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Motivated by the recent experiment of Wang et al. [Nat. Phys. 6, 389 (2010)], who observed a highly unusual
transport behavior of ferromagnetic cobalt nanowires proximity-coupled to superconducting electrodes, we study
the proximity effect and temperature-dependent transport in such a mesoscopic hybrid structure. It is assumed
that the asymmetry in the tunneling barrier gives rise to the Rashba spin-orbit coupling in the barrier that enables
induced p-wave superconductivity in the ferromagnet to exist. We first develop a microscopic theory of Andreev
scattering at the spin-orbit-coupled interface, derive a set of self-consistent boundary conditions, and find an
expression for the p-wave minigap in terms of the microscopic parameters of the contact. Second, we study the
temperature dependence of the resistance near the superconducting transition, and we find that it should generally
feature a fluctuation-induced peak. The upturn in resistance is related to the suppression of the single-particle
density of states due to the formation of fluctuating pairs, whose tunneling is suppressed. In conclusion, we
discuss this and related setups involving ferromagnetic nanowires in the context of one-dimensional topological
superconductors. It is argued that to realize unpaired end Majorana modes, one does not necessarily need a
half-metallic state; a partial spin polarization may suffice. Finally, we propose yet another related class of
material systems—ferromagnetic semiconductor wires coupled to ferromagnetic superconductors—where direct
realization of the Kitaev-Majorana model should be especially straightforward.
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I. INTRODUCTION

The coexistence of ferromagnetism and superconductivity
is a rare phenomenon, yet there exists unambiguous evidence
for its occurrence. Superconductivity has been thoroughly
investigated in uranium-based itinerant ferromagnets,1–4 and
there have been reports on the possible coexistence of these
phases in the d-electron compound ZrZn2 (Ref. 5) and
the copper oxide compound RuSr2GdCu2O8−δ (Ru-1212).6–9

Neutron diffraction measurements in ferromagnetic supercon-
ductors ErRh4B4,10 HoMo6S8,11 and HoMo6Se8 (Ref. 12)
indicate an inhomogeneous magnetic order coexisting with
superconductivity. More recently, the coexistence of these
seemingly exclusive states was also seen in Pb/PbO core/shell
nanoparticles13 and in two-dimensional interfaces between
perovskite band insulators LaAlO3 and SrTiO3.14,15

The interplay of superconductivity and ferromagnetism
can also be studied in the context of the superconducting
proximity effect, where a superconductor in contact with
a normal metal induces superconducting correlations in the
latter. Due to incompatible spin ordering, conventional super-
conducting correlations typically penetrate negligibly inside
a ferromagnet.16 However, a number of recent experimen-
tal studies have demonstrated an unexpectedly long-ranged
proximity effect in mesoscopic superconductor-ferromagnet
hybrid structures.17–22 There are a number of theoretical
scenarios which can explain this phenomenon. In most
of the scenarios, pair correlations inside the ferromagnet
are attributed to some type of equal-spin triplet pairing.
In one case, the long-ranged proximity effect is attributed
to spin-triplet odd-frequency s-wave pairing which can be
induced when magnetization inhomogeneity is present near

the interface.23,24 This beautiful theory, which predicts an
exotic odd-frequency (even-momentum) symmetry for the
triplet component of the condensate, was originally suggested
by Berenzinskii as a possible phase in superfluid 3He.25

Other theoretical works have investigated Josephson coupling
between two conventional superconductors separated by a
half-metallic ferromagnet, and singlet-triplet conversion due to
a spin-active interface was studied.26,27 In a clean and purely
one-dimensional (1D) junction, it was recently shown that
singlet pairing can also account for the long-ranged proximity
effect in a ferromagnet.28,29

Seemingly unrelated to the developments in the supercon-
ducting proximity effect at the time, Kitaev showed in his
pioneering work that Majorana fermion excitations can be
localized at the ends of a spinless px + ipy superconducting
quantum wire.30 Conceptually, the Kitaev model of a topolog-
ical superconductor is that of a fully polarized ferromagnetic
superconductor. However, a direct connection between the
model and the existing hybrid superconducting systems has
been made only recently. In some of the recent proposals,
the superconducting proximity effect plays a key role in
realizing topological superconductors which support Majorana
fermions on their boundaries or in vortex cores.31–45

On the experimental front, Ref. 21 has shown that a ferro-
magnetic cobalt (Co) quantum wire can be made superconduct-
ing by placing it in contact with a conventional superconductor.
Proximity-induced superconductivity was observed in the wire
over a distance of a few hundred nanometers. While the exact
nature of the pairing symmetry still remains open, if the
proximity effect can be attributed to triplet p-wave pairing,
the experiment of the kind in Ref. 21 is very close to realizing
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a topological superconductor,30 and can host the sought-after
Majorana fermions at the two ends of the wire.

With its broader physical relevance aside, the experi-
mental work of Ref. 21 included interesting observations
in the context of the superconducting proximity effect in
ferromagnetic systems. The work systematically studies the
resistance of ferromagnetic single-crystal cobalt nanowires
sandwiched between two superconducting electrodes made
out of tungsten (W). Proximity-induced superconductivity is
observed in the nanowire over a distance of order 500 nm,
which is orders of magnitude longer than the coherence
length expected for conventional superconducting correlations
inside a ferromagnet. For some wires, the transition to
superconductivity is preceded by a large and sharp resistance
peak near the transition temperature of the electrodes. The
resistance peak disappears when the Co wire is replaced by a
gold wire, suggesting an intimate connection between it and
the ferromagnetism of the wire. We note that similar resistance
peaks have been observed in various superconducting hybrid
structures in the past.46–51 However, the authors of Ref. 21
claim that the peaks observed in their experiment are distinct
from those attributed to nonequilibrium charge imbalance46–49

and spin accumulation50,51 effects. This invites a search for an
alternative mechanism behind the resistance peak.

Motivated by these observations, we study temperature-
dependent transport through a ferromagnetic Co nanowire
coupled to conventional superconductor W electrodes.
The main goal is to provide a perspective on the origin of
the resistance peak based on the physics of superconducting
fluctuations52,53 in the W electrodes. We discuss a possible
faithful model for the Co nanowire in the vicinity of the
deposited W electrodes, develop a microscopic theory for
the superconducting fluctuations in the W electrodes, and
study how these fluctuations influence the transport through
the Co wire. We focus on the resistance across a W-Co
interface, which we argue is the dominant source of impedance
in the transport. Our superconducting fluctuations theory
for the resistance peak depends crucially on the proximity
effect scenario for the long-ranged proximity effect in the Co
nanowire. In this work, we consider a scenario in which the
asymmetry at the W-Co interface gives rise to the Rashba spin-
orbit coupling there54,55 and enables equal-spin triplet p-wave
superconductivity to be induced inside the ferromagnet.

We emphasize that the Co wire throughout the work is
treated in the ballistic/ballistic-to-diffusive crossover limit. As
we show in later sections of the paper, the treatment of the wire
in this limit is reasonably justified based on experimental data21

and past studies on Co band structure.56–59 The information
available to us is insufficient to determine the nature of
proximity-induced superconductivity in the nanowire. As we
have mentioned above, the odd-frequency s-wave proximity
effect,23,24 studied in the context of diffusive ferromagnets,
remains a realistic scenario here. It is well known that the
conversion from singlet to triplet superconductivity within this
scenario occurs due to some form of inhomogeneous magnetic
moments near the interface. However, the cobalt wire studied
in Ref. 21 is single domain, so such inhomogeneities may
not be the mechanism behind the singlet-triplet conversion.
In a 1D junction, the long-ranged proximity effect of singlet

pairs is possible in a clean ferromagnet due to the absence
of destructive interference among various transverse channels,
which usually leads to the short-ranged proximity effect in
higher dimensions.28,29 Indeed, in Ref. 28 the long-ranged
proximity effect observed in Ref. 21 was attributed to singlet
pairs. However, the Co wires are 40–80 nm wide, and hence
it is not clear if they can be considered in the purely 1D
limit. Here, we explore the possibility of an even-frequency
p-wave proximity effect induced via interfacial spin-orbit
coupling, which is another viable physical scenario when
the ferromagnet is in the clean limit. As we argue below,
this p-wave proximity effect may survive even in disordered
systems due to mesoscopic fluctuation effects. Also, it was
recently noted that surface states of certain heavy metals can
host strong Rashba spin-orbit coupling.60 For the Au(111)
surface, Rashba splitting of order 50 meV has been observed,61

while for the Ag(111) surface alloyed with Bi and Pb, this can
be as large as 0.5 eV.62 Since W is also a heavy atom, it is
not unreasonable to assume that the surface of the tungsten
electrodes can also host a relatively large spin-orbit coupling.

