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Numerical model of crossed Andreev reflection and charge imbalance
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We present a numerical model of local and nonlocal transport properties in a lateral spin valve structure
consisting of two magnetic electrodes in contact with a third perpendicular superconducting electrode. By
considering the transport paths for a single electron incident at the local F/S interface—in terms of probabilities
of crossed or local Andreev reflection, elastic cotunneling, or quasiparticle transport—we show that this leads
to nonlocal charge imbalance. We compare this model with experimental data from an aluminum-permalloy
(Al/Py) lateral spin valve geometry device and demonstrate the effectiveness of this simple approach in replicating
experimental behavior.
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I. INTRODUCTION

Crossed Andreev reflection (CAR) is a charge transfer
process whereby an electron incident at a normal metal
or ferromagnet to superconductor junction may enter the
superconductor at energies less than the gap energy � through
simultaneous retroreflection of a hole in a spatially separate,
nonlocal electrode. Previous work by others has demonstrated
this effect experimentally1,2 for a nonlocal or lateral spin valve
geometry consisting of two separate normal state electrode
incidents with a third superconducting electrode, laterally
separated on the scale of the BCS coherence length ξ0. This
effect has been observed as a negative nonlocal voltage Vnl and
negative nonlocal differential resistance dVnl/dI, where Vnl is
measured across the second normal electrode (defined as the
detector electrode) separate to that through which current I is
applied (the injector)3. CAR has attracted considerable recent
interest due to the potential to create solid state quantum
entanglement via the splitting of a Cooper pair via CAR,
demonstrated by recent experimental studies.4,5

Previous work has shown that other competing processes
also contribute to the nonlocal effect—elastic cotunneling
(EC) by which an electron may tunnel nonlocally via an
intermediate virtual state in the superconductor and nonlocal
charge imbalance (CI), an effect produced through the creation
of charge nonequilibrium in the superconducting electrode
through quasiparticle injection and diffusion.6 Both of these
processes have been suggested to fully or partially cancel the
CAR effect, by producing an equal but opposite contribution
in nonlocal voltage, or to dominate over CAR in the regime
near Tc or near the critical field. The use of ferromagnetic
electrodes, magnetized parallel (P) or antiparallel (AP), has
been suggested and demonstrated as a potential means to
separate the spin-dependent CAR and EC effects.7

A number of theoretical models have been developed to
model the lateral spin valve by taking an analytical approach—
either solutions of the Bogoliubov-de Gennes equations,
following the method of Blonder, Tinkham, and Klapwijk
(BTK)8,9 for Andreev reflection at a single N/S junction, or
by solution of the Usadel equations.10,11 Such studies suffer
the deficiency of being untested against experimental data or
being unable to simultaneously fully replicate all the nonlocal
effects—particularly those due to nonlocal charge imbalance
and the negative nonlocal resistance associated with CAR.

In this paper we present a simplified means to model these
effects by considering the possibilities for a single electron
incident at the local (injector) N/S interface and demonstrate
the effectiveness of such an approach in terms of replicating
real experimental data.

II. EXPERIMENT

In order to provide comparison with the model, devices
were fabricated for experimental measurement by electron
beam lithography using a Raith 50 system in a standard
lateral spin valve configuration. These consisted of two Ni:Fe
80:20 (Py) electrodes with 1×1 μm and 2×2 μm nucleation
pads and attached nanowire with either a continuous 300 nm
in width or tapering from 600 to 300 nm (over 400 nm),
contacting a perpendicular 300-nm width Al electrode, of
lateral interelectrode separation 600–900 nm (Fig. 1). Pat-
terning was performed using standard PMMA positive resist.
Deposition of Py was performed by dc magnetron sputtering at
34 W/2.5 mbsp;Torr Ar at system base pressure 3×10−9 torr.
Overlay of the Al electrode was by EBL overlay patterning
followed by Al deposition at 50 W/2.5 m Torr Ar at base
pressure 3.2 × 10−8 torr, preceded by an in situ 40-s Ar+ mill at
410-V acceleration voltage to clean the Py electrode surface of
oxide and residual resist. Growth thicknesses of the Py and Al
electrodes were 15 nm and 30 nm, respectively, for all devices.
Measurement was undertaken in an adiabatic demagnetization
refrigerator cooled to 600 mK with current injection and local
voltage detection between 1 and 2 in Fig. 1 and nonlocal
voltage detection 3 and 4, using both a dc applied current
Idc < 100 μA and nanovolt meter and ac current Iac = 0.25 μA
with dc offset Idc in order to measure differential conductance
via a standard lock-in amplifier technique. Low ac frequency of
9.99 Hz was used to minimize inductively generated nonlocal
voltage observed.

