�0 
 1
and seems to be closer to L ∝ ��3/2 (as for �0 = 0). The
exponent 3/2 is indeed expected if we assume that the fully
developed turbulence exerts the resistive torque ∝��2; then
its time-averaged work ∝��3 should be equal to the rate of
dissipation ∝ν ′(κL)2. The critical amplitude for sustainable
QT at �0 = 0 is small but increases seemingly proportionally
to �0.

With fast rotation (�0 > ω/2), inertial waves are an inher-
ent feature of the large-scale superfluid dynamics, thus greatly
reducing the critical amplitude of forcing at the strongest
resonances. Between the resonances, the critical amplitudes
are roughly frequency independent, ��c1 ≈ 0.04 rad/s, either
due to the dominance of other mechanisms of generating
turbulence or a complex interaction of inertial waves of
different wave numbers. With increasing �0, as the on-
resonance critical amplitudes increase as ∝(�0/ω)1/2, one can
expect the inertial waves to become nondominant again if the
forcing frequency ω is kept constant.

In these experimental studies of rotating QT in the T = 0
limit, the detection techniques exploited the quantized nature
of vorticity and were sensitive to the density and degree of
entanglement of vortex lines separately in the bulk and near
the container walls. Within our resolution, no finite critical
amplitude of forcing was required to sustain either bulk
turbulence in a nonrotating container or boundary turbulence
near the walls of the rotating container. In rotation, with
increasing the amplitude of the ac-rotational forcing, we
observed a gradual growth of vortex tangles near the horizontal
walls, followed by a transformation, around the finite critical
amplitude of forcing ��c2, of an array of rectilinear vortex
lines into a developed bulk vortex tangle. Inertial waves,
observed at frequencies ω/2�0 between 0.03 and 0.5, help
generate turbulence: On resonance, the critical amplitude
��c2(ω/2�0) can be several times smaller than when off
resonance.
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