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We investigate the ground-state phase diagram of the soft-core Bose-Hubbard model with the nearest-neighbor
repulsion on a square lattice by using an unbiased quantum Monte Carlo method. In contrast to a previous study
[P. Sengupta et al., Phys. Rev. Lett. 94, 207202 (2005)], we present the ground-state phase diagrams up to high
hopping amplitudes. As a result, in addition to the known supersolid above half-filling, we find a supersolid phase
below and at half-filling for high hopping amplitudes. In addition, for a strong nearest-neighbor repulsion, we
show that the supersolid phase occupies a remarkably broad region in the phase diagram. These results are in
agreement with the results of the Gutzwiller mean-field approximation [M. Iskin, Phys. Rev. A 83, 051606(R)
(2011); T. Kimura, Phys. Rev. A 84, 063630 (2011)]. However, it turns out that the regions of the supersolid
phases are significantly smaller than the mean-field results.
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I. INTRODUCTION

Supersolids (SSs) have attracted great interest for a long
time as a fascinating quantum state that has superfluidity
and solidity simultaneously. In the early theoretical works by
Andreev and Lifshitz1 and Chester,2 they proposed a scenario
in which a SS might appear when zero-point defects in a
solid such as 4He undergo Bose-Einstein condensation at low
temperatures without destroying the crystal structure. Several
decades later, a discovery was made in 2004 by Kim and
Chan.3,4 In their experiments on solid 4He, they observed
nonclassical rotational inertia associated with superfluidity
in the solid. After this discovery, further theoretical and
experimental works5–7 provided evidence that the SS-like
behavior in solid 4He is different from that of a bulk SS based
on the Andreev-Lifshitz-Chester scenario. The superfluidity in
solid 4He seems to appear as a result of the extended defects
such as grain boundaries8,9 and dislocations.10

In contrast to continuous spaces, lattice systems have
recently been considered to be promising candidates for
realizing an SS. This is due to the recent experimental
development of optical lattice systems.11–14 Ultracold Bose
gases trapped in optical lattices are ideal systems for realizing
the Bose-Hubbard models.15 As a result of intensive theoretical
and numerical studies, the existence of SS phases has been
established in extended Bose-Hubbard models.16–31 Most of
the SSs in lattice systems are achieved by doping particles
or holes into insulating solid states at commensurate filling
factors. If doped defects delocalize and undergo Bose-Einstein
condensation rather than a phase separation, a SS appears
in accordance with the Andreev-Lifshitz-Chester scenario.
Thus, the resulting SSs are stabilized at incommensurate filling
factors.

One of the simplest models used to study SSs is the soft-
core Bose-Hubbard model with nearest-neighbor repulsion.
By performing accurate quantum Monte Carlo calculations on
this model, a checkerboard (CB) SS phase has been found on a
one-dimensional (1D) chain,22 a 2D square lattice,21 and a 3D
simple cubic lattice.26,30,32 In the 1D and 2D cases, the SS phase
is found only above half-filling (interstitial SSs). In contrast, in

the 3D case, the SS phase is found not only above half-filling
but also below and at half-filling for high hopping amplitudes
(vacancy SSs and commensurate SSs, respectively).26,30,32 In
particular, the presence of an SS at a commensurate filling
factor of 1/2 is fascinating as an exceptional SS without any
doping, although it has not yet been found in lower dimensions.
Therefore, it is an open question why there is a discrepancy in
the results in the 2D versus 3D systems.

Recent works based on the Gutzwiller mean-field ap-
proximation have provided some interesting results on the
ground-state phase diagram of the extended Bose-Hubbard
model,33,34 including a possible answer to the above question.
In the ground-state phase diagram presented in Ref. 33, the
author found a SS phase below and at half-filling. Since the SS
phase is clearer for higher hopping amplitudes, he suggested
that the absence of such a SS region in the 2D quantum Monte
Carlo study21 might be due to the low hopping amplitude.
However, the SS phase below and at half-filling is much
smaller than that above half-filling. In addition, the validity
of the Gutzwiller mean-field approximation is not clear for
the region around half-filling in the 2D system, although
it becomes more accurate when the dimensionality and the
particle density increases. Thus, to conclude the existence of a
2D SS phase below and at half-filling, more precise treatments
are desirable.33

The other interesting result presented in Ref. 34 is on
SS phases for a strong nearest-neighbor repulsion. The
ground-state phase diagrams show that as the nearest-neighbor
repulsion increases, the SS phase expands up to high hopping
amplitudes in the phase diagram. In particular, the 2D case of
this result is important, because it could be realized in quasi-2D
dipolar Bose gases whose dipoles are polarized along the z

axis.35 Therefore, from an experimental viewpoint, we should
also determine more precise phase boundaries in the 2D system
and verify the accuracy of the phase diagram.