The paper is organized as follows. Section II summarizes
the main findings of the experiment in Ref. 21, with a particular
focus on the anomalous resistance peak. The section also
provides an estimate for the mean-free path of the Co wire and
a justification for considering it in the clean limit. In Sec. III,
we provide a heuristic picture for how the superconducting
fluctuations can explain the resistance peak. The heuristic
picture is then substantiated by microscopic calculations in
Secs. IV and V. A summary and conclusions are presented in
Sec. VI, where a possible connection between the experiment
and topological superconductivity is also outlined.

II. SUMMARY OF THE EXPERIMENT

Reference 21 reports observations of the long-ranged
proximity effect in single-crystal ferromagnetic Co nanowires.
Resistance of the wire is studied using a four-probe setup
with all four electrodes made from superconducting W [see
Fig. 1(a)] or with a combination of superconducting W and
nonsuperconducting platinum (Pt) electrodes [see Fig. 1(b)].
While the outer electrodes are used to pass current iw through
the wire, the inner electrodes are used to measure the potential
difference V across a length L of the wire. The experiment
focuses on the resistance of the Co wire defined via R = V/iw.
With W voltage electrodes [as in Fig. 1(a)], Co wires show
evidence of superconductivity below the transition temperature
of the electrodes even for L ∼ 1 μm. Such a resistance drop is
not observed when the superconducting electrodes are replaced
by Pt. However, when an additional electrically isolated W
strip is deposited between the Pt electrodes [see Fig. 1(c)],
proximity-induced superconducting properties are restored in
the Co wire.

A. The resistance peak

The experiment observes a sharp peak in the resistance R as
a function of temperature as it approaches the superconducting
transition temperature of the W electrodes. An illustration of
the observed resistance versus temperature is shown in Fig. 2.
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FIG. 1. (Color online) A cartoon representation of the various ex-
perimental setups used in Ref. 21. Three main setups are considered:
(a) W current and voltage electrodes; (b) W current electrodes and Pt
voltage electrodes; and (c) same as (b) with an additional electrically
isolated W strip between the Pt electrodes. Length of the wire L is
determined by the distance between the inner edges of the voltage
electrodes. The width (or diameter) of the Co wire is denoted by w.

The transition temperature of the electrodes is estimated to
be between Tc = 4.4 and 5 K. This resistance peak is very
large and constitutes 25–100% of the normal state resistance
depending on the wire width. Intriguingly, the peak disappears
when the Co wire is replaced by a nonferromagnetic gold wire,
and thus seems to be a consequence of the ferromagnetism
of the Co wire. The large resistance peak (along with the
proximity effect) also disappears when the W electrodes are
replaced by Pt electrodes [see Fig. 1(b)], but is restored
once an additional electrically isolated W strip is deposited
[see Fig. 1(c)]. The large resistance upturn thus seems to
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FIG. 2. An illustration of the experimentally observed Co wire
resistance as a function of temperature. A critical resistance peak is
observed near the transition temperature Tc of the W electrodes. A
precipitous drop in the resistance is then observed below Tc.

require only that a superconducting strip is in contact with
the nanowire, and does not require it to be either a current or
a voltage electrode.

B. Mean-free path of the Co nanowire

When the extra W strip is deposited on the wire [see
Fig. 1(c)], data show that the wire’s normal state resistance
increases by approximately 55 �. This amounts to a nearly
50% increase from its normal state resistance of ≈126 � prior
to the deposition [setup as shown in Fig. 1(b)]. This suggests
that the deposition process could have strongly modified the
property of the wire in the vicinity of the contact. Returning to
the setup in Fig. 1(a), the experimental data show a total normal
state wire resistance of approximately 145 �. The resistance
of the Co wire arising from regions unaffected by the W strips
may then be approximated as 145 � − 2 × 55 � = 35 �.
Using the quoted distance between the voltage electrodes
(i.e., L = 1.5 μm) and the wire width (i.e., w = 36 nm), the
corresponding resistivity is ρ ≈ 23 n� m. An estimate for Co’s
Fermi velocity, based on critical current oscillations observed
in a Nb/Co/Nb Josephson junction, gives vF ≈ 280 km/s.63

From this, the density for electrons with a single spin projection
can be estimated as

n = x3 m3
ev

3
F

6π2h̄3 ≈ x32.4 × 1026 m−3, (1)

where x = m∗/me is the Co effective mass ratio, with m∗
being the effective mass of the Co electrons and me the mass
of the electron. The Drude formula then gives a mean-free path
estimate of

� = xmevF

ne2ρ
≈ 1.8 μm

x2
. (2)

Cores of the Co nanowires studied in Ref. 21 show a hexagonal
close-packed zone pattern, and the wires have a [0001] growth
direction. Presumably, the electron transport through the wire
is then along the c-axis direction. For our estimate of the
Co effective mass x, we use results based on band-structure
calculations for Co cyclotron mass.59 In the relevant direction
of transport, we have x ≈ 3. Inserting this value into (2), the
mean-free path is estimated to be � ≈ 200 nm, which is the
same order of magnitude as the observed coherence length in
the Co wire. Within this scenario, the region of the Co wire
unaffected by the W electrodes is in the ballistic-to-diffusive
crossover regime.

We note, however, that the above estimate for the mean-free
path relies crucially on our estimate for the resistance of the
Co wire unaffected by the W electrodes. Furthermore, the
estimate also depends sensitively on the values used for vF

and x, which we do not know with complete certainty. Due
to Co’s complicated band structure, the values for vF and
x depend strongly on the direction of transport with respect
to the crystallographic axes and on the Fermi surface which
gives the dominant contribution to transport. For instance,
for vF ∼ 106 m/s (quoted in Ref. 21), we obtain a much
shorter mean-free path of � ≈ 16 nm, implying that the wire
is in the diffusive limit. Co having multiple subbands with
varying x also implies that some subbands are less affected by
disorder than others. If all bands participating in transport
indeed have short mean-free paths (of the order of a few
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nanometers), the likely mechanism for the proximity effect
is the spatially even, odd-frequency pairing.23,24 However,
based on experimental data in Ref. 21 and on the Co band
structure and de Haas–van Alphen studies relevant for electron
transport in the c-axis direction,59 we have shown above that
there is reasonable justification to model the Co wire in the
clean limit, and the even-frequency p-wave pairing is a viable
mechanism for the observed proximity effect. Furthermore,
mesoscopic fluctuation effects may further enable remnants
of p-wave superconductivity to persist well into the diffusive
limit.64 In this work, we pursue this scenario of a Co wire with
proximity-induced p-wave superconductivity, and we purport
that it provides an explanation for the resistance peak.

III. RESISTANCE PEAK DUE TO SUPERCONDUCTING
FLUCTUATIONS—A HEURISTIC PICTURE

We begin by providing a heuristic picture for how
superconducting fluctuations, which exist inside the W elec-
trodes above their critical temperature, can give rise to the
observed resistance peak. While similar resistance peaks in
superconducting hybrid structures have been attributed to,
for instance, nonequilibrium charge imbalance46–49 and spin
accumulation50,51 effects, Ref. 21 has ruled these scenarios
out for their observations. Therefore, the goal of this section
is to provide a superconducting fluctuations perspective on the
peak which is distinct from other mechanisms considered thus
far in this context. Based on the experimental observations
and data, we adopt a physical picture in which most of the
resistance comes from interfaces between Co and W. Within
our picture, the combination of superconducting fluctuations
and suppressed transport across W-Co interfaces work together
to give a natural explanation for the peak.