A. Local effect

Differential conductance through the local (injector) junc-
tion was measured using the lock-in method with Iac =
0.25 μA and dc offset Idc to 50 μA. The resulting data can
be seen in Fig. 3 and exhibited a subgap enhancement of con-
ductance consistent with single junction Andreev reflection.12

The model of Blonder, Tinkham, and Klapwijk (BTK) and as
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FIG. 1. SEM image of device. Py magnetic electrodes (1) and (3)
intersect with an orthogonal Al electrode (2)-(4). Current application
and voltage detection is performed as in the text.

modified by Strijkers et al.8,13 was fitted to the experimental
data by a standard χ -squared minimization process to obtain
parameters (see figure caption) including spin polarization P,
interface parameter Z, and effective temperature T∗ that were
within physical limits. Two methods of fitting were used: with a
single gap parameter �1 and two parameters �1 representing
a region of suppressed superconductivity and �2, a higher
(bulk) value. Although the single-� approach was capable
of replication of the peak at zero and of high Idc behavior,
only the two-� approach was able to replicate the finite bias
minima observed at Idc = 10–30 μA in the conductance data.
This implied the existence of a region of suppression of the
superconductivity in the Al—or a proximity effect induced
superconducting region in the injector electrode—potentially
arising from the effect of the adjacent magnetic electrode. The
low value of P compared to the P = 0.3–0.4 range expected can
be attributed to the nonpoint contact nature of the junction and
that the polarization returned reflects the effective polarization
at the junction rather than the bulk value for the Py.

B. Nonlocal effect

Examples of nonlocal measurement data taken for a range
of devices can be seen in Figs. 2–6. Figure 2 shows the
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FIG. 2. (Color online) Nonlocal dc voltage Vnl vs Idc at 600 mK
for four devices A, B, C, D of interelectrode separation A, 150 nm;
B, 250 nm; C, 600 nm; D, 900 nm.
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FIG. 3. (Color online) Local normalized differential conductance
G/Gn for an example injector junction, with BTK model fits using
a single-� (�1) and by a two-� (�1 and �2) method. Fitting
parameters of P = 0.182, �1 = 0.1491 meV, �2 = 0.2892 meV,
Z = 0.145, and T∗ = 1.7 K were used, the position of the �1 and �2

indicated on the figure.

nonlocal dc voltage Vnl measured for a range of devices
A–D of interelectrode separation L 150–900 nm measured
as a function of applied dc current through the injector
Idc. We include a range of properties for these devices in
Table I. A negative nonlocal voltage was observed, with
a general trend of reduction in amplitude with increasing
interelectrode separation L characteristic of a CAR effect
decaying over ξ0. This effect can also be seen in a plot of
nonlocal differential resistance dRnl in Fig. 4 for two of the
devices, A and D, demonstrating a characteristic shape of finite
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FIG. 4. (Color online) Nonlocal resistance dRnl measured via the
lock-in technique at T = 600 mK as a function of Idc at the injector
for device A of interelectrode separation 250 nm and device D of
interelectrode separation 900 nm. Measurements are shown for both
configurations of injector/detector; the reverse (rev) configuration
refers to current injection through the untapered (300-nm width)
electrode.
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FIG. 5. (Color online) Device C nonlocal resistance dRnl as a
function of Idc at a range of temperatures. No signal was detected at
T � 1.4 K, with Tc for the device reached at ≈1.35 K. The asymmetry
in ±I was a product of the measurement method.

bias negative minima and zero Idc peak, attributed to EC-
and CAR-dominated transport regimes.14,15 The effect was
observed to be stable on repetition and highly dependent on the
injector/detector selection, reversing the choice producing a
lower dRnl effect likely arising from variation in local junction
properties of the injector. The absence of a finite dRnl at high
Idc was potentially due to the elimination of nonlocal CI effects
at the 600-mK measurement temperature that would otherwise
contribute a finite nonlocal voltage.