In this paper, motivated by the results of the Gutzwiller
approximation, we investigate the ground-state phase diagram
of the extended Bose-Hubbard model on a square lattice
by numerically exact quantum Monte Carlo simulations.
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The paper is organized as follows. In Sec. II, we de-
scribe the model discussed in this paper and the quantum
Monte Carlo method we used. Section III presents the ground-
state phase diagrams in the grand-canonical ensemble. These
phase diagrams include insulating lobes up to the third lobe.
Within this region, we confirm that our ground-state phase
diagrams are in qualitative agreement with those obtained by
the Gutzwiller approximation. In Sec. IV, we study quantum
phase transitions and explain the procedure used to determine
the phase boundaries presented in the previous section. In
Sec. V, we investigate the SS phase at half-filling by obtaining
results for the canonical ensembles. By constructing a ground-
state phase diagram at half-filling, we confirm that the SS
phase is easily found for high hopping amplitudes. Finally, in
Sec. VI, we summarize our results.

II. MODEL AND METHOD

The model considered in this paper is the soft-core Bose-
Hubbard model with nearest-neighbor repulsion on a square
lattice. The Hamiltonian is given by

H = −t
∑

〈i,j〉
(b†i bj + H.c.) − μ

∑

i

ni + U

2

∑

i

ni(ni − 1)

+ V
∑

〈i,j〉
ninj . (1)

Here, b
†
i (bi) is the bosonic creation (annihilation) operator on

site i, and ni is the particle number operator defined by ni =
b
†
i bi . The summation 〈i,j 〉 is taken over all pairs of nearest-

neighbor sites. For a square lattice, the coordination number z

is 4. Furthermore, t is the hopping amplitude, μ is the chemical
potential, U is the on-site interaction, and V is the nearest-
neighbor interaction. In this paper, we consider the case where
the interactions are repulsive (U,V > 0). In our simulations,
we treat systems of the size N = L × L with the periodic
boundary condition.

In the classical limit t/U = 0, the ground states are
known and simple.21,30,34 When the nearest-neighbor repulsion
satisfies zV/U < 1, the ground states are CB solids at filling
factors ρ = 1/2, 3/2, . . . and uniform Mott insulators at
ρ = 1,2, . . . . To characterize each state, we can label it
(nA,nB), which represents a pair of particle numbers on the two
sublattices A and B. Without loss of generality, we assume that
nA � nB . On the basis of this notation, the ground states are
labeled (1,0), (1,1), (2,1), (2,2), . . . at ρ = 1/2, 1, 3/2, 2, . . . ,
respectively. In contrast, for zV/U > 1, all ground states are
CB solids. The states are labeled (1,0), (2,0), (3,0), (4,0), . . . at
ρ = 1/2, 1, 3/2, 2, . . . , respectively, and the transition from
ρ = n/2 to (n + 1)/2 takes place at (μ/U )c = n when the
chemical potential is increased. Therefore, zV/U = 1 is a
critical point for ρ � 1 in the classical limit. When a finite
t/U is introduced, the critical point (zV/U )c = 1 is shifted to
a slightly larger value due to quantum fluctuations.

To investigate the properties of the model for finite values of
t/U , we used an unbiased quantum Monte Carlo method. The
formulation we used is based on the Feynman path integral rep-
resentation. In the representation, the d-dimensional quantum
system is mapped to (d + 1)–dimensional classical systems.

In the mapped systems, each configuration is considered as a
world line with d-dimensional space axes and a 1D imaginary
time axis. On the basis of this representation, we sample the
world-line configurations using the Markov chain Monte Carlo
method. To update the configurations, we used a worm-type
algorithm.36–39

III. GROUND-STATE PHASE DIAGRAMS IN
THE GRAND-CANONICAL ENSEMBLE

In this section, we present ground-state phase diagrams in
the zt/U -μ/U plane. A recent Gutzwiller mean-field study
suggested that the SS phase might exist below half-filling
for high hopping amplitudes.33 In addition, another work
showed that the ground-state phase diagram has qualitatively
different structures between weak and strong nearest-neighbor
repulsions.34 Remarkably, in the latter case, the SS phase
seems to occupy a very large region in the phase diagram.
To confirm these results by numerically exact quantum Monte
Carlo calculations, we show the ground-state phase diagrams
at zV/U = 1 and zV/U = 1.5 in Secs. III A and III B,
respectively.

