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Quantum phases of hardcore bosons with long-range interactions on a square lattice
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We study the ground-state phase diagrams of hardcore bosons with long-range interactions on a square lattice
using the linear spin-wave theory and a cluster mean-field method. Specifically, we consider the two types of
long-range interaction: One consists only of the nearest- and next-nearest-neighbor interactions, and the other
is the dipole-dipole interaction that decays with the interparticle distance r as ∼r−3. It is known from previous
analyses by quantum Monte Carlo methods that a checkerboard supersolid (CSS) is absent in the ground-state
phase diagram of the former case while it is present in the latter. In the former, we find that quantum fluctuations
around mean-field solutions are enhanced by the direct competition between the checkerboard and striped solid
orders and that they destabilize the CSS phase. On the other hand, the emergence of the CSS phase in the latter
case can be attributed to the absence of such a competition with other solid orders. We also show that the cluster
mean-field method allows for the determination of phase boundaries in a precise quantitative manner when
scaling with respect to the cluster size is taken into account. It is found that the phase transition between the
superfluid and the solid (or CSS) is of the first order in the vicinity of the particle-hole symmetric line.
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I. INTRODUCTION

Can a solid exhibit superfluidity in lattice systems? This
question was first investigated theoretically by Matsuda and
Tsuneto1,2 in the context of the quantum lattice-gas model
for 4He, which assumes that atoms move only on fixed
lattice points even in the liquid phase.3 Using the lattice
representation, they discussed the possibility of supersolidity,
which is characterized by the coexistence of solid (diagonal)
and superfluid (off-diagonal) long-range orders, in bulk and
thin film of 4He. In the lattice system, the continuous
translational invariance of the system is broken by the presence
of the background discrete structure, and the “solid” means a
state in which a discrete translational invariance is broken
spontaneously. Recently, this issue has attracted renewed
interest in connection with ultracold Bose gases in optical
lattices. The creation of gases with strong dipole-dipole
interactions4–9 has provided an ingredient essential for the
emergence of supersolid phases, namely long-range interac-
tions. Moreover, the precise controllability of optical-lattice
systems has inspired theoretical explorations of supersolid
phases in various types of lattice structure, such as chain,10,11

square,12–19 triangular,20–29 honeycomb,30,31 kagome,32 and
cubic16,33–35 lattices. We also note that the formation of
checkerboard density-wave order has been experimentally
observed in Bose-Einstein condensates coupled with an optical
cavity.36

For understanding lattice supersolids, it is important to
address the following questions: in what situations the co-
existent state can emerge and why it can be stable in such
situations. Extensive studies over the past few decades have
provided answers to these questions. For example, previous
researches demonstrated that no supersolid phases can exist in
the ground-state phase diagram of the hardcore Bose-Hubbard
model with the nearest-neighbor (NN) interaction for bipartite
lattices such as square37 and honeycomb30,31 lattices. In these
cases, uniform supersolid states are unstable towards the

formation of domain walls,14,38 and the system undergoes
phase separation into superfluid and solid phases. In order for
supersolid phases to be present, one has to modify the model
by, e.g., introducing dipole-dipole interactions18,39 or treating
softcore bosons.13,14 In contrast, the triangular-lattice system
of hardcore bosons with only the NN interaction has stable
supersolid phases for the fillings 1/3 < ρ < 2/3.20,27–29,40 As
for the case of the kagome lattice, although the mean-field
(MF) analysis predicts the existence of supersolid states,40 they
are destabilized by the effects of strong quantum fluctuations.32

In this paper, focusing on the supersolid phase with
checkerboard solid order, we analyze ground-state properties
of hardcore bosons with long-range interactions on a square
lattice by means of the linear spin-wave (LSW) theory and
a cluster mean-field (CMF) method. In this system, the
range of the interactions makes a qualitative difference in
the emergence of checkerboard supersolid (CSS) states. The
previous quantum Monte Carlo (QMC) calculations37 have
shown that no CSS phase is present between the superfluid
(SF) and checkerboard solid (CS) phases in the system with
only the NN interaction V1 and the next-nearest-neighbor
(NNN) interaction V2. On the other hand, it is known that
the infinite-range dipole-dipole interaction, which decays as
the inverse cube of the distance, can stabilize the CSS states.18

We will clarify the reasons why the dipole-dipole interaction
can stabilize the CSS states unlike the case of only the NN and
NNN interactions.

The MF ground-state (classical) properties of the hardcore
Bose-Hubbard models with dipole-dipole interaction and with
only the NN and NNN interactions have already been discussed
separately in previous works.19,41–43 We first review those
results from the standpoint of comparing the two types of
interactions. When assuming that the system is in the phases
with checkerboard (two-sublattice) order, the MF energy of the
dipolar model can be naturally written in the same form as that
of the model with effective NN and NNN interactions, V eff

1 and
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V eff
2 . We find that the value of V eff

2 /V eff
1 is very large, and it

leads to a large region of CSS phase in the ground-state phase
diagram at the MF level. Second, from the LSW analysis, we
show that quantum fluctuations around the MF solutions are
not so strong compared to the case of only the NN and NNN
interactions, which is attributed to the absence of the direct
competition between the checkerboard and other solid orders.
These two factors lead to the emergence of the stable CSS
state in the dipolar system unlike the case of the shorter-range
interactions.

Moreover, including the effects of quantum fluctuations,
we derive the ground-state phase diagrams. Although some
of the results have already been known from previous QMC
works, we reconsider the issue in detail in terms of another
numerical approach based on a large-size CMF method.29

From a comparison with the QMC result18 for the model
with dipole-dipole interaction, it is shown that the CMF
method combined with cluster-size scaling can locate the phase
boundaries quantitatively. We also derive the phase diagram
of the model with only the NN and NNN interactions and
confirm that the region of stable CSS phase almost completely
disappears due to the strong quantum fluctuations. Moreover,
we find the first-order phase transition between the SF and
the CS (or the CSS) in the close vicinity of the particle-hole
symmetry line for the both models. It is worth stressing that
our CMF procedure is free from the minus-sign problem even
when applying to frustrated systems. Moreover, it is useful
to study metastability phenomena such as hysteresis,29 since
one can get all stationary points of the free energy including
metastable and saddle-point solutions.

The remainder of the paper is organized as follows. In
Sec. II, we introduce our models describing hardcore bosons
with two types of long-range interactions in a square lattice. In
Sec. III, we show the ground-state phase diagrams of the two
models within the mean-field theory. In Sec. IV, we perform
the LSW analyses to discuss the strength of quantum fluctu-
ations around the MF solutions. In Sec. V, applying a CMF
method and the cluster-size scaling, we obtain the phase dia-
grams including the effects of the quantum fluctuations. More-
over, we summarize the reasons why the dipole-dipole interac-
tion stabilizes the CSS states, based on the results obtained in
Secs. III–V. The conclusion is given in Sec. VI.

II. HARDCORE BOSE-HUBBARD MODELS

We consider interacting hardcore bosons on a square lattice
given by the following Hamiltonian:

Ĥ = −J
∑
〈j,l〉

(â†
j âl + H.c.) + 1

2

∑
j,l

Vjl n̂j n̂l − μ
∑

j

n̂j , (1)

where â
†
j and n̂j = â

†
j âj are the creation and number operators

of the hardcore bosons at site j , J denotes the hopping
amplitude between NN pairs, and μ the chemical potential.
The hardcore boson limit means the situation where two or
more bosons are not allowed to occupy the same site due to the
strong on-site interaction U → ∞. We assume the existence
of a long-range interaction Vij between the hardcore bosons
and consider two different forms of Vjl such that we study the

FIG. 1. Schematic pictures of the sublattice structure of the (I)
checkerboard and (II) stripe patterns. The circles indicate the sites of
the square lattice and the lattice sites of the same color belong to the
same sublattice.

effect of long-range interactions on the stability of supersolid
phases through the comparison of the two models.