C. Temperature dependence

Figure 5 shows the effect of changing temperature on dRnl

vs Idc for a separate device E with L = 600 nm. No effect was
observed above Tc (at T > 1.3 K in the figure). A reduction
in both peak height and negative minima depth was observed,
due to reduction in nonlocal superconducting effects. A shift
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FIG. 6. Experimental temperature dependence of nonlocal differ-
ential resistance dRnl for a separate Al/Py device E of interelectrode
separation 900 nm, with slightly higher Tc ≈1.4 K.

TABLE I. Summary of device properties. �1 and �2 values are
those of the injector junction, obtained by fitting to the model of BTK.
Also included are the spin polarization P, barrier parameter Z, and
interelectrode separation L.

Device Separation L (nm) �1(meV) �2(meV) Z P

Device A 150 nm 0.120 0.254 0.051 0.135
Device B 250 nm 0.119 0.261 0.120 0.114
Device C 600 nm 0.115 0.242 0.051 0.136
Device D 900 nm 0.114 0.240 0.024 0.139
Device E 600 nm 0.148 0.288 0.145 0.182

towards Idc = 0 of the zero bias minima was observed, likely
due to reduction in � with increasing T. At higher Idc sharp
inversions in dRnl were observed, the position of which
reduced in Idc as temperature increased. We attribute these
features to nonlocal charge imbalance, given the temperature
and current dependence and similarity in shape to features
observed by others—notably in the work by Cadden-Zimansky
and Chandrasekhar.16

Figure 6 shows the variation in zero bias (Idc = 0) peak with
temperature from 0.45 to 1.5 K for a separate device. A finite,
temperature-independent effect was observed as T→0 which
we attribute to the elimination of nonlocal charge imbalance
due to the reduction in the charge imbalance length �Q =√

DτQ, with D the metal diffusion constant and τQ the charge
imbalance time given by

τQ = 4kBT

π�(T )
τin, (1)

with τin the inelastic scattering time.
At low temperatures, the CI effect is minimized, implying

the existence of other non-CI effects (i.e., EC or CAR) to
create the finite peak. As T→Tc, this finite value is reduced
to zero with a large inversion in dRnl close to Tc. No effect
was observed above Tc, as expected if the measurements were
attributable to nonequilibrium superconducting processes.
We attribute this inversion effect also to nonlocal charge
imbalance, arising from the divergent increase in �Q. Such
an inversion effect has been seen in studies of local and
nonlocal CI effects.17 Previous works by Beckmann et al.1

and Kleine et al.18 have, however, shown a different form
for temperature dependence at zero bias, an increase from a
low or zero nonlocal resistance at low temperature to a finite
positive peak as T→Tc, followed by a sharp drop to zero
above Tc. We attribute the difference in this work to be due to
the presence of an additional finite effect at low temperature,
observed as a peak at zero bias and likely arising from EC,
and to a differing negative contribution to nonlocal resistance
arising from either nonlocal CI or device properties such as
the effect of a suppressed Tc at the interface region. Further
discussion of this aspect is given in a later section.

III. MODELING

In order to understand the experimental effects seen here
and elsewhere in the literature, we consider a numerical model
of the processes undertaken by a single electron incident at the
injector. We initially model the incident electron as a single
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FIG. 7. (Color online) Schematic of model configuration for
a lateral spin valve geometry, with injector (I) and detector (D)
electrodes indicated and interelectrode separation L = 600 nm.

charge packet, interacting only with the electric field in the
wire and undergoing diffusive motion with a mean free path
λF in the injector (ferromagnetic) material and λS in the normal
(or superconducting) metal. An initial position for the electron
is defined at y = −100λF with the inter-metallic interface
at y = y0 = 0 (see Fig. 7). We define positions x1 and x2

as the left- and right-hand edges of the injector electrode and
y1 the width of the orthogonal electrode, such that for y < 0
the electron is confined within x1 to x2. We also define position
y1 as the top edge of the normal metal electrode, such that the
electron is confined to the region y � y1.