A. Ground-state phase diagram at zV/U = 1

In Fig. 1(a), we show the ground-state phase diagram at
zV/U = 1 in the zt/U -μ/U plane. To detect each phase, we
measured the particle density ρ = 1/N

∑
i〈ni〉, the superfluid

(SF) stiffness ρs = 〈W 2〉/(2dtβLd−2), and the structure factor
S(k) = 1/N2 ∑

i,j eik·r ij (〈ninj 〉 − 〈ni〉2). Here, 〈· · ·〉 is the
thermal average and W denotes the winding number vector

FIG. 1. (Color online) (a) Ground-state phase diagram of the
extended Bose-Hubbard model on a square lattice at zV/U = 1.
The (red) circles indicate boundaries of the insulating lobes; (blue)
squares represent the SS-SF boundary. Inset: Enlarged view of the
region around the tip of the first CB lobe. Error bars are drawn but
most of them are much smaller than the symbol size (here and in the
following figures). The solid (black) line is the boundary between the
empty region and the SF, which can be obtained analytically. Other
lines are guides for the eyes. (b–d) Schematic configurations of the
insulators at (b) ρ = 3/2, (c) ρ = 1, and (d) ρ = 1/2. Each filled
(red) circle represents one particle at a site.
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FIG. 2. (Color online) Particle density ρ, superfluid stiffness ρs , and structure factor S(π,π ) as functions of the chemical potential μ/U

at (a) (zt/U,zV/U,T /t) = (0.12,1,0.05) and (b) (zt/U,zV/U,T /t) = (0.328,1,0.05). Shaded regions indicate the supersolid state where ρs

and S(π,π ) take finite values simultaneously.

in the path integral representation.40 β represents the inverse
temperature defined by β = 1/T , d is the dimensionality of
the system, which is 2 in this paper, k is the wave vector, and r ij

is the relative position vector between site i and site j . In our
phase diagram up to μ/U = 3, in addition to a conventional
SF phase, there are three insulating lobes, at ρ = 1/2, ρ = 1,
and ρ = 3/2, whose schematic configurations are shown in
Figs. 1(b), 1(c), and 1(d), respectively. The lobe at ρ = 1 is a
uniform Mott insulating (MI) phase, and the others at ρ = 1/2
and ρ = 3/2 are CB solid phases characterized by a finite
value of S(π,π ). We also confirm the presence of SS phases
around the insulating CB lobes. The determination of the phase
boundaries is explained in detail in Sec. IV.

To show the existence of each phase, we plot the μ/U de-
pendence of the measured quantities at (zt/U,zV/U,T /t) =
(0.12,1,0.05) and (0.328, 1, 0.05) in Figs. 2(a) and 2(b),
respectively. In the case of the low hopping amplitude zt/U =
0.12 in Fig. 2(a), SS phases exist above ρ = 1/2 and around
ρ = 3/2. When particles are removed from the CB solid at
ρ = 1/2, the possible SS is unstable against phase separation,
as known by the strong-coupling argument.21 In contrast, for
the higher hopping amplitude zt/U = 0.328 in Fig. 2(b), we
find that the SS phase is present even below half-filling. As
shown in the inset in Fig. 1(a), the SS phase covers the
tip of the first CB lobe. This result suggests that the SS
can also be stabilized at half-filling. In Sec. V, we present
direct evidence for the SS at half-filling by obtaining results
for the canonical ensemble and excluding possible phase
separations. In addition to the SS around ρ = 1/2, the other
SS phase around ρ = 3/2 more clearly covers the tip of the
corresponding insulating CB lobe. Therefore, the SS seems
to be stabilized even at ρ = 3/2. The present 2D ground-state
phase diagram is in agreement with that in the 3D system32 and
the results of the Gutzwiller mean-field approximation.16,34,41

However, we have found that the SS regions clearly become
smaller as the dimensionality decreases.