The first one is given by

Vjl =

⎧⎪⎨
⎪⎩

V1 (|rj − rl| = d),

V2 (|rj − rl| = √
2d),

0 (otherwise) [V1−V2model],

(2)

where d is the lattice spacing and rj = (jxd,jyd) with integers
jx and jy is a lattice vector at site j . The parameters V1 � 0 and
V2 � 0 represent the strength of the NN and NNN interactions,
respectively. The NN interaction V1 tends to induce the
checkerboard density-wave order depicted in Fig. 1(I), while
the strong NNN interaction V2 favors the stripe pattern in
Fig. 1(II).37,43 Thus, the Hamiltonian in Eq. (1) with Eq. (2),
which we refer to as the “V1-V2 model,” is a minimal model for
studying the competition among two different solid orders and
superfluidity induced by the hopping J .37,41–45 We will focus
on the regime of checkerboard ordering, V2/V1 � 1/2.42–44

The second one is the isotropic dipole-dipole interaction
that is more realistic from an experimental point of view. In
experiments of ultracold gases, one of the most promising
way to prepare long-range interacting systems is the use of the
so-cold “dipolar” atoms, such as chromium,4 dysprosium,5

and erbium,6 or molecules, such as KRb7,8 and LiCs.9 These
atoms and molecules have a large (magnetic or electric)
dipole moment, which leads to strong long-range forces among
the dipolar particles. We assume that the dipole moments are
fully polarized along the direction perpendicular to the lattice
plane. In this case, the interaction between the dipoles works
isotropically and its long-range part can be well approximated
by

Vjl =
{

V d3/|rj − rl|3 (j �= l)

0 (j = l)
[Vdipmodel]. (3)

We refer to the model given by the Hamiltonian in Eq. (1)
with Eq. (3) as the “Vdip model,” hereafter. The dipole-dipole
interaction falls off as the inverse cube of the distance as
{V,0.354V,0.125V,0.089V, . . .} (for the NN, NNN, third,
fourth neighbors). Therefore, it appears that most of the
essential physics can be captured with just the first two terms,
namely within the V1-V2 model. In fact, as will be shown in
the next section, the MF phase diagrams of the two models are
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very similar; there are regions of the standard SF phase, solid
phases, and supersolid phases, including the CSS phase.

However, previous numerical analyses based on the QMC
method demonstrated that the correct ground-state phase
diagrams, which include quantum fluctuations, have a crucial
difference between the finite-range V1-V2 model and the
infinite-range Vdip model. For the V1-V2 model, the authors
of Ref. 37 concluded that the CSS phase predicted by the
MF theory is completely destabilized by strong quantum
fluctuations and does not appear in the QMC calculations
for any value of V2/V1, although they checked it only
for V1 = 3J . In contrast, as for the Vdip model, the main
features of the MF phase diagram can survive,18 including the
existence of the CSS phase. This indicates that the long-range
part of the dipole-dipole interactions plays a crucial role in
stabilizing the CSS phase. In the following sections, we shall
analyze the ground states of the two models and discuss the
role of the long-range interactions in the emergence of the CSS
state in order to clarify the reasons why the two models have
the qualitative difference.

The instability of supersolid phases against phase separa-
tion has often been discussed from a perturbative point of
view assuming that J/Vjl is small; the total energy gains from
the lowest-order hopping process of doped bosons (or holes)
and from the surface energy are compared on classical solid
states with/without a domain wall.14,20,35,38 However, in the
Vdip model, the CSS states can appear even for relatively large
values of J/Vjl , and the structure called the devil’s staircase
with many different types of solid states emerges in the region
of small values of J/Vjl .18 Hence, we will present a more
careful discussion from a different angle by using the LSW
and CMF methods.

III. CLASSICAL GROUND STATES

To begin with, we show the ground-state properties within
the MF theory. From the equivalence of the hardcore-boson and
spin-1/2 operators,3 Eq. (1) can be mapped onto the spin-1/2
XXZ model with long-range Ising-type interactions:

Ĥspin = − 2J
∑
〈j,l〉

(
Ŝx

j Ŝx
l + Ŝ

y

j Ŝ
y

l

)+ 1

2

∑
j,l

Vjl Ŝ
z
j Ŝ

z
l − h

∑
j

Ŝz
j ,

(4)

where Ŝj = (Ŝx
j ,Ŝ

y

j ,Ŝz
j ) is the pseudospin operator which

satisfies the commutation relations

[
Ŝ

μ

j ,Ŝν
l

] = iεμνλŜ
λ
j δjl . (5)

In the pseudospin language, the occupied and unoccupied
states of bosons correspond to the spin-up and spin-down
states, respectively. Thus the filling factor, which is the average
density per site, of hardcore bosons can be calculated through
the relation ρ ≡ ∑

j 〈n̂j 〉/M = 1/2 + ∑
j 〈Ŝz

j 〉/M . Here, M

is the number of lattice sites. The pseudospin raising and
lowering operators Ŝ±

j = Ŝx
j + iŜ

y

j play the role of the creation

and annihilation of the hardcore bosons; â
†
j = Ŝ+

j ,âj = Ŝ−
j .

The effective magnetic field acting on the pseudospins is given

by h = μ − zV̄ /2 with

V̄ ≡ 1

z

∑
j

V0j =
{

V1 + V2 (for the V1-V2 model),

2.258V (for the Vdip model),
(6)

where z = 4 is the coordination number of the square lattice.
As can be obviously seen from the definition, the zero
magnetic field corresponds to the particle-hole symmetric
point (μ = zV̄ /2) of the hardcore-boson model. Moreover,
the density ρj and the condensate wave function �j of
bosons are expressed by the longitudinal components 〈Ŝz

j 〉
and the transverse components 〈Ŝ−

j 〉 as ρj = 〈Ŝz
j 〉 + 1/2 and

�j = 〈Ŝ−
j 〉.1,2 From these correspondences, we can use the

calculation methods which have been developed in the field of
quantum spins for studying hardcore-boson systems.

At zero temperature, replacing the local pseudospin oper-
ators in Eq. (4) with the classical vectors of length S = 1/2,

Ŝj → Scl
j = S(cos ϕj sin θj , sin ϕj sin θj , cos θj ), (7)

we obtain the MF (classical) energy as a function of the
orientation of the local pseudospins {θj ,ϕj }:

E0 = −S2

2

∑
j,l

[2Jjl sin θj sin θl cos(ϕj − ϕl)

−Vjl cos θj cos θl] − hS
∑

j

cos θj , (8)

where

Jjl =
{

J (|rj − rl| = d),

0 (otherwise).
(9)

Minimizing the MF energy with respect to {θj ,ϕj }, we
derive the classical pseudospin configurations in the usual
manner,41–43 and translate the results into the hardcore-boson
language. Without loss of generality, we can take ϕj = 0,
which means that the canted spins are assumed to lie in the
xz plane. The procedure described here gives the same results
as those obtained by the standard decoupling technique for
the intersite spin-exchange interaction terms (i.e., the Weiss
molecular-field theory) at T = 0.

A. The MF results for the V1-V2 model

In this subsection, let us briefly review the MF results for
the V1-V2 model.41–43 We mainly focus on the phases with
the two-sublattice structure described in Fig. 1(I). Within this
checkerboard structure, we can describe the CS and CSS
states in addition to the uniform SF state. The CS state,
which is an insulating state appearing at half filling, has
the checkerboard density-wave order characterized by ρQ ≡∑

j 〈n̂j 〉 exp(iQ · rj )/M with Q = (π/d,π/d), while the SF
state has the off-diagonal long-range order characterized
by � ≡ ∑

j 〈âj 〉/M . The CSS state has both of the two
(diagonal and off-diagonal) orders. In addition, completely
empty (ρ = 0) and fully occupied (ρ = 1) states also appear.
These trivial incompressible states can be regarded as a kind
of Mott insulator (MI) states.
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FIG. 2. Ground-state MF phase diagrams of the V1-V2 model in the (J,h) plane for (a) V2/V1 = 0.2 (after Pich et al., Ref. 43) and (b)
V2/V1 = 0.4. Second- and first-order phase transitions are indicated by the thin and thick solid lines, respectively. The dashed vertical lines
mark the location of J/Jc = 0.85. The axes are scaled in two different ways: by V1 for both axes and by Jc and h0, respectively.