For the electron dynamics, we set an initial electron velocity
v0 from a Fermi distribution function at system temperature T
at a point x0 where x1 < x0 < x2, y = −100λF and direction
is defined by unit velocity vector v̂ such that

v0 = |v0|v̂ =
1√

v2
x0 + v2

y0

(
vx0

vy0

)
. (2)

The values of position x0 and component of v̂ are taken from
a pseudorandom number generator. The system is allowed to
iterate with time step �t , with time t = nt�t for nt time steps.
The electron acceleration a due to the electric field in the wire,
the velocity v, and new position are calculated at each time
step, giving a time-dependent position s:

(
sx

sy

)
=

(
x0

−100λF

)
+

(
vx0

vy0

)
t + 1

2

(
ax

ay

)
t2. (3)

We set the simulated time step �t such that the
distance traveled by the electron on each step |s| =√|�sx |2 + |�sy |2 � λF , in practice, 1–2 nm so as to reduce
computation time. We define a scattering time τF where λF =
|s|τF ; when t = nτF , with n an integer, the electron velocity
is reset from the distribution function and new pseudorandom
values set for the direction vector v̂.

We calculate the electric field E(x,y) in the structure from
the derivative of the numerical solution of the Laplace equation
for the electric potential φ, including the relative resistivities
of the metal electrodes and invoking the following boundary
conditions, where V is the applied bias to the injector:

FIG. 8. (Color online) Electric potential φ numerically calculated
in the device at V = 0.1 mV as a function of position x and y, from
which a spatially varying electric field E(x,y) = (∂φ/∂x, ∂φ/∂y)
could be calculated.

φ =

⎧⎪⎨
⎪⎩

−V x1 � x � x2, y = −100λF ,

+V x = −xlim, y � 0,

0 x < x1 or x > x2, y = 0 or y = y1,

(4)

∂φ

∂x
= 0{y < 0,x = −x1 or x = x2, (5)

∂φ

∂y
= 0{x < x1,y = 0,y = y1, (6)

where −100λF <<0 and |xlim| the maximum propagation
extent of the electron in x which is discussed further in the
following section. The solution for V = 0.1 mV, in addition to
the electron paths taken through the system for V = 0.01–1 mV,
can be seen in Figs. 8 and 9. Electron-electron interactions
are not considered. We use this free electron method as
the primary model for electron dynamics for all data shown
here.

A. Normal state

In the normal state, an electron incident at y = 0 is free to
continue diffusive motion in the perpendicular electrode, with
step size equal to the new mean free path λS in the material.
We define a position |xlim| whereby the electron is considered
to have fully escaped the injector electrode region. For −xlim

(to the left in Fig. 7) this electron is considered to contribute
to the local conductance; for +xlim the nonlocal. An electron
exiting to the left is modeled to add +1 arbitrary conductance
unit to the local total θl and exiting to the right adding +1 to
the nonlocal total θr . For NT single electrons passed through
the system, the total conductance is defined as gl = ∑

NT
θl

and similarly for gr = ∑
NT

θr .
For the case of interelectrode separation L � λS , in the

normal state, the charge current flow in +x towards the detector
electrode should be zero as there is no path to ground, as a
result a counterpotential acting to drive electrons in the +x
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FIG. 9. (Color online) Electron paths in the normal state of the
device for N = 10 electrons and applied injector bias V = 0.1 mV
(red), 0.1 mV (black), and 1 mV (blue).

direction forms and experimentally it is this counterpotential
that is measured with a high impedance meter. This acts
to drive electrons in −x, producing no net charge current
flow as observed experimentally (Fig. 5). Experimentally, this
potential is detected via measurement using a high impedance
meter with no current flow into the detector electrode. Without
taking this aspect into account, the model would produce
an unphysically high value for gr , especially as the applied
injector bias V→0. In this work we simulate the potential
generated at the nonlocal electrode required to drive a second
electron of equal and opposite velocity, obtained from the
effect of a calculated counterpotential (V > 0) or from
a distribution function (V = 0), traveling back into the
interface region (in the −x direction). For summation over
N > 1 electrons, this results in no nonlocal conductance
(gr = 0) in the normal state, matching the situation observed
experimentally (Fig. 5).