We argued in Sec. II B that the W electrodes have a strong
impact on the transport properties through the Co wire. We
reiterate the experimental fact that when the extra W strip is
deposited on top of the Co wire [see Fig. 1(c)], the normal state
resistance of the wire increases by nearly 50%. This indicates
that when a W electrode is deposited onto the nanowire, it
modifies the wire in its vicinity and provide a major source of
resistance. A faithful model of the Co wire may then be such
that the majority of the current iw goes through the two W
voltage electrodes. If this view is adopted, this creates multiple
W-Co interfaces, and the electron transport through the Co
wire is expected to be strongly modified by Andreev physics
at the W-Co interfaces. The Andreev physics at the W-Co
interface in the presence of Rashba spin-orbit-coupled barrier
will be discussed in Sec. IV.

The observed resistance peak is very reminiscent of
similar anomalous peaks studied in the context of c-axis
transport in cuprate superconductors,65–67 magnetoresistance
in dirty films,68 as well as magnetoresistance in granular
electronic systems.69 In all these cases, the anomalous peak
has been explained using the phenomenon of superconduct-
ing fluctuations.52,53 This phenomenon is associated with
fluctuating Cooper pairs that form while the system is in
the normal state but just above the transition temperature
Tc. The appearance of Cooper pairs above Tc opens up a
new channel for charge transport. Indeed, these fluctuating
Cooper pairs can be treated as carriers of charge 2e with

a lifetime given by τGL ∼ h̄/kB(T − Tc). This leads to a
contribution to the conductivity known as the Aslamazov-
Larkin (AL) contribution or paraconductivity, and it gives a
positive correction to the Drude conductivity. There is also
an indirect correction known as the density of states (DOS)
contribution. One of the important consequences of these
fluctuating Cooper pairs is the decrease in the single-particle
DOS near the Fermi level. The idea is that if some electrons
are involved in pairing, they cannot simultaneously participate
in single-electron transport. The DOS contribution, therefore,
gives a negative correction to the Drude conductivity.

As we approach Tc of the W electrodes from above, Cooper
pair fluctuations grow inside the W electrodes. By virtue of the
interface Rashba spin-orbit coupling at the W-Co interfaces,
singlet Cooper pairs inside W can be converted and triplet pairs
can permeate into the Co wire. Pair transport correction to the
conductivity arises due to the transport of these fluctuating
Cooper pairs through the interface. However, pair tunneling
across an interface is strongly suppressed because it is a
higher-order process in both tunneling and the singlet-triplet
conversion rate, which requires a spin flip process enabled
only by weak interfacial spin-orbit coupling. On the other
hand, the DOS contribution to conductivity is associated with
single-particle transport and is thus lower order in tunneling
and requires no spin flip. We therefore qualitatively expect
the DOS correction to be parametrically larger than the
pair transport contribution, thus giving a negative overall
correction to the Drude conductivity. This clearly can explain
the anomalous upturn in the resistance as a function of
temperature. We note that the tunneling nature of transport
across the interface is extremely important for the DOS
correction to dominate over the pair transport contribution. In
the usual theory of superconducting fluctuations for the bulk of
a superconductor, the pair transport contribution (Aslamazov-
Larkin contribution) is typically dominant over the DOS
contribution and the resistance upturn is not observed.52

When the Co wire is replaced by a gold wire, the situation is
modified. Since gold is not ferromagnetic, singlet correlations
are expected to survive over a much longer distance inside the
wire. In this case, Cooper pair tunneling across the W-Au inter-
face is much more transparent since it does not require a spin
flip. Therefore, Cooper pairs are more efficient at transporting
charge, and the pair transport contribution is expected to
dominate over the DOS contribution. Here, we purport that the
absence of the resistance peak in the Au wire can be explained
if indeed the pair transport contribution to the conductivity is
parametrically larger than the DOS contribution, thus giving
an overall positive correction to conductivity.

Near the superconducting transition temperature and in
dimensions at or below 2, both AL (Ref. 70) and DOS contribu-
tions show either algebraic or logarithmic divergent behavior
as a function of (T − Tc). Denoting the divergent part of the
AL corrections by the function fAL(T − Tc) and the divergent
part of the DOS correction by fDOS(T − Tc) (and ignoring
the Maki-Thompson contribution), the total superconducting
fluctuation correction to the normal resistance R0 can be
schematically written as

δR(T )

R0
= ADOSfDOS(T − Tc) − AALfAL(T − Tc), (3)
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where AAL and ADOS are positive prefactors. As we will
show in Sec. V, fAL ∝ (T/Tc − 1)−4, while fDOS ∝ (T/Tc −
1)−1/2, indicating that the AL contribution diverges much more
strongly than the DOS term as T → T +

c . Therefore, unless
the prefactor AAL is very small in comparison to ADOS, the
DOS contribution is always parametrically smaller than the AL
contribution and the conductivity correction is positive. This
leads to a monotonic decrease in the resistance as the system
approaches the transition, and no peak will result. However,
if we have a situation in which the AL prefactor is greatly
suppressed, i.e., AAL � ADOS, the DOS contributions may
be sufficiently larger than the AL counterpart for T , but not
too close to T +

c . In this case, the resistivity can display an
upturn before the AL contribution eventually takes over and
the resistivity makes a precipitous fall as T → T +

c . We will
argue below that the weak interfacial spin-orbit coupling can
indeed provide a situation in which AAL � ADOS.

In the following sections, we will substantiate this heuristic
picture with more microscopic calculations. We first consider
the Andreev physics at a Rashba spin-orbited coupled interface
between a ferromagnet and a conventional superconductor. We
then provide a microscopic calculation which shows how the
suppression of the density of states in the W electrodes leads
to an increase in the resistance across the W-Co interface.
We then provide a phenomenological calculation to show the
resistance correction arising from Cooper pair transport across
the interface.

IV. ANDREEV REFLECTION AT A FM-SC INTERFACE
WITH RASHBA SPIN-ORBIT COUPLING

In this section, we focus on the Andreev physics which
takes place at a W-Co interface, and we provide a microscopic
expression for the induced minigap in the ferromagnet just
near the interface. In the presence of interface Rashba spin-
orbit coupling, we show that the induced triplet minigap has
p-wave orbital character and that its magnitude is strongly
suppressed by the weak spin-orbit coupling. The results of this
section imply that spin-orbit-assisted pair transport across the
W-Co interface is suppressed by the weakness of the spin-orbit
coupling. These results will play an important role in Sec. V,
where we will develop a theory for the resistance peak.

The scenario we consider is a conventional superconductor
(W) in contact with a (clean) itinerant ferromagnet (Co)
which are separated by a low-transparency barrier with Rashba
spin-orbit coupling.54,55 The tunnel junction consists of a
ferromagnetic metal at 0 � z < d, a tunneling barrier at
−a < z < 0, and a superconductor at z � −a (see Fig. 3).
For simplicity, we consider a planar junction where we retain
translational symmetry in the direction(s) parallel to the
interfaces. While this is not true to the geometry considered
in Ref. 21, the main result of this section still applies to the
experiment of interest. The derivation below closely follows
Refs. 71 and 72, but is generalized to include spin-orbit-
coupling effects in the barrier.

A. Equations of motion

The electron field operators in the ferromagnet ψ (F ), tunnel
barrier ψ (B), and superconductor ψ (S) satisfy the following

Superconductor

Spin-orbit coupled barrier

Normal metal

z

z = d
z = 0

z = −a

x

y

FIG. 3. The considered proximity tunnel junction. The ferromag-
netic normal metal, the tunnel barrier with spin-orbit coupling, and
the superconductor occupy 0 � z � d , −a < z < 0, and z � −a,
respectively.

equations of motion. In the normal region (0 � z < d),[(
ε − ξ (F )

p + h̄2∂2
z

2mF

)
δαβ − (h · σ αβ)

]
ψ

(F )
β,p (z) = 0; (4)

in the barrier (−a < z < 0),[(
ε − U0 − p2 − h̄2∂2

z

2mB

)
δαβ − αR[ p × σ αβ]z

]
ψ

(B)
β,p(z) = 0;

(5)

and in the superconductor (z � −a),(
ε − ξ (S)

p + h̄2∂2
z

2mS

)
ψ (S)

α,p(z) − �αβψ
(S)†
β,−p(z) = 0. (6)

Here, p = (px,py) is the two-dimensional momentum parallel
to the interface; σ̂ = (σ̂x,σ̂y,σ̂z) is the vector of Pauli ma-
trices acting in spin space; ξ

(F )
p = p2/2mF − μF and ξ

(S)
p =

p2/2mS − μS are the electronic spectra in the ferromagnet
and superconductor; mF , mS , and mB are the effective masses
in the corresponding region; and μF and μS are the Fermi
levels in the ferromagnet and superconductor. α and β here
label the spin projections. We assume that the ferromagnet
and superconductor are separated by a tunnel barrier of height
U0 that, due to mirror asymmetry with respect to reflections
relative to the z = −a/2 plane, contains Rashba spin-orbit
coupling characterized by parameter αR . The ferromagnet
is modeled as a Fermi gas in a Zeeman field h. Finally,
the superconductor is assumed to be of s-wave type and,
consequently, the mean-field order parameter is momentum-
independent and reads �αβ = �(iσy,αβ ).