In the classical limit, these states can be expressed in terms
of pseudospin angles as follows:

cos θA = − cos θB = 1 (CS),

θA �= θB and sin θA, sin θB �= 0 (CSS),
(10)

sin θA = sin θB �= 0 (SF),

cos θA = cos θB = 1 or − 1 (MI),

where θA and θB are the canting angles of the pseudospins on
sublattices A and B [see Fig. 1(I)]. The MF energy in Eq. (8)
per site can be rewritten as a function of θA and θB:

E
(ch)
0

/
M = −4JS2 sin θA sin θB + 2V1S

2 cos θA cos θB

+V2S
2(cos2 θA + cos2 θB)

−hS(cos θA + cos θB)/2, (11)

and the filling factor is given by ρ = 1/2 + S(cos θA +
cos θB)/2. The ground-state phases are determined so as to
minimize the MF energy E

(ch)
0 with respect to θA and θB.

Figures 2(a) and 2(b) show the phase diagrams in the (J/V1,
h/V1) plane for two different values of V2/V1. The value of J

at the tip of the CS phase, Jc, is given by (V1 − V2)/2 within
the MF theory. The phase boundaries between CS and CSS,
between CSS and SF, and between SF and MI are given by
h = ±hc1, ±hc2, and ±hc3, where

hc1 = 4S
√

(V1 − V2 + 2J )(V1 − V2 − 2J ), (12a)

hc2 = 4S(V1 + V2 + 2J )

√
V1 − V2 − 2J

V1 − V2 + 2J
, (12b)

hc3 = 4S(V1 + V2 + 2J ). (12c)

In the figures, the quantities on the axes are also scaled by Jc

and h0 ≡ hc3|J=0 to compare the results in the same scale. In
addition to the CS and CSS phases, other solid (with ρ = 1/4,
and 3/4) and supersolid (SS2a) phases are formed due to the
competition of the NN and NNN repulsions.41,43 These phases
have the sublattice structures depicted in Fig. 3.

As seen in Eqs. (12), the CSS phase can emerge as long
as the NNN interaction is finite, and the window hc1 < |h| <

hc2 gets wider as V2 increases. Thus, it appears that we just
have to prepare the system with a stronger NNN interaction
in order to obtain the stable CSS phase in a wider range of
the parameters. However, when the value of V2/V1 is large,
the striped solid order shown in Fig. 1(II) is more favored than
the checkerboard. The general expression of the MF energy
for striped phases is given by

E
(st)
0

/
M = −JS2

(
sin θR1 + sin θR2

)2

+V1S
2
(
cos θR1 + cos θR2

)2 /
2

+ 2V2S
2 cos θR1 cos θR2

−hS
(

cos θR1 + cos θR2

)/
2, (13)

where θR1 and θR2 are the canting angles of the pseudospins on
even and odd rows [see Fig. 1(II)]. For example, let us consider
the solid orders emerging at the half filling (ρ = 1/2). Putting
cos θA = − cos θB = 1 in Eq. (11) and cos θR1 = − cos θR2 =
1 in Eq. (13), we obtain the MF energies of the CS and striped
solid states:

E
(ch)
0

/
M = −2S2(V1 − V2) (CS), (14a)

E
(st)
0

/
M = −2S2V2 (striped solid). (14b)

(a) (b)

FIG. 3. Schematic pictures of the (I) SS2a and (II) ρ = 1/4
(ρ = 3/4) solid phases emerging in the phase diagram of the V1-V2

model. There are two possibilities (a and b) for the structure of the
ρ = 1/4 (ρ = 3/4) solid phase, which are energetically degenerate
for the V1-V2 model within the MF theory.
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From the comparison, one finds that the striped solid state has
lower energy than the CS state when V2/V1 > 1/2. Also for
the supersolid phase, the striped one takes the place of the
CSS phase in this regime.43 Because of the transitions to the
striped phases, we cannot extend the CSS region by exceeding
the limit of V2/V1 = 1/2. Moreover, as shown in Fig. 2(b),
when the value of V2/V1 approaches the boundary to the stripe
regime, the SS2a phase is extended toward the large J/V1

region due to the competition of the two density-wave orders.
This competition also causes strong quantum fluctuations that
destabilize the CSS states, as will be discussed in Sec. IV.

B. The MF results for the Vdip model

Next, let us move onto the Vdip model. In Ref. 17, we
have applied the MF theory to this model, and examined
the stability of superflow in the CSS state. Here, we present
more detailed information on the MF ground states, and discuss
the comparison with the results for the V1-V2 model.

The MF energy per site of the Vdip model for the checker-
board pattern can be written as

E
(ch)
0

/
M = −4JS2 sin θA sin θB + 2V eff

1 S2 cos θA cos θB

+V eff
2 S2(cos2 θA + cos2 θB)

−hS(cos θA + cos θB)/2. (15)

Here, V eff
1 (V eff

2 ) is just the summation of the long-range
interactions between the pseudospins on the same (different)
sublattice sites:

V eff
1 ≡ 1

z

∑
lB

VjAlB = 1.460V, (16a)

V eff
2 ≡ 1

z

∑
lA

VjAlA = 0.7985V. (16b)

The index jA (jB) means the j th site on sublattice A (B).
Only by replacing V1 and V2 with V eff

1 and V eff
2 in Eq. (11),

we can immediately obtain the expression of Eq. (15). This
means that the MF properties of the checkerboard phases of
the Vdip model can be described exactly by the V1-V2 model
with the effective NN and NNN interactions V eff

1 and V eff
2 . For

example, the phase boundaries between the CS, CSS, SF, and
MI phases are obtained by replacing V1 and V2 in Eqs. (12)
with V eff

1 and V eff
2 . Moreover, the tip of the CS lobe is given

by Jc = (V eff
1 − V eff

2 )/2. It is worth noting that the MF energy
of Eq. (15) is valid not only for the Vdip model, but generally
for systems with checkerboard sublattice structure regardless
of the form of Vjl .

The resulting MF phase diagram shown in Fig. 4 has a
similar structure to that of the V1-V2 model in Fig. 2, especially
for the region of J/V > 0.2. However, many additional phases
emerge for the region of smaller J/V due to the long-ranged
character of the dipole-dipole interaction. Within our analysis
(see Appendix A), we found the supersolid, named SS2b, and
the solid phases with ρ = 1/3 and 2/3 in addition to the phases
appearing in the V1-V2 model. Unlike the V1-V2 model, the two

FIG. 4. The same as in Fig. 2 for the Vdip model. The ρ = 1/4
(3/4) solid state here has the b-type symmetry in Fig. 3(II). The
lower panels are the sketches of the SS2b and ρ = 1/3 (ρ = 2/3)
solid states. Many other phases with more complex structure can
emerge in the small J/V (shaded) region. The dashed vertical lines
mark the location of J/Jc = 0.6 and 0.85.

possible structures of the ρ = 1/4 (3/4) solid state shown in
Fig. 3(II) can be distinguished even within the MF theory;
the b-type structure has lower energy. The emergence of these
solid phases is consistent with the QMC results.18 Although
many other phases can emerge for smaller J/V , we do not
extend the calculations to more complex sublattice structures,
since our main focus is the stability of the CSS phase.

It should be noted that the ratio of the effective NNN
interaction strength to the NN one is fixed in the Vdip model
asV eff

2 /V eff
1 ≈ 0.55. This value obviously exceeds the limit

V2/V1 = 1/2, above which the striped phases emerge in place
of the checkerboard ones in the case of the V1-V2 model.
Nevertheless, we have to keep in mind that the effective
interactions V eff

1,2 are made by the summation of the long-range
interactions between various pairs with different distances.
Therefore, the limit predicted for the V1-V2 model cannot be
directly applied to the Vdip model.