B. Ground-state phase diagram at zV/U = 1.5

For strong nearest-neighbor repulsions, all insulating states
are CB solid states and, thus, the ground-state phase diagram is
quite different from that for weak nearest-neighbor repulsions.
In Fig. 3(a), we present the ground-state phase diagram at
zV/U = 1.5 in the grand-canonical ensemble. In contrast
to the phase diagram at zV/U = 1, all three insulating
Mott lobes are CB lobes. The schematic configurations at
ρ = 3/2, 1, and 1/2 are shown in Figs. 3(b), 3(c), and 3(d),
respectively. Compared with the case of zV/U = 1, the
insulating lobes extend up to higher hopping amplitudes.
This result is reasonable, because the strong nearest-neighbor
repulsion favors the CB solid state. The noteworthy point here

FIG. 3. (Color online) (a) Ground-state phase diagram in the
zt/U -μ/U plane at zV/U = 1.5. (b-d) Schematic configurations
of the insulators at (b) ρ = 3/2, (c) ρ = 1, and (d) ρ = 1/2.
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FIG. 4. (Color online) Particle density ρ, superfluid stiffness ρs , and structure factor S(π,π ) as functions of the chemical potential μ/U at
(a) (zt/U,zV/U,T /t) = (0.2,1.5,0.05) and (b) (zt/U,zV/U,T /t) = (0.6,1.5,0.05).

is that a connected SS phase exists, which surrounds all the
CB lobes. The SS phase occupies a broad region up to high
hopping amplitudes, and the phase boundary behaves linearly.
The presence of such a SS region is also in agreement with
the results of the Gutzwiller approximation,34 although the SS
region is clearly smaller.

To verify the results, we plot the measured quantities as
functions of μ/U at (zt/U,zV/U,T /t) = (0.2,1.5,0.05) and
(0.6, 1.5, 0.05) in Figs. 4(a) and 4(b), respectively. In Fig. 4(a),
there are three plateaus, at ρ = 1/2,1, and 3/2, where S(π,π )
takes a finite value. These plateaus correspond to the CB
phases. Between these regions, S(π,π ) and ρs take finite values
simultaneously, indicating the SS phase. In contrast, just below
ρ = 1/2, there is no SS phase and we again observed a clear
discontinuity in the particle density. Just below ρ = 1 and
3/2, the slopes of the particle density are very steep. However,
compared with those below ρ = 1/2, possible discontinuities
are less clear. Thus, the CB-SS transitions might be weak
first-order or second-order at this parameter. When the hopping
amplitude decreases, we confirmed that the slopes become
steeper, suggesting the presence of a first-order transition
predicted by the strong-coupling argument.21 For higher
hopping amplitudes, all the insulating plateaus disappear, as
shown in Fig. 4(b). In contrast, the SS phases are connected
and occupy the entire regions for large chemical potentials.

Finally, we show a characteristic behavior of the correlation
functions and the momentum distribution of the SS state.
In Fig. 5(a), we plot the off-diagonal SF correlation function
CSF(r ij ) and diagonal (charge density wave) correlation
function CCDW(r ij ) as functions of the x coordinate at a
finite temperature. The off-diagonal and diagonal correlation
functions are defined by CSF(r ij ) = 〈b†i bj 〉 and CCDW(r ij ) =
〈ninj 〉 − 〈ni〉2, respectively. As shown in the lower panel in
Fig. 5(a), the diagonal correlation function CCDW(r ij ) shows
a true long-range order. In particular, it is strongly oscillating,
which indicates a strong CB order due to the large nearest-
neighbor repulsion. In contrast, in the 2D system at finite

temperatures, the off-diagonal correlation function CSF(r ij )
shows asymptotic power-law decay, which is characteristic of
the quasi-long-range order. However, the behavior is different
from the conventional behavior: we can observe strongly
oscillating power-law decay. This behavior is clearly due to
the strong CB background potential for the SF component.42

In Fig. 5(b), we show the resulting momentum distribution
n(k), which can be obtained from the Fourier transformation
by n(k) = 1/N

∑
i,j CSF(r ij )eik·r ij . It has a bimodal structure,

with two peaks at k = (0,0) and (π,π ), indicating superfluidity
and CB solidity, respectively.