As shown in Eq. (4), we are modeling the ferromagnetic
region within the usual single-band Stoner model where a rigid
gap in the two spin bands is introduced. While this is clearly
an oversimplified model for Co, we note that the applicability
of our superconductor fluctuations theory for the resistance
peak should not rely crucially upon the microscopic details of
the ferromagnetic region. The result, however, relies on the
assumption that singlet correlations are strongly suppressed
in the ferromagnet and that the observed superconducting
correlations in the nanowire are mainly due to triplet pairing.
It is this requirement to convert singlet pairs into triplet pairs
at the W-Co interface that is an important ingredient within
our theory. In our case, this conversion is provided by the
interfacial Rashba spin-orbit coupling. Since this effect is
expected to be small, the Cooper pair transport across the
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W-Co interface is suppressed and consequently leads to the
anomalous resistance peak. The heuristic picture has been
provided in Sec. III, and more details will be presented in
Sec. V. We also note here that itinerant ferromagnetism can
also be established through spin bandwidth asymmetry73 rather
than the conventional Stoner picture. The consequences of
this have been addressed in the context of the superconductor-
ferromagnet proximity effect.74

Although the barrier is spin-orbit coupled, this coupling
will not lead to any spin Hall effects at the boundaries z = 0
and z = −a. Consequently, there is no accumulation of spin
and the basic ballistic boundary conditions are identical to
those in the theory of a conventional tunnel junction, namely

−→
�

(F )
p (d) = 0, (7)

−→
�

(F )
p (0) = −→

�
(B)
p (0),

−→
�

(B)
p (−a) = −→

�
(S)
p (−a), (8)

1

mF

∂z
−→
�

(F )
p (0) = 1

mB

∂z
−→
�

(B)
p (0), (9)

and

1

mB

∂z
−→
�

(B)
p (−a) = 1

mS

∂z
−→
�

(S)
p (−a). (10)

Here, we have introduced a four-component state vector in the
combined spin-Nambu space,

−→
�

(ρ)
p (z) = (

ψ
(ρ)
↑,p(z),ψ (ρ)

↓,p(z),ψ (ρ)†
↑,−p(z),ψ (ρ)†

↓,−p(z)
)T

, (11)

where ρ = S,B,F labels the different regions. The full set of
equations (4)–(6) is formulated for electron field operators
acting in Fock space. However, since these equations and
boundary conditions (7)–(10) are all linear, the operator nature
of the unknown functions is not germane and we may simply
approach the problem as in single-particle quantum mechanics.
The problem is then conceptually very simple and reduces
to solving second-order differential equations, albeit with
nontrivial boundary conditions.

B. Deriving closed boundary conditions for the ferromagnet

1. Tunnel barrier

Let us look for a solution in the tunnel barrier in the form
ψ

(B)
α,p (z) = Z(z)Pα(p), where the transverse wave function

Z(z) satisfies

− h̄2

2mB

Z′′ + [U0 − ε + εR(p)]Z = 0, (12)

and the planar wave functionPα(p) is a standard wave function
of the Rashba problem,

P±(p) = 1√
2

( ±1

−ieiγp

)
, (13)

describing the helicity eigenstates with eigenvalues, εR
±(p) =

p2

2mB
± αR|p|. The angle γp is defined via p = p(cos γp, sin γp).

The general solution in the barrier then reads

ψ (B)
α,p (z) = [C++eq+z + C+−e−q+z]P+

α (p)

+[C−+eq−z + C−−e−q−z]P−
α (p), (14)

where q± =
√

2mB

h̄2 [U0 − ε + εR±(p)]. To guarantee real q±, we
assume that the spin-orbit interaction scale is smaller than the
barrier height.

We now use (8) to determine the relations between the
coefficients in Eq. (14) and the values of the wave function on
the superconductor and ferromagnet boundaries. We find

Cll′ = l′

4 sinh(qla)
(F lel′qla − S l), (15)

where l,l′ = ± and

F± = iψ
(F )
↓,p(0)e−iγp ± ψ

(F )
↑,p(0), (16)

S± = iψ
(S)
↓,p(−a)e−iγp ± ψ

(S)
↑,p(−a). (17)

2. Superconductor

We now match the tunnel-barrier solution (14) with the su-
perconducting solution at the barrier-superconductor interface
using boundary condition (10). We then find

mB

mS

ψ (S)
α,p(−a) = Tp,αβψ

(F )
β,p (0) − Rp,αβψ

(S)
β,p(−a). (18)

The matrices in Eq. (18), which play an important role in the
analysis of the Andreev scattering problem, are given by

T̂p =
(

κt iδκte
−iγp

−iδκte
iγp κt

)
, (19)

R̂p =
(

κ iδκe−iγp

−iδκeiγp κ

)
. (20)

Here, we have defined

κt = q+
2 sinh(q+a)

+ q−
2 sinh(q−a)

, (21)

δκt = q+
2 sinh(q+a)

− q−
2 sinh(q−a)

, (22)

and

κ = q+
2 tanh(q+a)

+ q−
2 tanh(q−a)

, (23)

δκ = q+
2 tanh(q+a)

− q−
2 tanh(q−a)

, (24)

with q−1
± being the penetration length of a particle with a

positive/negative chirality inside the barrier, and a is the barrier
width. As the width of the barrier grows, the “tunneling”
boundary coefficients decay exponentially, lima→∞ κt = 0.
As expected, we see then that the coupling between the
superconductor and the ferromagnet disappears, as does the
proximity effect. Furthermore, if we “turn off” the spin-orbit
coupling in the barrier (i.e., setting αR = 0, so that q+ = q−),
we see that the spin-mixing terms vanish, δκ = δκt = 0, and
we recover the standard boundary conditions for the proximity
effect.

As in Eq. (11), we introduce a four-component state
vector in the combined spin-Nambu space to describe the
superconductor. The Pauli matrices in Nambu space will be
denoted by τ̂x , τ̂y , and τ̂z, and the unit matrix by τ̂0. 4 × 4
matrices in the spin-Nambu space will be denoted by an inverse
hat, for instance,

Ťp =
(

T̂p 0
0 T̂ ∗

−p

)
, Řp =

(
R̂p 0
0 R̂∗

−p

)
, (25)
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where the asterisk denotes complex conjugation. Note that
γ−p = γp + π , therefore exp (iγ−p) = − exp (iγp), as it ap-
pears in T̂ ∗

−p and R̂∗
−p.

Using these notations, we can write the boundary con-
ditions for the superconductor in the following form:
mB

mS
∂z

−→
�

(S)
p (−a) = Ťp

−→
�

(F )
p (0) − Řp

−→
�

(S)
p (−a). We proceed by

first incorporating the right side of this boundary condition
into the Bogoliubov–de Gennes equation for a superconductor,
which we symbolically write in the form72

ˇ̃G
−1

p
−→
�

(S)
p (z) = − h̄2

2mB

δ(z + a)
[
Ťp

−→
�

(F )
p (0) − Řp

−→
�

(S)
p (−a)

]
.

(26)

Here, ˇ̃Gp(z,z′) is the Green function of the Bogoliubov–de
Gennes equation for a bulk superconductor in the half-
space, z < −a, which satisfies the von Neumann boundary
conditions, ∂z

ˇ̃Gp(z,z′)|z=−a = 0. It can be expressed in terms
of the Green function of an infinite bulk s-wave superconductor
by the method of mirror images, and it reads

ˇ̃Gp(z,z′) = Ǧp(z − z′) + Ǧp(z + z′ + 2a), (27)

where

Ǧp =
(

Ĝp F̂ ∗
−p

F̂p Ĝ∗
−p

)
(28)

and Ĝp and F̂p are the normal and Gor’kov Green functions,
respectively. Consequently, the solution to the Bogoliubov–de
Gennes equation (26) is derived by convoluting the Green
function with the boundary term on the right side of Eq. (26),
which is simple due to the δ function in the latter,

−→
�

(S)
p (z) = − h̄2

mB

Ǧp(z + a)
[
Ťp

−→
�

(F )
p (0) − Řp

−→
�

(S)
p (−a)

]
.