In the Vdip model, the MF energy per site for the striped
phases is written as

E
(st)
0

/
M = −JS2

(
sin θR1 + sin θR2

)2

+ Ṽ eff
1 S2

(
cos θR1 + cos θR2

)2/
2

+ 2Ṽ eff
2 S2 cos θR1 cos θR2

−hS
(

cos θR1 + cos θR2

)/
2. (17)
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This expression is formally equivalent to that of the V1-V2

model [Eq. (13)] with the effective interactions

Ṽ eff
1 ≡ 2

z

∑
lR1

VjR1 lR1
= 2.025V, (18a)

Ṽ eff
2 ≡ 1

z

∑
lR1

(
VjR2 lR1

− VjR1 lR1

) = 0.2339V. (18b)

However, the effective NN and NNN interactions have
different values for the checkerboard (V eff

1,2) and striped (Ṽ eff
1,2)

phases [compare Eqs. (16) and (18)]. Hence, the large value
of V eff

2 /V eff
1 in the checkerboard phases does not mean

that the striped phases are energetically preferred, and the
checkerboard order is always favored over the striped one in
the Vdip model. As an example, we show the comparison of
the MF energies of the CS and striped solid states:

E
(ch)
0

/
M = −2S2

(
V eff

1 − V eff
2

) = −0.3307V (CS), (19a)

E
(st)
0

/
M = −2S2Ṽ eff

2 = −0.1169V (striped solid). (19b)

According to Eqs. (12), the CSS region, hc1 < |h| < hc2,
gets wider for a larger value of V2/V1 (V eff

2 /V eff
1 ). In the Vdip

model, the ratio V eff
2 /V eff

1 ≈ 0.55 is larger than V2/V1 of the
V1-V2 model with the checkerboard order, the CSS region is
also larger in the MF level. This is one of the two main reasons
why the CSS phase is stable in the case of the dipole-dipole
interactions. Comparing the width in units of h0, for example,
at J/Jc = 0.85 in Figs. 2(a), 2(b), and 4, we indeed see that
the Vdip model has a wider region of the CSS phase than the
V1-V2 model. Moreover, despite the large value of V eff

2 /V eff
1 ,

the SS2a region in Fig. 4 is relatively suppressed compared
with that in Fig. 2(b). This means that the direct competition
of the checkerboard and striped density-wave orders is much
weaker than the case of the V1-V2 model. The suppression
of the competition can be also seen in the excitation spectra,
which will be discussed in the next section.

IV. LINEAR SPIN-WAVE ANALYSIS

In this section, we discuss the strength of quantum fluctua-
tions around the MF ground states within the linear spin-wave
(LSW) theory.42,43,46 First, we perform local rotations of
the spin reference frame in Eq. (4), so that the new spin
quantization axis is oriented along the direction of the classical
pseudospin vector:⎛

⎜⎜⎝
Ŝx

j

Ŝ
y

j

Ŝz
j

⎞
⎟⎟⎠ =

⎛
⎜⎝

cos θj 0 sin θj

0 1 0

− sin θj 0 cos θj

⎞
⎟⎠
⎛
⎜⎜⎝

S̃x
j

S̃
y

j

S̃z
j

⎞
⎟⎟⎠ . (20)

Furthermore, we introduce new bosonic variables via the
Holstein-Primakoff transformation,

S̃z
j = S − b̂

†
j b̂j , (21a)

S̃x
j = 1

2
(
√

2S − b̂
†
j b̂j b̂j + b̂

†
j

√
2S − b̂

†
j b̂j ), (21b)

S̃
y

j = 1

2i
(
√

2S − b̂
†
j b̂j b̂j − b̂

†
j

√
2S − b̂

†
j b̂j ), (21c)

to describe quantum fluctuations around the classical spin
angles. Within the LSW approximation, we keep the terms
up to the second order in the boson operators:

Ĥspin ≈ E0 + Ĥ2, (22)

where E0 is identical to the MF energy given by Eq. (8).
The linear term in boson operators disappears by substituting
the MF solutions into θj . Diagonalizing Ĥ2, we calculate the
LSW excitation spectra ω(q) and the number of “spin waves”
〈b̂†j b̂j 〉 to estimate the strength of the quantum fluctuations
(see Appendix B for details). By calculating the number of
spin waves, one can roughly estimate the strength of quantum
fluctuations around the MF solutions obtained in Sec. III.
In the spin language, the value of 〈b̂†j b̂j 〉 corresponds to the
spin reduction from its classical value S due to the zero-point
fluctuations.

We will show the results of the excitation spectra in
Sec. IV A and of the the number of spin waves in Sec. IV B. For
the V1-V2 model, the LSW excitation spectra of SF, CS, and
CSS states have already been discussed in detail in Ref. 42,
and it was confirmed that the softening of roton excitations
causes the phase transition from the SF to CSS state. As for
the Vdip model, although we used in Ref. 19 the LSW theory
to discuss the critical velocity of flowing CSS states, detailed
results of the spectra have not been presented yet. Moreover, to
date, no studies estimating the strength of quantum fluctuations
from the values of 〈b̂†j b̂j 〉 have been demonstrated for the
comparison of the two models.

A. The excitation spectra

As mentioned above, the LSW excitation spectra for the
V1-V2 model have already been analyzed in Ref. 42. Hence,
we show here only the case of the dipole-dipole interaction
given in Eq. (3). In the calculations, we have to take an infinite
summation in Eq. (B12) due to the long-range nature. To
avoid the practical difficulty, we introduce a cutoff distance on
the dipole-dipole interaction as Vjl = 0 for |rj − rl| > 16d

only in this section (namely, in Secs. IV A and IV B). For
this truncated dipole-dipole interaction, the values of the
effective NN and NNN interactions are V eff

1 = 1.410V and
V eff

2 = 0.7495V and the ratio is V eff
2 /V eff

1 ≈ 0.53.
Solving Eq. (B14), we plot in Figs. 5(a)–5(c) the excitation

spectra ω(q) for the SF, CSS, and SS2a phases along the
line J/Jc = 0.6 marked in Fig. 4. The excitation spectra
have a Nambu-Goldstone mode reflecting the spontaneous
breaking of the U(1) symmetry. The spectrum of the CSS
phase consists of two branches due to the two-sublattice
structure, and the lower branch has gapless, linear dispersions
around q = (0,0) and (π/d,π/d), which is the ordering vector
of the checkerboard phases. In the SS2a phase, in which
the checkerboard and stripe orders coexist, the lowest mode
is gapless at q = (π/d,0) in addition to at q = (0,0) and
(π/d,π/d).

Figures 6(a)–6(d) show the excitation spectra at the phase
transitions between the different phases. When one approaches
the CSS phase from the SF region, a roton-like minimum at
q = (π/d,π/d) develops, and it touches zero at the boundary
h = ±hc2 as shown in Fig. 6(a), causing the second-order
phase transition to the CSS state. In a similar way, a
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FIG. 5. Excitation spectra ω(q) of the Vdip model in the (a) SF
(at h/h0 = ±1), (b) CSS (at h/h0 = ±0.58), and (c) SS2a (at
h/h0 = ±0.5) phases for J/Jc = 0.6.

roton-like mode at q = (π/d,0) causes the second-order
transition from CSS to SS2a [see Fig. 6(b)]. In contrast, as
shown in Fig. 6(c), such a signal does not appear in the spectra
at the first-order phase transitions. The above-mentioned
properties of the excitations qualitatively agree with the case
of the V1-V2 model.

B. The number of spin waves

For all the cases of Figs. 2(a), 2(b), and 4, the system
exhibits the phase transition from SF to CSS, and then it
reaches the CS phase if the value of h/h0 increases from
a negative value to zero along the line of J/Jc = 0.85. We
will plot the number of spin waves 〈b̂†j b̂j 〉 along this line as
a function of the filling factor ρ. Within the MF analysis,
the filling factor ρ shows a linear increase with the chemical
potential h both in the SF and CSS phases, and the slope of
the line, which is proportional to the compressibility, is always
larger in the CSS phase than in the SF phase:

ρ =
{

1/2 + h/2hc3 (SF),

1/2 + (h ∓ hc1) /16V2S (CSS),
(23)

where the upper (lower) signs are for positive (negative) values
of h. Recall that V2 has to be replaced with V eff

2 for the Vdip

model. It should be noted that the critical filling factor ρc at
the SF-CSS transition point, which is obtained by substituting
h = ±hc2 into Eq. (23), can be expressed as a function only

FIG. 6. Excitation spectra ω(q) of the Vdip model at the second-
order transition (a) from the SF to CSS phase (at h = ±hc2) and
(b) from the CSS to SS2a phase (at h/h0 = ±0.3819) for J/Jc = 0.6.
(c) The same as in panels (a) and (b) at the first-order transition
between the CSS and SS2a phases (at h/h0 = ±0.5348). The CSS
and SS2a states are energetically degenerate at this point.

of J/Jc:

ρc = 1

2
± 1

2

√
1 − J/Jc

1 + J/Jc
. (24)

It takes ρc = 0.3576 for J/Jc = 0.85 in the low-density
(negative h) side.