IV. QUANTUM PHASE TRANSITIONS

In this section, we study quantum phase transitions and
explain how the phase boundaries are determined. There are
three different types of quantum phase transitions in terms of
symmetry breaking: the transition between two phases with
different broken symmetries (CB-SF transition), transitions
that involve gauge symmetry (CB-SS and MI-SF transitions),
and the transition where the translational symmetry is broken
(SS-SF transition). Since these quantum phase transitions have
different properties related to the broken symmetries, different
treatments are required to determine the phase boundaries. In
the following three subsections, we explain the treatment for
each phase boundary.

A. Solid-superfluid transition

We begin with the CB-SF transition, which appears at
the lower boundary of the first CB lobe. As shown in
Figs. 2(a) and 4(a) as well as in previous quantum Monte
Carlo works,21,30 there are finite jumps in the particle density
at the boundary, indicating a first-order transition. This result
can be understood from an argument based on the broken
symmetries in each phase and the standard Landau-Ginzburg-
Wilson paradigm. In the CB phase, the broken symmetry
is the Z2 symmetry associated with the broken translational
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FIG. 5. (Color online) (a) Off-diagonal correlation function
CSF(r ij ) (upper panel) and correlation function CCDW(r ij ) (lower
panel) as functions of the x coordinate rx . CSF(CDW)(rx) is an
abbreviation for CSF(CDW)(rx,0). The off-diagonal correlation function
is plotted on a log-log scale. The lattice spacing is set to unity.
The parameter set is (zt/U,zV/U,μ/U,T /t) = (0.52,1.5,3,0.2).
(b) Momentum distribution near the first Brillouin zone at L = 120.
Model parameters are the same as in (a).

symmetry. On the other hand, in the SF phase, the U (1) gauge
symmetry is broken at zero temperature. (Note that at finite
temperatures in the 2D system, the SF phase shows not the
long-range order but the quasi-long-range order.) According to
the Landau-Ginzburg-Wilson paradigm, a transition between
two phases with different broken symmetries results in a
first-order transition or an intermediate region where both
symmetries are broken simultaneously. Since an intermediate
SS phase is absent at the boundary, the direct CB-SF transition
should be first-order. Thus, we simply determined the phase
boundary from the position of the finite jump in the particle
density.

B. Solid-supersolid and Mott insulator–superfluid transitions

At the CB-SS boundaries and MI-SF boundaries, the
quantum phase transitions are insulator-SF transitions. For the
value of the dynamical critical exponent zc, two possibilities
are expected: a generic transition with zc = 2 and a special
transition with zc = 1.43 Because of this difference, we have
to determine the transition points in different manners.

Generic transitions are driven by adding/removing a particle
to/from insulating phases. In this case, the phase boundary can
be determined by the finite-size scaling analysis of ρs for

FIG. 6. (Color online) Extraction of the energy gap �(+) from
the zero-momentum Green function G( p = 0,τ ) in the first CB lobe.
Filled circles denote the results obtained by our simulation, and the
line represents the exponential fit. Inset: Extrapolation of the obtained
� [(red) squares] to the thermodynamic limit.

quantum critical points with zc = 2.44 However, it can also
be determined more simply from the zero-momentum Green
function G( p = 0,τ ).45,46 In the worm algorithm, the zero-
momentum Green function can be obtained by measuring the
Matsubara Green function G(r i ,τ ) = 〈Tτbi(τ )b†0(0)〉. Here, Tτ

indicates the time-ordering operator on the imaginary time
τ , and bi(τ ) is defined by bi(τ ) = eτHbie

−τH . From the
asymptotic exponential decay G( p = 0,τ ) ∼ e−�+τ (τ � 0)
[e�−τ (τ � 0)], we can estimate the energy gap �+ (�−)
required to create single-particle (hole) excitation with the
zero momentum p = 0 in the insulating phases. In the grand-
canonical ensemble, the energy gap corresponds to the distance
between the observed point and the phase boundary in the
μ direction. Thus, we determined the phase boundary from
the energy gap. Figure 6 shows an example of estimating the
energy gap �+ in the first CB lobe.

In contrast to the generic transition, the special transition
is driven by the delocalization of quantum fluctuations. This
transition occurs at the tip of insulating lobes with fixed μ/U .
The tip corresponds to a multicritical point where zc = 1
due to particle-hole symmetry.43 Therefore, to determine the
critical point close to the tip in the inset in Fig. 1, we
performed a finite-size scaling analysis of ρs for quantum
phase transitions with zc = 1. In this analysis, the scaling
form is given by ρsL

d+zc−2 = f (δL1/ν,β/Lzc ), where ν is
the critical exponent of the correlation length, δ denotes the
distance from the critical point as δ = zt/U − (zt/U )c, and f

is a scaling function. In the present case of d = 2 and zc = 1,
the value of d + zc − 2 equals 1. Therefore, the curves of ρsL

for different system sizes with fixed β/L should cross at the
critical point and we can simply estimate it from the crossing
point. Figure 7(a) shows one example of this estimation. In this
figure, we estimated the critical point as (zt/U )c = 0.32888(8)
for μ/U = 0.331, which is very close to the tip.