Figure 9 shows the paths taken by NT = 10 electrons for
injector bias V = 0.01–0.1 mV, illustrating the operation of
the model in the normal state. For low bias V = 0.01 mV,
the electron may take a diffusive path in ±x, indicated
by the tracks towards +x (right). For high bias, the majority
of electrons move in −x, the paths confined closer to the
inner left edge of the junction in the −x direction as they
approach y = 0. For V = 0, electron diffusion can occur with
equal probability in either direction, zero net charge current
in the +x electrode imposed as a result of modeled injection
of a counterelectron moving in −x (not shown) representing
an opposing counterdiffusion and ensuring gr = 0. However,
for V = 0 no net flow of electrons should occur to the
injection region (i.e., NT = 0 at V = 0), which would limit
the validity of the model to finite bias in the normal state. This
was accounted for in the model by fixing a finite maximum
number of iterative time steps to � 2 × 105, such that the
electron never reaches x lim at V = 0 in the normal state, giving
gr = gl ≈ 0.

TABLE II. Single-electron contributions from each process to
local and nonlocal conductance with zero spin polarization Pm. At
the nonlocal electrode CAR is defined to make a positive contribution
(exhibited as a negative nonlocal resistance) and EC a negative one.

Process θl , Local θr , Nonlocal

AR + 2 0
CAR + 1 + 1
EC + 1 − 1
Normal reflection − 1 0
Quasiparticle (CI) + 1 ±Aqe−xs /�Q

B. Superconducting state

We next consider the superconducting state by introducing
two spatially variant values of the superconducting gap
�1(x,y) and �2(x,y) representing a suppressed and bulk
energy gap, such that �2(x,y) > �1(x,y). This follows the
approach of Strijkers et al.13 considering a proximitized layer
of lower � at the normal-superconductor interface. For the
model, �1 = �2 = 0 for y < 0 in the normal state electrodes.
We restrict the spatial extent of the suppressed �1 to around
the region of overlap between the normal electrodes and
superconducting electrode for 0 < y < y1 and |x3| with �2

covering the remainder of the superconducting region, such
that an electron may progress as a quasiparticle excitation
in the �1 region for �1 < E < �2 but not into the bulk
�2 region. This is illustrated in Fig. 7. Each electron is
defined as possessing an energy E, taken at random from
a Fermi distribution f (E − V ) = 1/(e(E−V )/kbT + 1) at each
scattering step, where f p is a pseudorandom value (0..1), V
the simulated potential across the injector, and T the simulated
temperature.

For an electron diffusively reaching the region of nonzero
� and E < �1, only transmission by Andreev reflection is
possible. The energy and potential dependent probability for
AR PAR is calculated from expressions given by the model
of BTK8 and the modification by Strijkers. We consider that a
fraction of this Andreev reflection may occur as CAR such that
PCAR = cPAR and that a fraction of the current which is not
transmitted by AR could be by EC such that PEC = ct (1 −
PAR + PCAR) defining a probability conservation relation
PAR + PCAR + PNR + PEC = 1 including the probability of
normal reflection PNR. We assume a similar energy dependence
for PAR and PAR and that the factors c and ct defining the
CAR and EC fractions are invariant with electron energy or
applied simulated potential V. For each modeled electron, the
process undertaken is selected using a pseudorandom value
p3 = (0..1), the range to 1 subdivided according to the ratios of
probabilities for each process. An electron undertaking any of
the processes converting to supercurrent is said to have exited
the system, in a manner similar to that of diffusive exit past
|xlim| and its further diffusive motion is not considered—the
contributions θr/l for each process are given in Table II.