(29)

For the purpose of understanding induced superconductiv-
ity in the ferromagnet, we only need to know the boundary
value of the superconducting wave function at z = −a. From
Eq. (29), we obtain

−→
�

(S)
p (−a) = − h̄2

mB

1

1 − (h̄2/mB)ǧpŘp
ǧpŤp

−→
�

(F )
p (0), (30)

where

ǧp = lim
z→−a

Ǧp(z + a) =
∫

dpz

2π
Ǧ(px,py,pz). (31)

We note here that (30) is exact and that we have not used any
properties of the system at z > 0 up to this point. Therefore,
the equation above is applicable to any such junction with
any normal or superconducting material at z > 0 (the only
constraint is the continuity of derivatives at the z = 0 boundary,
which may be violated if there is a spin Hall effect present. In
this case, however, an alternative set of boundary conditions
can be derived.)

3. Ferromagnet

The expression in Eq. (30), which represents a useful
technical result of the paper, allows one to formulate a closed

problem on the (ferromagnetic) normal side. Let us write the
Schrödinger equation (4) as[

Ǧ(F )
p

]−1 ◦ −→
�

(F )
p (z) = 0, (32)

where we have extended the equation into the Nambu space.
The propagator Ǧ

(F )
p (z,z′) describes a particle of the magne-

tized Fermi liquid in the shell 0 � z � d. Apart from the trivial
boundary condition (7) at the hard wall, (9) together with the
solution of Sec. IV B1 and (30) give rise to the following
constraint:

mB

mF

∂z
−→
�

(F )
p (0) =

[
Řp + Ťp

h̄2/mB

1 − h̄2

mB
ǧpŘp

ǧpŤp

]
−→
�

(F )
p (0).

(33)

The boundary condition (10) together with (32) and (33) form
a self-consistent set for z > 0.

We assume at this point that the spin-orbit coupling energy
scale is small compared to other relevant energies in the
problem, and we keep the spin-orbit parameter αR finite only
where we otherwise would get a vanishing effect, i.e., in the
spin-mixing terms. In all other quantities, we set αR = 0. This
brings the reflection matrix to a simpler form proportional to
the unit matrix,

Řp ≈ κ 1̌ ≡ κτ̂0σ̂0, (34)

where κ is defined in Eq. (23). In the αR → 0 limit, we have

κ = q/ tanh (qa), where q =
√

2m

h̄2 (U0 + p2

2mB
− ε). In the limit

of a high barrier, κ ≈ q.
We now consider the operator denominator in the boundary

condition (33). If the bulk superconductor is deep in the paired
state, we may neglect the normal Green function and estimate
the integrated Green function in Eq. (31) as ǧ ≈ f τ̂x(iσ̂y),
with

f = 1

h̄vS

�√
�2 + ξ 2

p

. (35)

Here, we have also ignored retardation effects. For small ξp =
p2/(2mS) − μS , it can be estimated as f ≈ 1/(h̄vS), where
vS is the Fermi velocity in the superconductor. Therefore, the
term in question from Eq. (33) becomes

h̄2

mB

1

1 − h̄2

mB
ǧpŘp

ǧp ≈ 1

κ

α

1 + α2
[τ̂x(iσ̂y) − α1̌], (36)

where α = κf/mB . This parameter can be estimated as

α ∼
√

mSU0/mBE
(S)
F . Note that the last term in Eq. (36) is

uninteresting because it does not include any off-diagonal
contributions in Nambu space. The term slightly renormalizes
the boundary conditions for the transverse wave function in
the ferromagnet. It can therefore be safely dropped.

Incorporating the right side of the boundary condition (33)
into the Schrödinger equation for the ferromagnet (32), we
obtain

Ǧ(F )
p

−1 ◦ −→
�

(F )
p (z) = −h̄2αδ(z)

2f κmB(1 + α2)
ŤpǧpŤp

−→
�

(F )
p (0). (37)

This is the Bogoliubov–de Gennes equation for the normal
region with superconducting correlations introduced via the
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boundary term that carries information about all Andreev
processes.

C. Proximity-induced superconducting gap

To calculate the superconducting gap induced in the
ferromagnet, we assume that its magnetization is unaffected
by the proximity to the superconductor, and we fix it instead
of calculating it self-consistently. This should be valid in
the low barrier transparency limit which we are considering
here. We also focus on a particular subband with a given
spin polarization and ignore intraband scattering (which is
justified only in the clean case). Furthermore, we assume that
the ferromagnetic layer or wire is very thin in the z direction,
and we approximate the full solution as

ψ (F )
α,p (z) = χα(m)ψ (tr)(z)φ(p), (38)

where χα(m) is a spinor describing the magnetization direction
that we wish to enforce and ψ (tr)(z) is the transverse envelope
wave function that we approximate as a solution of the free
one-dimensional Schödinger equation,(

∂2
z + 2mF εtr

h̄2

)
ψ (tr)(z) = 0, (39)

with the unusual boundary conditions valid for low barrier
transparency,

mB

mF

∂zψ
(tr)(0) = κψ (tr)(0), ψ (tr)(d) = 0. (40)

We then introduce solution (38) into (37), multiply it by
ψ (tr)∗(z), average it over the transverse direction, and extract
the relevant spin component (a word of caution here is
that the standard convention for the Gor’kov Green function
taken proportional to iσ̂y is basis-dependent and assumes spin
quantization along the z axis).

For the ferromagnetic state polarized along z, we obtain the
Bogoliubov–de Gennes equations in the familiar form[

p2

2mF

− (μF − εtr)

]
φp + Eg(py + ipx)φ∗

−p = 0, (41)

where the proximity-induced gap or so-called minigap is

Eg = 2fh̄4

pm2
B

κtδκt |ψ (tr)(0)|2. (42)

The boundary value of the transverse wave function can be
obtained from Eq. (39) and reads

|ψ (tr)(0)|2 = 2

d

1

1 + ξ 2 + ξ/(ktrd)
, (43)

where ξ = mF q/(mBktr) and ktr is a solution to the eigenvalue
problem, tan (ktrd)/(ktrd) = −mB/(mF qd), which determines
the spectrum, εtr = h̄2k2

tr/(2mB). We see from Eq. (42) that the
proximity-induced minigap is extremely sensitive to the actual
width of the normal region: the smaller the width, the more
frequent the Andreev scattering processes, and the larger the
minigap.72

V. MICROSCOPIC THEORY FOR THE RESISTANCE PEAK

In the preceding section, we considered the Andreev
physics which takes place at a W-Co interface with Rashba

spin-orbit coupling. We showed that the triplet p-wave prox-
imity effect is suppressed due to the weak interface spin-orbit
coupling, which facilitates the singlet-triplet conversion across
the interface. With this result, we now formulate a theory
for the observed resistance peak based on the physics of
superconducting fluctuations in the W electrodes.

A. Effective dimensionality of a tungsten electrode
for fluctuation analysis

Superconducting fluctuation physics depends critically on
the dimensionality of the system, with the general trend being
that the lower the dimensionality, the more pronounced and
singular the fluctuation effects are. However, one should
exercise care in determining the effective dimensionality of
a system, as this notion depends on a particular effect that
is being studied. For example, the system may be three-
dimensional in terms of single-electron diffusion physics,
but fall into the category of one-dimensional superconductors
when it comes to the fluctuation analysis. We believe that such
is the case with the W electrodes that host superconductivity
and most of the fluctuation physics in the experiment under
study involving L

(1)
⊥ ∼ 250 nm wide and L

(2)
⊥ ∼100 nm thick

W strips.
The finiteness of the transverse directions implies that

whenever we have an integral over a three-dimensional
momentum, its transverse part must be replaced with a sum
over quantized modes,∫

dq⊥
2πh̄

f (q⊥) −→ 1

L⊥

∑
n⊥

f

(
2πh̄n⊥

L⊥

)
.