To clarify the universality class of the special transition, we
next performed the finite-size scaling analysis of ρsL. In the
case of zc = 1, the effective dimension becomes d + zc = 3.
Since the symmetry broken in this transition is related to
the global U(1) symmetry, this quantum phase transition is
expected to belong to the 3D XYuniversality class. Using the
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FIG. 7. (Color online) (a) Plots of ρsL as a function of hopping
amplitude zt/U near the tip of the first CB lobe. The dashed vertical
line is placed at the quantum critical point (zt/U )c = 0.32888(8),
which is estimated from the crossing point of the curves. (b) Scaling
plots of ρsL.

critical exponent ν = 0.67155 of the 3D XY universality class47

and the dynamical critical exponent zc = 1, we plot ρsL as a
function of δL1/ν in Fig. 7(b). In this figure, we successfully
observe the data collapse for large systems, supporting the
validity of the present analysis.

C. Supersolid-superfluid transition

Finally, we explain the SS-SF boundaries. The SS-SF transi-
tion is the transition related to the Z2 symmetry breaking of the
translational symmetry. For this quantum phase transition, the
critical point can be determined from the Binder ratio g defined
by g = 1/2[3 − 〈m4〉/〈m2〉2]. Here, m indicates the order
parameter defined by m = 1/N

∑
i nie

ik·r i with k = (π,π ).
The scaling form for g is given by g = f (δL1/ν,β/Lzc ),
where δ = zt/U − (zt/U )c or μ/U − (μ/U )c. Therefore, the
curves of g for different system sizes should cross at the
critical point. As a working hypothesis, we assume that the
dynamical exponent zc equals 1. In Fig. 8(a), we show the
μ/U dependence of g at zt/U = 0.24 and βt = 0.5L. As
shown in the figure, the curves cross at the same point. From
the crossing point, we estimated the quantum critical point as
(μ/U )c = 0.08455(5) for (zt/U,zV/U ) = (0.24,1).

To check the consistency of our analysis and clarify
the universality class, we analyzed the scaling behaviors
of S(π,π ) as well as g. The scaling form for S(π,π ) is
given by S(π,π )L2βc/ν = f (δL1/ν,β/Lzc ), where βc is the
critical exponent of the order parameter. Since the effective
dimension is d + zc = 2 + 1 = 3 and the broken symmetry
is Z2 symmetry, the quantum phase transition is expected
to belong to the 3D Ising universality class. Thus, using the
critical exponents ν = 0.63002 and 2βc/ν = 1.03627 of the
3D Ising universality class,48 we plot g and S(π,π )L2βc/ν as
functions of δL1/ν with fixed β/L in Figs. 8(b) and 8(c),
respectively. As shown in these figures, the data collapse for
large systems agrees with the expected scaling behavior.

Separate determination of the SS-SF boundaries was carried
out for low hopping amplitudes zt/U � 0.08 at zV/U = 1,
because we observed clear finite jumps in the particle density.
Figure 9 shows a jump at the SS-SF boundary, indicating a
first-order transition. Similar discontinuities were also found
in the previous quantum Monte Carlo study.21 In this region,
we determined the boundary from the position of the jump. The

FIG. 8. (Color online) (a) Binder ratio g as a function of the
chemical potential μ/U . The SS-SF boundary can be estimated from
the crossing point of the curves for different system sizes. (b, c)
Finite-size scaling plots of (b) g and (c) S(π,π )L2βc/ν .

discontinuities of the SS-SF boundaries seem to be connected
to those of the CB-MI boundaries in the classical limit zt/U =
0, where the particle density changes discontinuously from

FIG. 9. (Color online) Particle density ρ, superfluid stiffness ρs ,
and structure factor S(π,π ) as functions of the chemical potential
μ/U for a low hopping amplitude zt/U = 0.04. Finite jumps in the
physical quantities can be observed at the SS-SF boundary. Dashed
vertical lines are used to separate different phases. In the classical
limit zt/U = 0, it is known that the particle density ρ changes
discontinuously from 1/2 to 1 at (μ/U )c = 1.
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1/2 to 1, 1 to 3/2, . . . at the critical points (μ/U )c = 1,2, . . . ,

respectively. In fact, when the hopping amplitude decreases,
the SS-SF transition points approach the classical critical
points, as shown in Fig. 1(a), and we found that the finite
jump becomes larger.