For �1 < E < �2 the electron may still Andreev reflect,
cotunnel, or may now enter the superconducting electrode
as a quasiparticle. We consider the quasiparticle state to be
electronlike and modeled by random walk diffusive motion—
but limited to the �1 region within |x3|, with quasiparticle
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transport into the bulk �2 region outside prohibited. For
the calculation of the electron dynamics, we assume the
electrostatic force on the quasielectron F(x,y) = 0 within
the superconducting regions, permitting motion with equal
likelihood in all directions. Such a method for quasiparticle
diffusion has been previously used in the literature.19

For E > �2 the restriction to |x3| is removed, permitting
quasiparticle diffusion throughout the superconducting elec-
trode (while prohibiting any Andreev reflection). A quasipar-
ticle reaching |xlim| contributes to both the local and nonlocal
conductance according to Table II with an exponential decay
depending on the separation between the point of exit and the
nonlocal electrode xs , and decay scale �Q the charge imbal-
ance length. This represents a phenomenological replication of
the nonlocal potential produced by charge imbalance, of either
negative or positive contribution to the nonlocal effect. The
same dependence on interelectrode separation is introduced for
EC and CAR by reducing their fraction of the AR and non-AR
probability at the injector according to an exponential form c =
c0e

−xs/ξ0 and ct = ct0e
−xs/ξ0 on a decay scale equal to the BCS

coherence length ξ0, c0, and ct are defined at zero separation
(i.e., at the injector). Since E is taken from a Fermi distribution,
even for low V all processes are possible at finite T. The spatial
variation in � permits the simulation of regions of energy gap
lower than the bulk value for the superconducting electrode.

C. Spin dependence

Finally, we consider the case for a ferromagnetic injector
and detector electrode by considering a total pool of available
electrons of each spin type: N1↑, N1↓ at the injector and N2↑,
N2↓, such that the total number of simulated injected electrons
NT = N1↑ + N1↓ and defining the polarization for the spins in
the model Pm at the injector electrode:

Pm = (N1↑ − N1↓)

(N1↑ + N1↓)
. (7)

P m is assumed to be uniform for both injector and
detector and represents a means of replicating the bulk spin
polarization P in the ferromagnetic electrode. A simulated
electron is selected at random from one of the spin type pools
(N1(↑/↓)). For Pm = 0 this has no effect on the conductance
totals or probabilities for any effect. For finite Pm, such that
N1↑ 	=N1↓ and N2↑ 	=N2↓, one pool will be exhausted before
the other, prohibiting the spin-dependent processes (such as
AR, CAR) from occurring. For example, in the half-metallic
case where N1↑ = N2↑ = 0, CAR would be prohibited due to
the absence of the pairing spin-↑ required to form a Cooper
pair. This method also permits simulation of magnetization
dependence by introducing an imbalance in the spin-dependent
pools such that N1↑ > N1↓ and N2↑ < N2↓ in the antiparallel
configuration and the reverse for parallel magnetization. The
model neglects spin accumulation and the nonlocal spin valve
effect by choice, although such an effect could in principle be
included.

D. Model examples

Figures 10–12 show the effects on the modeled nonlocal
differential resistance g−1

r for an arbitrary selection of realistic
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FIG. 10. (Color online) Example of model output I: nonlocal
differential resistance g−1

r as a function of V for interelectrode
separation L = 300–900 nm.

parameters (ξ0 = 600 nm, �Q = 1 μm, �1 = 0.2 meV,
�2 = 0.4 meV, T = 600 mK, Tc = 1.4 K) as a function
of interelectrode separation and of temperature for NT =
10 000 electrons, both following qualitative trends observed
by others.15,18 Figure 11 can be compared directly to Fig. 5
from experiment, the same qualitative trend of reduction in
peak and negative minima observed from the model.

Figure 12 shows the temperature dependence at V = 0
(Idc = 0) for three configurations—no CI (Aq = 0) and finite
CAR/EC c = ct = 0.2 and with CI switched on: Aq = 1 with
absence/presence of CAR/EC. We consider the case �1 =
�2 = 0.2 meV with a single Tc of 1.4 K. We model CI
as a negative contribution to the nonlocal resistance g−1

r to
assist replication of the effects observed experimentally. In the
case of CI only, no finite effect is seen at low T. This did
not match the result for the real Al device in Fig. 6 which
qualitatively follows the model form with finite-CAR/EC