Figures 7(a)–7(c) show the results for the V1-V2 model
with V2/V1 = 0.2 and 0.4, and for the Vdip model. In all
the cases, we can see that 〈b̂†j b̂j 〉 has a peak at the SF-CSS
phase transition, which means that quantum fluctuations are
particularly strong at the phase boundary. The number of spin
waves for V2/V1 = 0.4 in Fig. 7(b) is much larger than the
case of V2/V1 = 0.2 in Fig. 7(a). This is attributed to the
strong competition of the NN and NNN interactions. In fact,
as shown in the right panel of Fig. 7(b), the excitation spectrum
ωq exhibits a remarkable drop at q = (π/d,0), which indicates
the existence of strong striped density-wave fluctuations. The
maximum value of 〈b̂†j b̂j 〉 for V2/V1 = 0.4 reaches about 77
percent of the classical value of the spin length S = 1/2, which
means that the predictions for the ground states within the MF
theory are unreliable. Actually we will show in Sec. V that
the CSS phase predicted by the MF theory almost completely
disappears due to the strong quantum fluctuations.
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FIG. 7. The number of spin waves 〈b̂†
jα

b̂jα
〉 as a function of the

filling factor ρ for J/Jc = 0.85 and the excitation spectra ωq at the
SF-CSS phase transition point ρ = ρc. The panels (a), (b), and (c)
show the results for the V1-V2 model with V2/V1 = 0.2 and 0.4,
and for the Vdip model with the truncated dipole-dipole interaction,
respectively. In the CSS phase, 〈b̂†

jα
b̂jα

〉 takes two different values on
each sublattice.

On the other hand, the excitation spectrum ωq for the
Vdip model in the right panel of Fig. 7(c) does not exhibit a
significant drop at q = (π/d,0) unlike the case of V2/V1 =
0.4. This comes from the fact that V eff

2 is not just the
NNN interaction but the summation of various long-range
interactions that weakens the competition with the stripe order.
Therefore, as shown in Fig. 7(c), the quantum fluctuations
in the Vdip model are relatively weak for its large value of
V eff

2 /V eff
1 . This is the second reason for the stability of the

CSS state in the Vdip model. The CSS region predicted by the
MF theory is significantly reduced by the quantum fluctuations
but still remains sufficiently large (see Ref. 18 and Sec. V of
this paper).

V. LARGE-SIZE CLUSTER MEAN-FIELD METHOD
AND SCALING ANALYSIS

We drew the ground-state phase diagram of the two models
within the MF theory in Figs. 2(a), 2(b), and 4. However,
according to the previous section, the fluctuations around the
classical ground states are too large to completely ignore
in any case. In this section, considering the MF results
obtained in Sec. III as a starting point, we discuss how the
quantum fluctuations change the features of the ground-state
phase diagrams by employing a large-size CMF method.29

We perform the calculations based on rectangular-shaped
clusters, and then extrapolate the results with respect to the
cluster size. The obtained results will be compared with the
QMC data in Ref. 18 for the Vdip model. As for the V1-V2

model, although the authors of Ref. 37 concluded that the
CSS state is thermodynamically unstable from the QMC
calculations for V1 = 3J , the entire phase diagram including
the effects of quantum fluctuation has not been produced yet.
We will confirm, in the (J/V1,h/V1) plane, that the CSS
phase is almost completely destroyed by the strong quantum
fluctuations in the V1-V2 model. Hereafter, we will use the
full (untruncated) dipole-dipole interaction again in the Vdip

model.

A. The CMF method

First, we describe the details of our CMF approach.29 The
standard MF theory approximates the system by single-site
problems in effective fields. A natural extension of the single-
site approximation is the use of “clusters” of multiple sites as
an approximate system.47–56 For example, the Bethe-Peierls-
Weiss (BPW) method47–49 employs a cluster consisting of one
central site and its directly connected sites, e.g., a cluster of
(1 + 6 + 6) sites for a triangular-lattice system with NN and
NNN interactions.50 Treating exactly the interactions within
the cluster, one can partially take into account the effects of
correlations between particles (or spins). However, the BPW
method and its extensions51,52 cannot be applied to an infinite-
range interaction model like the Vdip model since all sites are
“directly connected” by the long-range interactions.

Oguchi’s method54 is another simple way to extend the MF
theory to clusters. In Ref. 54, Oguchi studied ferromagnetism
and antiferromagnetism of the low-dimensional Heisenberg
model by using a cluster of up to three spins to include the
short-range correlations between the spins. Since the influence
from the spins outside of the cluster is also included as
effective internal fields, we can treat even a system with
infinite-range interactions. However, as Oguchi himself
pointed out, the cluster of two or three sites is too small to
sufficiently take into account the effects of the correlations (or
quantum fluctuations).

Our CMF approach29 is an extension of Oguchi’s method
to larger-size clusters and to multiple-sublattice problems.
Although we use here the pseudospin form of the Hamiltonian,
Eq. (4), to explain the procedure of our method, the same
manner can be applied straightforwardly to hardcore bosons
and even to softcore-boson models. First, we assume a
sublattice structure expected to emerge in the parameter range.
Then, we embed a cluster of NC sites into the background
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FIG. 8. Clusters of (I) 4 × 4 sites and (II) 3 × 3 sites embedded
into the checkerboard sublattice pattern.

sublattice structure. Figures 8(I) and 8(II) show, as examples,
the cases of NC = 4 × 4 and NC = 3 × 3, which we refer
to as CMF-4 × 4 and CMF-3 × 3 under the assumption of
the checkerboard sublattice structure. As for the case of the
CMF-3 × 3, we have two inequivalent choices for embedding
the cluster. We have to deal with both of them equally as in the
BPW method for multiple-sublattice systems.53 Now, instead
of treating the many-body problem in the whole system given
by Eq. (4), we consider the effective cluster Hamiltonian HC

written as the following general form:

ĤC = −2J
∑

〈j,l〉∈C

(
Ŝx

j Ŝx
l + Ŝ

y

j Ŝ
y

l

) + 1

2

∑
j,l∈C

VjlŜ
z
j Ŝ

z
l

−
∑
j∈C

(
h + h

z,eff
j

)
Ŝz

j −
∑
j∈C

h
x,eff
j Ŝx

j , (25)

in which the interactions within the cluster are treated exactly,
while the interactions between the spins in the cluster and the
rest of the system are approximately included via the effective
fields

h
z,eff
j ≡ −

∑
l∈C̄

Vjlm
z
l , (26a)

h
x,eff
j ≡ 2

∑
l∈C̄

Jjlm
x
l , (26b)

where C̄ is the part of the system outside the cluster and
m

z,x
l ≡ 〈Ŝz,x

l 〉CMF are the expectation values within the CMF
method, which act as the mean fields from the spins in C̄. Here,
we chose again the xz plane as the plane in which the spins lie;
i.e., 〈Ŝy

j 〉 = 0. If we have two or more possibilities of choosing
the cluster like in the CMF-3 × 3, we should consider all the
corresponding cluster Hamiltonians like ĤC1 , ĤC2 , . . ..

Note that in our CMF method, we consider the NC-site
problem in the cluster just as a reference system to estimate
the values of the mean fields m

z,x
l , which depend only on the

background sublattice index of the site; i.e., mz,x
α ≡ m

z,x
lα

. For
example, the effective fields acting on the top-left site “1” in
the 4 × 4 cluster of Fig. 8(I) can be written as the following

explicit forms:

h
z,eff
1 = −2V1m

z
B − 3V2m

z
A, h

x,eff
1 = 4Jmx

B (27)

for the V1-V2 model and

h
z,eff
1 = −

(
4V eff

1 − 2V − 2V
√

5
3 − 2V

33
− 2V

√
13

3

)
mz

B

−
(

4V eff
2 − V

√
2

3 − 2V

23
− V

√
8

3 − 2V
√

10
3

− V
√

18
3

)
mz

A,

h
x,eff
1 = 4Jmx

B (28)

for the Vdip model (see Appendix A for more details). The
values of the mean fields mz

α and mx
α are calculated self-

consistently as the expectation values of the pseudospins inside
the cluster as follows:

mz,x
α = 〈

Ŝ
z,x
jα

〉
CMF = 1

MCNα

∑
n

∑
jα∈Cn

Tr
(
Ŝ

z,x
jα

e−βHCn

)
Tr(e−βHCn )

, (29)

where β = 1/T (we take T → 0 in this paper), MC is the
number of the possible choices of the cluster, and Nα ≡∑

n Nα,n is the summation of the number of sites belonging
to sublattice α in cluster Cn. For example, MC = 2 in the
CMF-3 × 3 for checkerboard phases in Fig. 8(II) and we
have (NA,1,NB,1) = (5,4) and (NA,2,NB,2) = (4,5) for the two
clusters C1 and C2, respectively, which leads to NA = NB = 9.