V. COMMENSURATE SUPERSOLID PHASE

Most SSs are realized by adding/removing particles to/from
a commensurate insulating solid. When doped defects delocal-
ize against phase separations and give rise to superfluidity in
a solid, an SS state appears. In contrast to such an SS, the
situation of an SS at commensurate filling factors is different,
because no dopants are present. In this section, by obtaining
simulation results in the canonical ensemble, we investigate
the SS at the exact commensurate filling factor ρ = 1/2.
To obtain results in the canonical ensemble by the grand-
canonical method, we performed the following procedures.
We first estimated the chemical potential that corresponds to
the desired particle density with a high accuracy. Then we
performed simulations at the obtained chemical potential and
used only samples whose particle density is exactly equal
to the desired value. Using this method, in Sec. V A, we
obtain direct evidence for an SS at half-filling, excluding
the possibility of phase separations. In Sec. V B, we present
the ground-state phase diagram at half-filling. The obtained
phase diagram shows that the SS phase becomes clearer as the
nearest-neighbor repulsion zV/U increases, as suggested in
the previous work based on the Gutzwiller approximation.33

A. Supersolid at half-filling

In this subsection, we explicitly show the presence of an SS
at half-filling. In Fig. 10, we plot ρs and S(π,π ) as functions
of the temperature at half-filling. At low temperatures, both
ρs and S(π,π ) have finite values, indicating an SS state.
To exclude the possibility of phase separations, we show
a snapshot of the typical configuration in Fig. 11. In our
snapshot, we do not find any macroscopic phase separations.
Instead, we can see that the CB solid has microscopic defects
(interstitials or vacancies), suggesting that the superfluidity is

FIG. 10. (Color online) Finite-temperature dependence of the
superfluid stiffness ρs and the structure factor S(π,π ) exactly at
half-filling.

FIG. 11. (Color online) Snapshot of an SS at half-filling, showing
a typical configuration in a real space at some particular imagi-
nary time. The parameters are chosen at (L,zt/U,zV/U,T /U ) =
(32,0.33,1,0.008). Each site is denoted as a square. Open, blue (dark
gray), and red (light gray) squares indicate empty, singly occupied,
and doubly occupied sites, respectively.

caused by the delocalization of defects in the same way as in
the ordinary SSs. However, the origin of defects seems to be
different from that in ordinary SS, because it is realized without
any doping of particles or holes. Since the CB-SS transition
at half-filling corresponds to the special transition at the tip of
the CB lobe in the grand-canonical phase diagram, it is driven
not by adding or subtracting a particle but by delocalizing
quantum fluctuations. Therefore, it is reasonable to interpret
the origin of defects as unbound interstitial-vacancy pairs due
to the delocalizing quantum fluctuations.5

The melting of the SS occurs through two successive finite-
temperature transitions, namely, SF and CB transitions. Each
critical temperature can be determined as follows. We first
consider the SF transition. In Fig. 10, we can observe the strong
system size dependence of ρs above the SF region, which
is characteristic of the Kosterlitz-Thouless transition.49,50 To
determine the critical temperature of the Kosterlitz-Thouless
transition, we performed a χ2 fit to the critical form for
the mean-square winding number.51,52 Specifically, the mean-
square winding number follows the scaling form (π/4)〈W 2〉 =
1 + [2 ln(L/L0)]−1 at the critical point. Here, L0 is the only
free parameter. For each temperature, we performed a χ2

fit to the critical form and measured χ2. Finally, we obtain
the critical temperature as the temperature that minimizes
the value of χ2. The result is shown in Fig. 12(a). From
this analysis, we estimated the critical temperature of the
Kosterlitz-Thouless transition as (T/U )c = 0.01700(25).