For superconducting fluctuation analysis, the relevant function

of interest is the fluctuation propagator, which appears in the
combination

1

L⊥

∑
n⊥

[
D

(
2πh̄n⊥

L⊥

)2

+ Dq2
|| + τ−1

GL

]−1

, (44)

where D = v2
Fτ/3 is the diffusion coefficient, and the

Ginzburg-Landau relaxation time,

τGL = π

8

h̄

T − Tc
, (45)

tunes the proximity to the transition temperature Tc. Hereafter,
we will focus on a superconducting electrode and assume that
we are dealing there with a disordered superconductor.

The question of whether or not a particular dimension is
important reduces to the comparison of the first and last term
in the square brackets in Eq. (44). If the former is much larger
than the latter for any n⊥ �= 0 the corresponding dimension is
unimportant and an effective reduction of dimensionality oc-
curs. One can define the following characteristic temperature
scale (to be compared with T − Tc) as follows:

T⊥(L⊥) = 1

kB

(
π3

6

)(
l

L⊥

)(
h̄vF

L⊥

)
, (46)

where vF is the Fermi velocity, l = vFτ is the electron mean-
free path, and we have restored the Boltzmann constant kB and
the Planck constant h̄.
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For W, the Fermi velocity can be estimated as vF ∼
0.5 × 106 m/s, and taking the largest of the two transverse
dimensions L⊥ ∼ 250 nm, we find

T W
⊥ (250 nm) ∼

(
l

L⊥

)
80 K.

If we assume that the mean-free path in the amorphous
W strips is of the order of a nanometer, the corresponding
temperature scale becomes of order T W

⊥ (250 nm) ∼ 0.3–1 K,
which is very reasonable and implies that as soon as we
approach the superconducting transition with (T − Tc) �
Tc ∼ 4.4–5 K, we may view the electrode as a one-dimensional
superconductor.

B. Fluctuation correction to the density of states

We now analyze the DOS fluctuation physics on the basis of
the standard diagrammatic perturbation theory. The Cooper-
channel correction to the electronic DOS is given by

δν(ε) = − 1

π

∫
ddp

(2π )d
Im {G2(iεm,p)�(iεm,p)} iεm→ε, (47)

where �(iεm,p) is the self-energy described by the diagram in
Fig. 4(a). It reads

�(iεm,p) = −T
∑
�n

∫
ddq

(2π )d
G(i�n − iεm,q − p)

× C2(εm,�n − εm; q)L(�n,q), (48)

where

G(iεm,p) = 1

iε̃m − ξp
(49)

(a)

(b)

Co

W

tk,k t∗k,k

FIG. 4. (a) Self-energy diagram describing a correction to the
single-electron Green function. The wavy line corresponds to the
superconducting fluctuation propagator, and the shaded vertices
represent Cooperon vertices. (b) A diagram corresponding to the
lowest-order correction to the transport kernel due to superconducting
fluctuations in the tungsten electrode. As labeled in the figure, the top
(bottom) solid line represents the electron propagator for tungsten
(cobalt).

is the Matsubara Green function with ξp = vF(p − pF) and
ε̃m = εm + sgn (εm)/(2τ ), τ is the scattering time,

C(εm,�n − εm; q) = 1

τ

θ [εm(εm − �n)]

Dq2 + γs + |2εm − �n| (50)

is the Cooperon vertex, where we included the pair-breaking
scattering rate γs = 2/τs, and θ (·) is the standard Heaviside
step function. In the vicinity of the transition point, the
fluctuation propagator reads

L(�n,q) = 8Tc

πν0

[
Dq2 + τ−1

GL + |�n|
]−1

, (51)

where τGL = π
8

h̄
T −Tc

and ν0 = mpF /2π2 is the bare DOS for
a single spin projection. As per the usual convention, �n =
2πnT denotes the bosonic Matsubara frequency and εm =
(2m + 1)πT is the fermionic Matsubara frequency. Finally,
note that the physical quantity of interest, the DOS, must
be analytically continued from the discrete set of Matsubara
frequencies to the continuum of real energies, as labeled by
the symbol iεm → ε in Eq. (47).

Since the tungsten electrodes are amorphous, we can safely
assume that they are strongly disordered s-wave superconduc-
tors, where Tcτ � 1 (but of course we also assume that we
are far from localization, that is, EFτ � 1). In this case, the
three-Green-function block takes the especially simple form

ν0

∫
dξ G(i�n − iεm,q − p)G2(iεm,p) = −2πiν0τ

2sgn (εm),

(52)

where we enforced the constraint εm(εm − �n) > 0 in Eq. (50).
This leads to the following expression for the DOS:

δν(ε) = 4

π3

∫
ddq

(2π )d

(
∂

∂γs

)
Re SR(q,ε), (53)

where SR(q,ε) = S(q,iεm → ε) represents the analytically
continued (retarded) Matsubara sum

S(q,εm > 0)

=
m∑

n=−∞

1(
Dq2+τ−1

GL
2πTc

+ |n|
)(

Dq2+γs

2πTc
+ |2m + 1 − n|

) . (54)

This sum can be calculated exactly in terms of the digamma
function,

ψ(z) = −γ +
∞∑

n=0

[(n + 1)−1 − (n + z)−1], (55)

which is analytic everywhere except z = 0,−1,−2, . . . . It
is convenient to separate the sum (54) into two pieces,∑0

n=−∞ . . . and
∑m

n=0 . . . . For the first term, the analytic con-
tinuation reduces to replacing εm → −iε. For the second term,
it becomes possible after noticing the “reflection property,”
where m − n can be replaced by n − m. This leaves the sum
from n = 0 to n = m unchanged but the denominator “posi-
tively defined” and ready for analytic continuation. Finally, the
asymptotic form of DOS in the limit of {ε,τ−1

GL ,γs} � T ∼ Tc

becomes

SR(q,ε) = (2πTc)2(
Dq2 + τ−1

GL

)(
2Dq2 + γs + τ−1

GL − 2iε
) . (56)
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Let us now focus specifically on the correction to the DOS
of electronic states with spin-up at the Fermi level, i.e., ε = 0.
The remaining elementary integrals in Eq. (53) can now be
easily calculated, and we find

δν↑(0,T ) = − ν0

p2
FA

√
6π7

128

T 2
c τ−1/2

(T − Tc)5/2

1 + 2α(T )

α3(T )[1 + α(T )]2
,

(57)

where

α(T ) =
√

1

2

[
1 + π

4

1

(T − Tc)τs

]
. (58)

Here, A is the effective area of the fluctuating superconductor
in the region where the fluctuations are studied (we expect it to
be related to the dimensions of the superconductor-nanowire
contact and, consequently, we expect A to be smaller than
the cross-sectional area of the wire). Notice that in the
absence of pair breaking and/or far from the transition, where
(T − Tc)τs � 1, (58) reduces to a constant α = 1/

√
2 and

the DOS at the Fermi level acquires a very sharp temperature
dependence as follows:

δν↑(0,T ) ∝ −(T − Tc)−5/2 if (T − Tc)τs � 1. (59)

In the opposite regime of strong pair-breaking scattering or in
the immediate vicinity of the transition, we find

δν↑(0,T ) ∝ −(T − Tc)−1/2 if (T − Tc)τs � 1. (60)

C. Fluctuation correction to the contact resistance

The result for the DOS at the Fermi level provides a useful
insight into the physics near the transition and illustrates
that, as a precursor to the global pairing transition, electrons
are actively swept from the vicinity of the Fermi level due
to the formation of the fluctuating Cooper pairs. However,
the stand-alone quantity δν(0,T ) is not extremely useful for
comparison with experiment, as it is actually not directly
measurable. What is measured in experiment is resistance,
which is an integral quantity that includes excitations with
different energies and that has contributions from both single-
electron transport across the W-Co junction and pair transport.
As found in Sec. IV, the latter is suppressed strongly far from
the transition due to the very small pair tunneling probability,
which requires spin-orbit-assisted spin flips. Single-electron
transport, on the other hand, does not rely on any spin-
orbit coupling, and spin-up electrons can tunnel freely from
the electrodes into the ferromagnet. Hence, there is a regime
close to the transition (but still far enough from the immediate
vicinity where the Cooper pairs eventually take over) where
the single-electron tunneling dominates and is already strongly
suppressed by fluctuations. This results in the upturn in the
resistance as T → T +

c .
If we now focus entirely on single-electron transport

and disregard pair-breaking scattering, we would tend to
conclude (incorrectly) that the tunneling resistance acquires
a contribution proportional to that in Eq. (59). This, however,
is not so and the correction to the conductance is much weaker.
This is because the tunneling electrons involve not only those
precisely at the Fermi level, but all electron excitations within

the shell of energies E ∼ (EF − T ,EF + T ). Hence, what
matters is a redistribution of the DOS beyond the shell of
energies that participate in transport (any redistribution within
the shell is essentially not observable).