This method reduces to the conventional MF (namely,
Weiss’s molecular-field) theory for NC = 1, and becomes
exact in the limit NC → ∞. We have to diagonalize the cluster
Hamiltonian to take the trace on the right-hand side of the
self-consistent equation (29). Thus the practical limit of the
cluster size NC is determined by the largest number of sites
which can be treated by exact diagonalization techniques. It
should be noted, however, that some of the symmetries of
the original Hamiltonian, Eq. (4), are broken in the effective
cluster Hamiltonian due to the existence of mean fields.

B. The CMF results for the 4 × 4 cluster

First, we show the results of the CMF-4 × 4 method for
the two models and compare them with the MF results. We
focus on the checkerboard phases and discuss the influence of
quantum fluctuations on the locations of the phase boundaries
between the CS, CSS, and SF phases, namely h = ±hc1 and
±hc2 in Eqs. (12). Note that there are no quantum fluctuations
at the boundary between the SF and MI phases, h = ±hc3,
and thus the expression in Eq. (12c) does not change for any
NC. Other phases with more complex symmetries, such as
three-sublattice and four-sublattice phases, are affected more
strongly by the quantum fluctuations, and the locations are
shifted towards the region of much smaller values of J/Jc

than those of the MF theory.18,57 Thus, we leave them out of
the scope of the rest of this paper, treating only a relatively
large-J/Jc region.

For the checkerboard phases, we can obtain the SF
order parameter |�| = |mx

A + mx
B|/2, the CS order parameter
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FIG. 9. Phase boundaries between the CS, CSS, and SF phases by
the CMF-4 × 4 calculations for the V1-V2 model with (a) V2/V1 = 0.2
and (b) V2/V1 = 0.4, and for (c) the Vdip model. The thin and thick
solid lines indicate the second-order and first-order transitions. For
comparison, the MF results, Eq. (12), are shown by the dashed lines.

|ρQ| = |mz
A − mz

B|/2, and the filling factor ρ = 1/2 + (mz
A +

mz
B)/2 by solving Eq. (29) self-consistently. The second-order

transition boundary from CSS to CS is determined by the
point at which |�| vanishes (or at which the value of ρ reaches
1/2). On the other hand, the CS order parameter |ρQ| vanishes
(namely, mz

A = mz
B) at the second-order transition from CSS to

SF. In addition to these second-order (continuous) transitions,
we find that first-order (discontinuous) transitions between CS
and SF and between CSS and SF can also appear due to the
effects of the quantum fluctuations. In the CMF formalism, we
cannot directly calculate the value of free energy of the system.
Instead, we use the Maxwell construction in the (J,χ ) plane
to determine the first-order phase boundaries. The quantity χ

is defined by χ ≡ ∑
〈j,l〉〈â†

j âl + â
†
l âj 〉/M .

Figures 9(a)–9(c) show the phase boundaries between the
CS, CSS, and SF phases obtained by the CMF-4 × 4 method
with the corresponding MF results. In all the cases, the regions
of the CS and CSS phases shrink considerably because of the
quantum fluctuations. The reductions of the values of Jc from
the MF values are 5.5 percent for V2/V1 = 0.2, 16.5 percent
for V2/V1 = 0.4, and 11.1 percent for the Vdip model within
the CMF-4 × 4 level. This fact indicates that the quantum
fluctuation of the V1-V2 model is stronger for a larger value of
V2/V1, and that of the Vdip model is small relative to the large
value of V eff

2 /V eff
1 , which is consistent with the spin-wave

prediction in Sec. IV. In Fig. 10, we compare the reductions
of the value of |h| at the CSS-SF boundary, hc2, from the

FIG. 10. The ratio of hc2 obtained by the CMF-4 × 4 method to
the MF value at fixed J/Jc.

MF value given in Eq. (12b). This result also confirms the
statement made in Sec. IV.

Other than the shrinking of the CS and SS phases, we can
see a qualitative difference between the CMF and MF results.
As clearly seen in the enlarged views, Figs. 11(a) and 11(b),
the direct first-order (discontinuous) transition from the CS to
the SF phase emerges in the CMF result, and the transition
between the CSS and SF phase also becomes discontinuous
near the triple point of the CS, CSS, and SF phases. This
result is attributed to the fact that the classical degeneracy of
the CS, CSS, and SF states at J = Jc and h = 0 is lifted by
taking into account the quantum fluctuations. However, the
first-order transitions occur in a narrow range of parameters
and the discontinuity of the order parameter is very small, and
thus the first-order nature has not been reported previously in
the QMC works.18,37

C. The cluster-size scaling

We perform the infinite-size extrapolation, NC → ∞, of
the CMF results with different-size clusters. We use a series
of rectangular-shaped clusters of NC = 1 × 2, 2 × 2, 2 × 3,
3 × 4, and 4 × 4, which are shown in Table I. The clusters
with odd numbers of sites, e.g., NC = 3 × 3, are not treated
here, because they may belong to a different scaling series from
that of the clusters with even numbers of sites. To perform the
infinite-size extrapolation, we introduce the scaling parameter

FIG. 11. Enlarged views of the region around the tip of the lobe
in Fig. 9(b) [panel (a)] and Fig. 9(c) [panel (b)]. The first-order
transitions from the CS to SF phase and from the CSS to SF phase are
found. Also in the case of V2/V1 = 0.2, we find a narrow but finite
region where the first-order transitions occur.

054516-10



QUANTUM PHASES OF HARDCORE BOSONS WITH LONG- . . . PHYSICAL REVIEW B 86, 054516 (2012)

TABLE I. A series of clusters used in our CMF calculations. The
values of NB and λ are also listed.

λ defined by NB
NC×z/2 , which varies from 0 to 1. Here, NB is

the number of bonds within the cluster and the denominator
means the number of bonds of the original lattice per NC

sites. The parameter λ provides an indication of how much the
correlation effects between the particles are taken into account
by using the cluster. The value of λ for each cluster is listed in
Table I. Note that the MF (Nc = 1) and exact (Nc = ∞) results
correspond to λ = 0 and λ = 1, respectively. The accuracy of
the scaling procedure (λ → 1) is discussed in Appendix D.

Now we perform the scaling analysis to the three cases,
V2/V1 = 0.2, V2/V1 = 0.4, and the Vdip model. We first
consider the change in the location of the tip of the CS lobe
(J = Jc) with increasing NC. In all the cases, the value of
Jc/V1 (or Jc/V for the Vdip model) systematically decreases
with the cluster size NC, and the linear fits of the data for
the three largest clusters (NC = 2 × 3, 3 × 4, and 4 × 4) are
fairly good as shown in Fig. 12(a). The scaled values of
Jc/V1 (Jc/V ) are 0.3701, 0.2318, and 0.2817 for V2/V1 = 0.2,
V2/V1 = 0.4, and the Vdip model, respectively. Next, we move
on to the scalings of the phase boundaries between the CS,
CSS, and SF phases. The extrapolations are carried out on the
value of h/h0 at each transition at fixed J/Jc, in which Jc

is the value at each cluster size. We show examples of linear
fittings of the CMF data for the phase boundaries between the
CS and CSS phases (h = ±hc1) and between the CSS and SF
phases (h = ±hc2) in Fig. 12(b). We can see that in the cases
of the V1-V2 model, the two lines of the CS-CSS and CSS-SF
transitions approach each other very closely in the limit λ → 1.
Especially, the lines for V2/V1 = 0.2 intersect before reaching
λ = 1, which means that the transitions are replaced by the
direct first-order transition between the CS and SF phases. On
the other hand, the CSS region (hc1 < |h| < hc2) of the Vdip

model remains sufficiently large.
Performing the same scaling analyses on the CS-CSS and