FIG. 11. (Color online) Example of model output II: differential
resistance g−1

r vs V at a range of temperatures T = 400 mK–4.2 K,
with Aq = 0 and parameters as in the main text.
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FIG. 12. (Color online) Example of model output III. T depen-
dence for absence/presence of charge imbalance Aq = 0 or ±1 and
absence/presence of EC/CAR (c, ct values) at V = 0. The result for
negative CI contribution (−Aq , solid) is shown with the mirrored
result for positive contribution (+Aq , dashed).

contribution as T→0 and CI divergence as T→Tc. Divergent
behavior is replicated as T→Tc in the cases where Aq > 0
and a finite CI contribution is considered. Assumption of
a negative CI contribution (Aq = 1) combined with a finite
positive low temperature CAR/EC contribution produces a
negative divergence towards Tc but of a form not reflected in
experimental data. We also note that assumption of a positive
contribution to the nonlocal resistance (negative Aq) with
increasing T, the behavior for Aq = −1, c = ct = 0 (CI only,
dashed line in Fig. 12) replicates the observed behavior seen
by others1,6,18 as an increase to a finite peak from low T zero
g−1

r with zero effect above Tc.
Figure 13 shows the modeled case whereby the Tc = TA

c =
1.4 K of the �1(T = 0) = 0.213 meV region is set 0.04 K
lower than the bulk TB

c = 1.44 K of the �2(0) = 0.22 meV
region, such that for TA

c < T < TB
c a fully normal state

region is formed at the overlap between the ferromagnetic
and superconducting electrodes. This would be anticipated
experimentally, especially in the case of Ohmic contacts
such as utilized in devices studied in this work, due to the
suppression of superconductivity at the F/S interface. Within
this temperature range, model nonlocal processes such as
CAR and EC are limited due to the low gap energy in
the high-T regime. At low bias within the interface region,
diffusive electron motion permits incidence with the �2

interface at either −x3 or +x3. An electron arriving at the
+x3 interface may enter the superconductor primarily as a
quasiparticle excitation close to Tc (due to the low value
of �2) and with energy E > �2—we define this electron
as producing a negative nonlocal contribution to g−1

r of
magnitude |Aq |e−xs/�Q . In contrast, for the fully normal state
�1 = �2 = 0 CI cannot occur to produce a nonequilibrium
population of electrons and a detectable potential difference,
as discussed in Sec. III A. A combination of the reduction in xs ,
a higher number of electrons reaching +x3 and the proximity
to bulk TB

c producing a longer �Q and larger CI effect results
in a negative effect that can be far greater than that produced

FIG. 13. (Color online) Example of model output IV. (Solid) The
case where the region −x1 < x < x2, y > 0 enters the normal state at
T = TB

c −0.04 K with TB
c = 1.4 K the bulk critical temperature of the

�2 region which remains superconducting. In this case, transport may
occur by direct quasiparticle transmission (or minimal AR) at the �2

interface in ±x. The result is a sharp, negative minima qualitatively
matching the effect observed experimentally (dashed, scaled from
Fig. 6).

by nonlocal CI. This provides a potential explanation for the
divergent features observed in experiment as plotted in Fig. 6,
with which excellent qualitative agreement is obtained.

E. Match to experiment

In order to demonstrate the capability of the model, the
transport behavior of the real device was compared to the
model result with input parameters realistic for the fabricated
devices. The result of this is shown in Fig. 14 giving the
model result overlaid onto real nonlocal differential resistance
data from experiment. Model parameters were selected to
best represent the device or from measurement of device
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FIG. 14. (Color online) Nonlocal differential resistance as a
function of applied injector dc current Idc for modeled and exper-
imental data. Device interelectrode separation was L = 600 nm and
experimental measurement temperature 600 mK.
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properties. Parameters x1 = −150 nm, x2 = +150 nm (giving
width = 300 nm) were fixed based on the physical dimensions
of the device. The point of diffusive exit from the system
|xlim| = 450 nm, taken as the halfway point to the detector
electrode with interelectrode separation L = 600 nm, based on
the assumption arrived at through simulation that the majority
of electrons crossing past x = 300 nm would follow a path
reaching the second electrode at x = 750 nm. |xlim| was also
minimized to reduce computation time, but to be sufficiently
high to inhibit premature exit of the electron from the system.