All these phenomena are automatically accounted for
within the standard diagrammatic theory of transport. Here, we
proceed nearly in a one-to-one correspondence with Ref. 75.
The tunneling current is derived from the transport kernel
Q(ωl) shown in Fig. 4(b),

I (V ) = −e Im QR(ω)|ω=eV , (61)

where QR(ω) is the analytically continued transport kernel and
V is the voltage across the tunneling contact. In the setup under
consideration, the Matsubara transport kernel reads explicitly

Q(ωl) = −T 2
∑

εm;�n;k,k′
|tk,k′ |2G2

W(εm,k)GCo(εm + ωl,k′)

×
∫

dq

2πA
L(�n,q)C2(εm,�n − εm; q)

×GW(�n − εm,q − k), (62)

where tk,k′ is the tunneling amplitude between two momentum
states, GW/Co(εm,k) is the electron Green function for the
W electrode/Co nanowire, and all other quantities have been
defined in Sec. V B. Following Ref. 75, we introduce a normal
state resistance of the W-Co x junction R

(0)
W/Co and obtain

Q(ωl) = πT 2

2e2R
(0)
W/Co

∑
εm,�n

sgn(εm) sgn(εm + ωl)

×θ [εm(εm − �n)]
∫

dq

2πA

L(�n,q)

(Dq2 + |2εm − �n|)2
.

(63)

Repeating the dimensionality-independent summations as in
Ref. 75 [note that the clean case75 becomes technically
equivalent to the dirty case if we notice that the frequency
dependence of the three-Green-function block in the reference
is identical to that in the two Cooperons that appear in Eq. (2)]
and evaluating the remaining integral over momentum q, we
obtain the nonlinear I -V dependence,

I (V ) = − T

8π2e

√
3π

2

1

R
(0)
W/Coν0vFA

Im ψ ′
[

1

2
− ieV

2πT

]

× 1√
(T − Tc)τ

, (64)

where ψ(·) is the logarithmic derivative of the gamma function.
The fluctuations correction to the differential conductance,
dI/dV , is plotted in Fig. 5. Now focusing on the linear
response regime, dI

dV
|V =0, we find the leading fluctuation

correction to the W-Co contact resistance as follows:

δR
(DOS)
W/Co

R
(0)
W/Co

= 7ζ (3)

4π

√
3π

2

1

p2
FA

1√
(T − Tc)τ

, (65)

where ζ (z) is the Riemann zeta function and ζ (3) ≈ 1.202.
The result in Eq. (65) corresponds to a sharp upturn in the
resistance upon approaching the superconducting transition of
the electrode.

054521-10



MICROSCOPIC THEORY FOR A FERROMAGNETIC . . . PHYSICAL REVIEW B 86, 054521 (2012)

FIG. 5. Correction to the differential conductance from supercon-
ducting fluctuations as a function of dimensionless voltage eV/2πT

[see Eq. (64)]. The three curves correspond to different temperatures:
t := (T − Tc)τ = 0.01 for the solid line, t = 0.05 for the dashed line,
and t = 0.1 for the dotted line.

D. Estimate of tunneling resistance due to fluctuating pairs

As emphasized throughout this section, the fluctuating
Cooper pairs that appear in the electrodes do not aid with
transport through the ferromagnetic nanowire initially because
of their poor ability to tunnel into it. However, the experimental
fact that the wire that is as long as a micrometer does become
superconducting ensures that the pairs eventually are able
to tunnel. Section IV provides a microscopic picture of the
Andreev reflection/boundary physics that presumably makes
this possible. Therefore, we expect that as the temperature
is tuned down to the closest vicinity of the transition, the
Cooper pair tunneling takes over the effect of the suppression
of the DOS and the upturn in the resistance crosses over to the
downturn going through a peak, as observed in experiment.

We notice here in passing that the height of the peak
may provide a valuable insight into the competition of the
two phenomena and may potentially become a means to
measure the boundary spin-orbit coupling that is crucial for
the proximity-induced p-wave superconductivity in the wire,
which is a phenomenon of major interest. However, we leave
the complicated microscopic theory of spin-orbit-assisted
fluctuating pair tunneling for future studies, and in this section
we only extract the leading temperature dependence of this
AL type correction. It can be done on the basis of the
Ambegaokar-Baratoff formula, which yields52

δR
(AL)
W/Co ∝ −δ(αR)

∫ ∞

−∞
dε

[δν(ε)]2

cosh2
(

ε
2T

) , (66)

where δν(ε) is the suppression of the DOS obtained in Sec. V B
and we kept a small coefficient δ(αR) that includes spin-orbit
suppression of the pair-tunneling as obtained in Sec. IV.

Note that the integral of the DOS over all energies van-
ishes identically,

∫ ∞
−∞ dε δν(ε) = 0 (the physical interpretation

being that the total electron density is conserved and the
electrons can only be redistributed across different energies),
and a nonzero correction to the resistance in the first order
appears only due to the modulating function, cosh−2 ( ε

2T
),

and consequently is much weaker [see Eq. (65)] than that

in the DOS [see Eq. (59)]. For the pair tunneling, the situation
is different as

∫ ∞
−∞ dε δν2(ε) is not only nonzero but is a

very singular function near the transition. This singularity
determines the scaling of the AL correction (66) as

δR
(AL)
W/Co ∝ − δ(αR)

(T − Tc)4
. (67)

VI. SUMMARY AND CONCLUSIONS

In this work, we study temperature-dependent transport
through a ferromagnetic Co nanowire proximity-coupled to
superconducting W electrodes. The work is motivated by
a recent experiment,21 in which the long-ranged supercon-
ducting proximity effect was observed in single-crystal Co
nanowires coupled to conventional superconductors. The main
focus of the work is on the large and sharp resistance
peak which is observed at a temperature slightly above the
transition temperature of the electrodes. We study in detail
the resistance across a W-Co interface, which we argue is
the dominant source of impedance in the transport. We first
explore the possibility of inducing (even-frequency) p-wave
pair correlations in an itinerant ferromagnet via Rashba spin-
orbit coupling at the interface. We derive an expression for
the induced p-wave minigap in terms of the microscopic
parameters of the junction, and we argue that the pair transport
across the interface is strongly suppressed due to the weak spin-
orbit coupling. We then show how the anomalous resistance
peak can be explained within the physics of superconducting
fluctuations. In particular, we develop a microscopic theory
for the superconducting fluctuation corrections in the W
electrodes, and we show how these corrections can lead
to an upturn in the resistance across the W-Co interface.
While microscopic calculations are carried out for corrections
to lowest order in tunneling, a more detailed microscopic
calculation for (two-particle) pair transport is still needed to
perform a quantitative fit to the resistance peak observed in
experiment. In principle, a rigorous fit to the resistance peak
may potentially be used to estimate the size of the interfacial
spin-orbit coupling; this will be a topic of future work.76

It will be interesting to experimentally test the spin-orbit-
assisted scenario by inserting a material with strong spin-orbit
coupling (X) in between a superconductor and a ferromagnet
by producing a junction of the type S/X/F/X/S.77 Critical
current as a function of the ferromagnet thickness has been
studied for an S/F/S junction, but no evidence of spin-triplet
correlations was observed.78 The S/X/F/X/S junction may
provide an alternative route to realizing spin-triplet correla-
tions inside a ferromagnet besides the use of noncollinear
ferromagnets.22,23 We also note that the spin-orbit-assisted
proximity-effect scenario considered here is different from the
diffusive ferromagnet case, where the likely mechanism for the
proximity effect is believed to be odd-frequency pairing.23,24