CSS-SF (or CS-SF) transition boundaries for other values of
J/Jc, we draw the expected phase diagrams for the limit λ →
1 in Figs. 13(a)–13(c). Here, the quantities on the axes are
rescaled in units of V1 (or V ) by using the scaled value of
Jc/V1 (Jc/V ), obtained in Fig. 12(a), and h0/V1 (h0/V ) for
each case. We can see that the width of the CSS phase almost

FIG. 12. (a) Cluster-size scalings of the CMF data for the value
of Jc/V1 (Jc/V ). The lines are the linear fits of the three points,
NC = 2 × 3, 3 × 4, and 4 × 4, for V2/V1 = 0.2 (triangle, dashed
line), V2/V1 = 0.4 (square, dash-dotted line), and the Vdip model
(circle, solid line). (b) Cluster-size scalings of the CMF data for the
phase boundaries between the CS and CSS phases, h = ±hc1 (open
symbols), and between the CSS and SF phases, h = ±hc2 (closed
symbols), at J/Jc = 0.7. The triangle, square, and circle symbols
correspond again to the data for V2/V1 = 0.2, V2/V1 = 0.4, and the
Vdip model.

vanishes in the two cases of the V1-V2 model. Within the
accuracy of the scaling procedure, it is difficult to provide a
final conclusion on whether a very small region of the CSS
phase can survive or completely disappear. However, even if
the CSS region can survive, it should be too narrow to detect,
and this result does not contradict the conclusion of Ref. 37.
Figure 13(c) shows the scaled CMF result for the Vdip model,
which is in surprisingly good agreement with the QMC data.18

Unlike the two cases of the V1-V2 model, we can see that the
CSS phase remains stable in a considerably large region of
parameters.

Having obtained the above CMF results, we now summarize
the difference of the V1-V2 and Vdip models together with the
knowledge gained from the MF and LSW analyses in Sec. III
and Sec. IV. As for the V1-V2 model, we have the following
dilemma: the NNN interaction V2 is required to be large in
order to obtain a large region of the CSS phase, according
to the MF prediction in Eq. (12); however, the LSW analysis
showed that the larger the value of V2/V1 is, the stronger
quantum fluctuations are due to the competition between the
checkerboard and stripe density-wave orders. Because of this
dilemma, the CSS state cannot be stabilized in a sufficiently
large region of the phase diagram for both cases of small and
large values of V2/V1, as shown in Figs. 13(a) and 13(b).
On the other hand, the MF phase diagram of the Vdip model
contains a rather large region of the CSS phase thanks to
the large value of V eff

2 /V eff
1 and at the same time, the long-

range nature of the dipole-dipole interaction suppresses the
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FIG. 13. The results of the scaling analyses to the phase bound-
aries between the CS, CSS, and SF phases for the V1-V2 model with
(a) V2/V1 = 0.2 and (b) V2/V1 = 0.4, and for (c) the Vdip model.
First-order transitions between the CS and SF phases are expected to
occur at the thick solid lines and in the region between the two dotted
lines, which correspond to the “metastability limits” of the CS and
SF phases. For comparison, the MF results, Eq. (12), and the QMC
data (Ref. 18) are shown by the dashed lines and by the squares and
circles, respectively.

quantum fluctuations around the MF ground state because the
competition with other solid orders is weaker. For these rea-
sons, the CSS phase can survive in the Vdip model, as shown in
Fig. 13(c), even after taking into account the effect of quantum
fluctuations.

A similar discussion is applicable to the difference between
triangular and kagome lattices in the hardcore Bose-Hubbard
model with nearest-neighbor interaction. The MF properties
of the two systems are identical except for the scale of
the chemical potential, and both the systems have a large
region of supersolid phase in the MF phase diagram.40

However, previous QMC studies have shown that while a

stable supersolid phase exists in the triangular-lattice system,20

it has not been found in the kagome lattice.32 This is a similar
situation to the difference between the V1-V2 and Vdip models.
In this case, although the competition of different solid orders
does not make a large difference between the two systems, it is
known that the quantum fluctuations in the kagome lattice are
much stronger than those in the triangular lattice, reflecting,
e.g., the lower coordination number.40 Because of the strong
quantum fluctuations, the supersolid states in the kagome
lattice are more strongly destabilized and cannot survive in
the QMC calculations. Therefore, we can say that for the
emergence of stable lattice supersolid states, in general, it
is necessary to satisfy the following two (qualitative and
quantitative) conditions: A certain long-range interaction Vjl is
required for creating solid orders, and the quantum fluctuation
should be weak enough so as not to destabilize the supersolid
states into phase separation.

VI. SUMMARY

In conclusion, we have investigated the ground-state phase
diagrams of the hardcore Bose-Hubbard model with square
lattice structure and long-range interactions. One of our main
focuses is placed in understanding the role of long-range
interactions in the emergence of checkerboard supersolid
(CSS) states, through the comparison of the models with
nearest-neighbor and next-nearest-neighbor interactions (the
V1-V2 model) and with the dipole-dipole interaction propor-
tional to 1/r3 (the Vdip model). Specifically, we discussed
the reasons why the CSS states can be stable only in the
case of the Vdip model, and clarified the origin of the qualitative
difference between the two systems. We first showed the
classical (mean-field) properties of the systems, and then
discussed the strength of quantum fluctuations around them in
terms of the linear spin-wave theory. Moreover, we also applied
the cluster mean-field (CMF) method and its cluster-size
scaling to take into account the effects of quantum fluctuations
in a self-consistent way. We confirmed quantitative accuracy
of our CMF scaling procedure29 by making a comparison with
the quantum Monte Carlo data in Fig. 12(c) and Appendix D.
In principle, this approach can be also applied to any other
ordered systems including softcore bosons and higher-spin
systems. Especially, our CMF method may be useful for
studying frustrated systems since it is free from the minus-sign
problem.

(a) (b)

FIG. 14. Schematic pictures of (I) two types of four-sublattice
structures (4a and 4b) and (II) a three-sublattice structure. The lattice
sites with the same number belong to the same sublattice. The dashed
boxes are drawn to show clearly the sublattice structures.
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APPENDIX A: THREE- AND FOUR-SUBLATTICE
STRUCTURES

In the case of the Vdip model, in addition to the uniform
(SF and MI) and checkerboard (CS and CSS) phases, many

different types of solid and supersolid phases can appear due
to the long-range nature of the dipole-dipole interaction. In
general, we encounter various phases with more complex
sublattice structures when the effects of the dipole-dipole force
are stronger (the value of J/V is smaller).18,29

To obtain the results in Sec. III, we restricted our MF
analysis to the phases with up to the three- and four-sublattice
structures shown in Figs. 14(I) and 14(II), focusing on the
region of relatively large values of J/V (but still less than 1).
Each state is characterized by the classical pseudospin angles
θn (n = 1,2,3,4 for the four sublattices; n = 1,2,3 for the three
sublattices). The MF energies per site for the two types (a and
b) of four-sublattice phases are written as

E
(4a)
0

/
M = −JS2(sin θ1 + sin θ3)(sin θ2 + sin θ4) + V

(4a)
1 S2(cos θ1 + cos θ3)(cos θ2 + cos θ4)/2

+V
(4a)

2 S2(cos θ1 cos θ3 + cos θ2 cos θ4) + V
(4a)

3 S2
4∑

n=1

cos2 θn/2 − hS

4∑
n=1

cos θn/4, (A1)

where V
(4a)

1 ≡ 2
∑

l2
Vj1l2/z ≈ 1.460V , V

(4a)
2 ≡ ∑

l3
Vj1l3/z ≈ 0.5162V , and V

(4a)
3 ≡ ∑

l1
Vj1l1/z ≈ 0.2823V , and

E
(4b)
0

/
M = −JS2 [2 sin θ1 sin θ2 + 2 sin θ3 sin θ4 + (sin θ1 + sin θ2)(sin θ3 + sin θ4)] /2

+V
(4b)

1 S2 [2 cos θ1 cos θ2 + 2 cos θ3 cos θ4 + (cos θ1 + cos θ2)(cos θ3 + cos θ4)] /4

+V
(4b)