Values of λs = 15 nm, λF = 5 nm, and �Q = 1 μm were
used, based on physically reasonable parameters from previous
work for nonlocal spin value devices and on nonlocal charge
imbalance. ξ0 = 500 nm was taken, assuming a relatively clean
superconducting Al electrode, but with a degree of suppression
of the coherence length from the BCS value and sufficiently
long to produce non-negligible superconducting nonlocal ef-
fects over the interelectrode separation used. Although a value
was set for �Q, based on the temperature independence of
the nonlocal effect at the 600-mK experimental measurement
temperature (Fig. 6) the assumption was made of complete
suppression of nonlocal charge imbalance. We explicitly
introduce the absence of CI by setting Aq = 0, in order to
demonstrate that the effects observed can originate solely from
non-CI processes. The assumption that CI can be completely
eliminated in this manner was based on the hypothesis from
experimental data that the origin of the nonlocal effect at
T � Tc was from processes operating over a decay scale
ξ0 (i.e., CAR/EC) rather than CI. This assumption would
not be valid for T→Tc, where additional CI effects would
arise from the divergence of �Q and cannot replicate the
temperature-dependent effect observed experimentally.

Modeled Tc was set to 1.4 K, close to that observed in
experimental data. Using this value of Tc, we calculated
physically reasonable values for �1 = 0.112 meV, �2(0) =
0.301 meV derived from standard BCS theory and fits to local
(single junction) conductance data. We assume the simplest
case with uniform values of �1 and �2 for injector and detector
junctions to the superconductor. The requirement for the two
values of � was based on the single junction experimental
data, whereby a region of lower energy gap was required
to correctly fit the conductance behavior—this region likely
being that immediately adjacent to the magnetic electrodes.
On this basis we limit the �1 region extent |x3| to within the
overlap region of the injector/detector electrodes—150 < x

< 150 nm. We neglect any proximity effect into the injector,
confining the superconducting region of nonzero � strictly to
within the perpendicular lateral electrode for 300 < y < 0 nm.

The values of c and ct represented free parameters which
were selected to give the best fit to the experimental data, each

parameter effectively controlling negative minima depth and
zero bias peak height of nonlocal resistance g−1

r respectively.
We make the assumption that both c and ct are invariant with
other parameters such as injector bias. Values of c = 0.28 and
ct = 0.15 were found to give a best fit, implying the presence of
both effects but an imbalance in a 2:1 ratio between them such
as not to cancel each other, with each producing a different
effect at varying simulated bias.

In order to translate the arbitrary conductance units used in
the model to real nonlocal resistance (in Ohms) the conversion
gr = kδRnl was used with k a scaling factor of approximately
1000. A total of NT = 10 000 electrons were simulated for
each step in simulated injector V. A good fit was found to
the experimental conductance data. As can be seen in the
figure, the only discrepancies arose in matching the height
of the peak, potentially due to slightly high values of c or
ct , and a discontinuity around 0.23–0.3 mV due to the 2-�
approach taken, rather than a continuous range of � arising
from the proximity effect. The fit was obtained with nonlocal
charge imbalance explicitly removed (Aq = 0), in order to
demonstrate the absence of such effects at low temperature.

IV. CONCLUSION

In conclusion, we have fabricated Al/Py devices suitable for
measurement of nonlocal superconducting effects. We observe
behavior characteristics of EC or CAR in the low temperature
regime and nonlocal charge imbalance, arising as divergence in
nonlocal differential resistance, close to Tc. In order to further
investigate these results we have developed a simple numerical
model of nonlocal processes in a lateral spin valve geometry
device that is capable of qualitatively replicating the nonlocal
effect trends with T and bias in experimental work here and in
the literature, associated with the superconducting processes.
The model is capable of quantitatively matching the nonlocal
resistance from a real Al/Py device, using realistic parameters
for the model variables. The single electron approach offers
potential extension for shot noise calculation, of interest for
recent cross-correlation and entanglement studies. Although
possibly inferior to a true analytical model, the numerical
approach encompasses the key aspects of the physics of such a
device and gives insight and the ability to replicate the typical
local properties of a device and provides a simple way to derive
important parameters such as ξ0 and �Q.
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