Next, we determined the critical temperature of the CB
transition from the structure factor. For finite-temperature
phase transitions, the scaling form is given by S(π,π )L2βc/ν =
f (δL1/ν), where δ = (T/U ) − (T/U )c. Since the transition is
related to Z2 symmetry breaking, we expect that the critical
exponents 2βc/ν and ν will equal 1/4 and 1, respectively,
for the 2D Ising universality class. When this is the case, the
curves of S(π,π )L2βc/ν for different system sizes should cross
at the critical temperature. Figure 12(b) shows the result. In
the inset, to check the consistency of the critical exponents,
we present scaling plots that show excellent data collapse.
Therefore, we obtained the critical temperature of the CB
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FIG. 12. (Color online) Determination of the two critical temper-
atures in the supersolid state. (a) Values of χ 2 [filled (blue) squares]
for each temperature. At the critical temperature, the value of χ2

is expected to be minimized. (b) S(π,π )L2βc/ν as a function of
temperature. The intersection of the curves corresponds to the critical
temperature of the checkerboard-solid transition. Inset: Data collapse
of the scaling plots.

transition as (T/U )c = 0.066(1) from the intersection of the
curves.

B. Ground-state phase diagram at half-filling

In the previous quantum Monte Carlo study,21 an SS phase
was not found at half-filling for zt/U = 0.2. According to the
results obtained from the Gutzwiller approximation, this might
be because the hopping amplitude was not sufficiently high for
an SS to be clearly found at half-filling.33 In this subsection, to
confirm this hypothesis, we clarify the parameter dependence
of the SS region at half-filling.

In Fig. 13, we present the ground-state phase diagram at
half-filling in the zt/U -zV/U plane. The phase boundary is
determined from the position of an intersection of g or ρsL

for different system sizes with the assumption that zc = 1.
Figure 14 shows the result at zV/U = 1. From this figure,
we obtained the quantum critical points for the CB-SS and
SS-SF transition as (zt/U )c = 0.32888(8) and 0.33332(8),
respectively. Note that the critical point for the CB-SS

FIG. 13. (Color online) Ground-state phase diagram at half-
filling. Circles and squares denote critical points corresponding to
the onset of checkerboard order and superfluidity, respectively. Lines
are guides for the eye. The shaded (green) region between the two
lines represents the supersolid (SS) phase.

FIG. 14. (Color online) Scaled superfluid stiffness ρsL and
Binder ratio g as functions of hopping amplitude zt/U . Quantum
critical points of the CB-SS and SS-SF transition can be estimated
from the intersections of the curves of ρsL and g, respectively. Dashed
vertical lines are placed at the estimated quantum critical points for
the CB-SS transition (left line) and the SS-SF transition (right line).

transition at ρ = 1/2 agrees with that obtained from the grand-
canonical ensemble (Sec. IV B). In our phase diagram, the SS
region is much smaller than that obtained by the Gutzwiller
approximation.33 However, the qualitative behaviors of the
phase boundaries agree with the Gutzwiller results. As the
nearest-neighbor repulsion zV/U increases, the CB phase ex-
pands up to higher hopping amplitudes zt/U . The SS phase
also extends for large nearest-neighbor repulsions and hopping
amplitudes. In contrast, for low hopping amplitudes including
zt/U = 0.2, the two phase boundaries are very close to each
other. Thus, we conclude that the reason the SS phase was
not found at half-filling in the previous quantum Monte Carlo
result21 is that the hopping amplitude was too low for the
SS phase to be observed clearly, as the author of Ref. 33
predicted.

VI. SUMMARY

We have investigated the ground-state phase diagrams of
the 2D extended Bose-Hubbard model by performing unbiased
quantum Monte Carlo simulations. In addition to the known
SS phase above half-filling, we have found an SS phase
below and at half-filling, in agreement with the previous result
for 3D systems26,30,32 and the Gutzwiller mean-field result.33

However, we have also found that the SS regions clearly
become smaller as the dimensionality decreases. In addition
to these results, we have confirmed that in the case of a strong
nearest-neighbor repulsion, the ground-state phase diagram
becomes qualitatively different from that in the case of a weak
nearest-neighbor repulsion. In particular, the SS region exists
in a broad region up to high hopping amplitudes. As discussed
in Ref. 34, this might lead to the experimental realization of an
SS in the optical lattice systems. In such an SS region, we have
observed the bimodal structure in the momentum distribution,
which can be obtained by time-of-flight imaging. Since the
bimodal structure exhibits the signatures of superfluidity and
solidity simultaneously, we expect that this will provide clear
evidence of the SS state.
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