The main argument for odd-frequency superconductivity is
that any anisotropic pairing would decay fast into a disordered
metal on a length scale of the order of a mean-free path, while
odd-frequency isotropic pairing is immune from nonmagnetic
static disorder. This result follows from the Usadel equation if
we assume that the non-s-wave part of the disorder-averaged
condensate wave function is small. Then upon linearization of
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the Usadel equation, further exponential decay of the disorder-
averaged p-wave condensate wave function inevitably follows.
We note, however, that in certain geometries (e.g., if the
mean-free path is much larger than the cross section of the
wire, but much smaller than its length), there is no reason to
assume that the anisotropic component is small locally near
the contacts, and consequently the conventional derivation of
the Usadel equations from the Eilenberger equations breaks
down in these regions. With such an assumption about the
boundary conditions, the correlator of p-wave condensate
wave functions is not expected to decay exponentially at
T = 0, in sharp contrast to the exponential decay of the
disorder-averaged p-wave condensate wave function.64,79,80

These mesoscopic fluctuation effects will be considered in
detail elsewhere.76

A. Topological superconductivity and Majorana fermions

The canonical Kitaev model,30 which is the simplest
prototype of a one-dimensional topological superconductor,
involves one fermion species hopping in a one-dimensional
chain and subject to a prescribed p-wave pairing field on the
nearest-neighbor bonds. The end points of the chain host single
Majorana excitations that are of key interest. One can consider
N replicas of the Kitaev-Majorana model with different
p-wave pairing fields for each species but with no mixing
between them, i.e., no interband pairing. If N is even, the
end Majoranas are unstable against various perturbations and
generally hybridize into relatively uninteresting finite-energy
boundary states. In contrast, if N is odd, the system can
then host one Majorana zero-energy state at each end. Indeed,
recent theoretical works have addressed a multichannel gen-
eralization of Majorana end states in quasi-one-dimensional
structures with Rashba spin-orbit coupling.81–84 The works
show that the Majorana end states are realized in some
parameter regime as long as an odd number of transverse
subbands are occupied and the width of the wire does not
greatly exceed the superconducting coherence length.

The well-known difficulty in realizing the regime where
(no. of end Majoranas) mod 2 = 1 is of course related to
the fact that the electrons have spin and consequently come
in pairs. Therefore, according to Kitaev,30 one necessarily,
but not sufficiently, needs to break time-reversal symmetry
in the one-dimensional superconductor to render it topolog-
ical. The notable and fascinating proposals in which this
regime was theoretically shown to be possible include a
hybrid structure involving an s-wave superconductor/spin-
orbit-coupled wire/ferromagnet,35,44 a similar heterostructure
without a ferromagnet but in a magnetic field,36,42 a topo-
logical insulator/superconductor in a field,31,45 and a half-
metal/superconductor with spin-orbit coupling in the latter.43

If our interpretation of the experimental data in Ref. 21
is correct, we see that this work potentially possesses all
the necessary ingredients for the realization of the Majorana
end states, i.e., it has a ferromagnetic crystalline wire in
which p-wave superconductivity has been induced. The
N -replica Kitaev-Majorana model discussed here should
apply to a quasi-one-dimensional Co wire deposited on top
of a three-dimensional W superconductor. In light of the
multichannel generalization for the Majorana end states,81–84

the Co nanowire does not necessarily have to be in a strictly
one-dimensional limit. In fact, Ref. 84 showed that in the
presence of disorder, an optimal nanowire system may require
a few occupied subbands in order to create stable Majorana end
states. Since Co is not a half-metal, the question is also whether
a ferromagnetic wire, with both majority and minority carriers,
can still host an odd number of end Majorana fermions. This
should be possible in principle, because what we need is
not necessarily to eliminate completely a spin component
but merely to make the two components different from
each other such that the total number of occupied subbands
is odd, i.e., (N↑ + N↓)mod 2 = 1. In the simplest model
with no intersubband mixing, this would imply topological
superconductivity. However, we mention that a single-species
p-wave superconductor, more akin to the original proposal
by Kitaev,30 may be possible if the Co wire is replaced by a
similar wire made of a half-metal such as CrO2.

Reference 21 and the discussion above suggest an even
simpler experimental setup for topological superconductivity.
Indeed, realizing a one-dimensional topological supercon-
ductor using spinful fermions requires lifting the double
degeneracy imposed by time-reversal symmetry. In principle,
this can be achieved by proximity-inducing a Zeeman gap35

or by applying an external magnetic field.36,41 An alternative
approach to realizing a one-dimensional topological super-
conductor is to deposit a ferromagnetic semiconductor wire
on top of a ferromagnetic superconductor.1–4 A particularly
attractive candidate ferromagnetic semiconductor is europium
oxide (EuO), which is known to possess nearly spin-polarized
bands.85,86 EuO becomes ferromagnetic below 70 K under am-
bient pressure, and the Curie temperature is known to increase
with pressure, reaching 200 K under 1.5 × 105 atmospheres.87

Ever since its integration with Si and GaN,86 EuO has garnered
much attention for its potential use in spintronic applications.
Ferromagnetic superconductors are materials that exhibit an
intrinsic coexistence of superconductivity and ferromagnetism
where the same electrons are believed to be superconducting
and ferromagnetic simultaneously. Perhaps the most well-
known experimental realizations of ferromagnetic supercon-
ductors are uranium-based compounds. Following the first
experimental realization a decade ago, there are now four such
compounds,1–4 two of which exhibit the phenomena at ambient
pressures.2,3 We propose that depositing URhGe electrodes on
the EuO wire, in the arrangement shown in Fig. 1(a), would
be conceptually the simplest structure to realize Majorana
fermions that would require neither topological insulators nor
control over spin-orbit couplings. Application of a magnetic
field can further stabilize both the ferromagnetism and the
superconducting phase.
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Löhneysen, Phys. Rev. Lett. 99, 067006 (2007).

4T. Akazawa et al., J. Phys.: Condens. Matter 16, L29 (2004).
5C. Pfleiderer et al., Nature (London) 412, 58 (2001).
6L. Bauernfeind, W. Widder, and H. Braun, Physica C 254, 151
(1995).

7C. Bernhard, J. L. Tallon, C. Niedermayer, T. Blasius, A. Golnik,
E. Brucher, R. K. Kremer, D. R. Noakes, C. E. Stronach, and E. J.
Ansaldo, Phys. Rev. B 59, 14099 (1999).

8D. J. Pringle, J. L. Tallon, B. G. Walker, and H. J. Trodahl, Phys.
Rev. B 59, 11679 (1999).

9V. G. Hadjiev et al., Phys. Status Solidi B 211, R5 (1999).
10S. K. Sinha, G. W. Crabtree, D. G. Hinks, and H. Mook, Phys. Rev.

Lett. 48, 950 (1982).
11J. W. Lynn, G. Shirane, W. Thomlinson, R. N. Shelton, and D. E.

Moncton, Phys. Rev. B 24, 3817 (1981).
12J. W. Lynn, J. A. Gotaas, R. W. Erwin, R. A. Ferrell, J. K.

Bhattacharjee, R. N. Shelton, and P. Klavins, Phys. Rev. Lett. 52,
133 (1984).

13C.-K. Hsu et al., J. Appl. Phys. 109, 07B528 (2011).
14D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom,

and V. Chandrasekhar, Phys. Rev. Lett. 107, 056802 (2011).
15J. A. Bert et al., Nat. Phys. 7, 767 (2011).
16A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
17M. Giroud, H. Courtois, K. Hasselbach, D. Mailly, and B. Pannetier,

Phys. Rev. B 58, 11872(R) (1998).
18V. T. Petrashov, I. A. Sosnin, I. Cox, A. Parsons, and C. Troadec,

Phys. Rev. Lett. 83, 3281 (1999).
19V. Pena, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, M. Varela,

S. J. Pennycook, and J. L. Martinez, Phys. Rev. B 69, 224502
(2004).

20R. S. Keizer et al., Nature (London) 439, 825 (2006).
21J. Wang et al., Nat. Phys. 6, 389 (2010).
22T. S. Khaire, M. A. Khasawneh, W. P. Pratt, Jr., and N. O. Birge,

Phys. Rev. Lett. 104, 137002 (2010).
23F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86,

4096 (2001).
24F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77,

1321 (2005).
25V. L. Berezinskii, JETP Lett. 20, 287 (1974).
26M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön, Phys. Rev. Lett.

90, 137003 (2003).
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