2 S2(cos θ1 + cos θ2)(cos θ3 + cos θ4)/2

+V
(4b)

3 S2

(
2 cos θ1 cos θ2 + 2 cos θ3 cos θ4 +

4∑
n=1

cos2 θn

)/
4 − hS

4∑
n=1

cos θn/4, (A2)

where V
(4b)

1 ≡ 2
∑

l1
(Vj2l1 − Vj1l1 )/z ≈ 0.9077V , V (4b)

2 ≡ ∑
l1

(2Vj3l1 + Vj1l1 − Vj2l1 )/z ≈ 0.7923V , and V
(4b)

3 ≡ 2
∑

l1
Vj1l1/z ≈

0.5584V . The above expressions are formally identical to those of the hardcore Bose-Hubbard model with up to the third-nearest-
neighbor interactions (V1, V2, and V3); we have only to replace Vn (n = 1,2, and 3) with the effective interactions V (4a)

n for the
a-type structure or V (4b)

n for the b-type structure in the corresponding expressions of the MF energies. On the other hand, the MF
energy for the three-sublattice structure of Fig. 14(c) is given by

E
(3)
0

/
M = −4JS2(sin θ1 sin θ2 + sin θ2 sin θ3 + sin θ3 sin θ1)/3 + 2V

(3)
1 S2(cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1)/3

+V
(3)

2 S2

(
cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1 +

3∑
n=1

cos2 θn

)/
3 − hS

3∑
n=1

cos θn/3, (A3)

where V
(3)

1 ≡ ∑
l1

(2Vj2l1 − Vj1l1 )/z ≈ 1.317V and V
(3)

2 ≡ 2
∑

l1
Vj1l1/z ≈ 0.9417V .

To obtain the ground-state phase diagram in Fig. 4, we carried out the minimization of the MF energies in the standard way.
First, we minimized separately the MF energies given in Eqs. (A1)–(A3) with respect to the angles θn, and then compared
the three minimized values of the MF energies. For example, if such a minimization scheme leads to a solution of the a-type
four-sublattice structure with θ2 = θ4, it means that the ground state is in the SS2a phase within the MF approximation. As for
the other phases seen in Fig. 4, the assumption of the b-type four-sublattice structure includes solutions of the SS2b and ρ = 1/4
solid states and the three sublattice structure given in Fig. 14(II) includes the ρ = 1/3 solid state.

APPENDIX B: DETAILS OF THE LSW ANALYSIS

We present here the details of the LSW calculations. In the
rotated frame of Eq. (20), the pseudospin Hamiltonian [Eq. (4)]
is rewritten as

Ĥspin = −1

2

∑
j,l

∑
μ,ν=x,y,z

(
S̃

μ

j I
μν

jl S̃ν
l

) −
∑

j

hx
j S̃

x
j −

∑
j

hz
j S̃

z
j ,

(B1)

where

I xx
jl = 2Jjl cos θj cos θl − Vjl sin θj sin θl, I

yy

jl = 2Jjl,

I zz
j l = 2Jjl sin θj sin θl − Vjl cos θj cos θl,

I zx
jl = I xz

jl = 2Jjl sin θj cos θl + Vij cos θj sin θl,

I
xy

jl = I
yx

jl = I
yz

jl = I
zy

jl = 0,

hx
j = −h sin θj , hz

j = h cos θj .

(B2)
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FIG. 15. The same as in Figs. 8(I) and 8(II) with the site labels
(1,2,3, . . .) within the clusters.

After performing the HP transformation in Eq. (21), the
quadratic part of the pseudospin Hamiltonian is obtained as

Ĥ2 = −S

2

∑
j,l

[(
I xx
jl + I

yy

jl

)
b̂
†
j b̂l

]

−S

4

∑
j,l

[(
I xx
jl − I

yy

jl

)
b̂j b̂l + H.c.

]

+
∑

j

[(
hz

j + S
∑

l

I zz
j l

)
b̂
†
j b̂j

]
. (B3)

In order to diagonalize Ĥ2, the use of the equation of motion
method with the Green’s functions may be more convenient
than the usual Bogoliubov transformation technique for the
states with complex sublattice structures.

First, we define the retarded commutator Green’s function
in a matrix form as

〈〈b̂j (t); b̂†
l (t

′)〉〉 = −iθ (t − t ′)〈[b̂j (t),b̂†
l (t

′)]〉 (B4)

with

b̂j ≡
(

b̂j

b̂
†
j

)
and θ (t − t ′) =

{
1 (t > t ′),
0 (t < t ′). (B5)

The Green’s function satisfies the following equation of
motion:

i
∂

∂t
〈〈b̂j (t); b̂†

l (t
′)〉〉

= δ(t − t ′)〈[b̂j (t),b̂†
l (t

′)]〉 + 〈〈[b̂j ,Ĥ2](t); b̂†
l (t

′)〉〉. (B6)

To solve the above equation, we perform a Fourier transform of
the Green’s function Gj l(t − t ′) ≡ 〈〈b̂j (t); b̂†

l (t
′)〉〉 into energy

space

Gj l(t − t ′) =
∫ ∞

−∞

dω

2π
Gj l(ω)e−iω(t−t ′) (B7)

FIG. 16. (a) The CS-SF phase boundaries for the NN interaction
model by the MF (thin solid line) and CMF methods with NC =
2 × 2 (dashed line) and 4 × 4 (dash-dotted line). The thick solid line
indicates the scaled value of the CMF data with the three largest
clusters of NC = 2 × 3, 3 × 4, and 4 × 4. For comparison, we also
plot the numerical data obtained by using the QMC method based
on the directed loop algorithm (Ref. 59) for 16 × 16 lattice sites
(circles). The value Jc = 0.5V1 is constant with respect to NC as
well as h0 = 2V1. (b) Cluster-size scalings (λ → 1) of the CMF data
for the values of h/h0 at the CS-SF first-order transition of the NN
interaction model. We plot the values on the lower branch of the
transition lines h = ±h′

c at J/Jc = 0.8, 0.6, and 0.4. The solid lines
are the linear fits of the three samples (NC = 2 × 3, 3 × 4, and 4 × 4).

and into momentum space. It is to be noted that the number
of sites in the “unit cell” varies depending on the sublattice
structure. For example, since the lattice sites are divided into
two square sublattices [A and B in Fig. 1(I)] for the CS and
CSS states, the Fourier transformation into the momentum
space should be performed on each sublattice:

Gjαlβ = 2

N

′∑
q

Gαβ
q e

−iq·(rjα −rlβ
)
, (B8)

where the subscripts α, β denote the sublattice index
(A or B), and the sum is taken over the N/2 q values in
the reduced Brillouin zone. Now, we can rewrite the equation
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of motion for the Green’s functions in a 4 × 4 matrix form:

ω

(
GAA

q GAB
q

GBA
q GBB

q

)

=
(

σ z 0

0 σ z

)
+
(

�AA
q �AB

q

�BA
q �BB

q

)(
GAA

q GAB
q

GBA
q GBB

q

)
.

(B9)

The 2 × 2 submatrices in Eq. (B9) are given by

σ z =
(

1 0
0 −1

)
and �αβ

q =
(

�
αβ

q,11 �
αβ

q,12

−�
αβ

q,12 −�
αβ

q,11

)

(α,β = A,B), (B10)

where

�AA
q,11 = H cos θA + 4S(2J sin θA sin θB

−V1 cos θA cos θB − V2 cos2 θA) + 2S sin2 θAV (2)
q ,

�BB
q,11 = H cos θB + 4S(2J sin θA sin θB

−V1 cos θA cos θB − V2 cos2 θB) + 2S sin2 θBV (2)
q ,

�AA
q,12 = 2S sin2 θAV (2)

q , �BB
q,12 = 2S sin2 θBV (2)

q , (B11)

�AB
q,11 = �BA

q,11 = −4JS(cos θA cos θB + 1)γq

+ 2S sin θA sin θBV (1)
q ,

�AB
q,12 = �BA

q,12 = −4JS(cos θA cos θB − 1)γq

+ 2S sin θA sin θBV (1)
q .

Here, V1 and V2 should be replaced with V eff
1 and V eff

2 ,
respectively, for the Vdip model. The Fourier factor γq is given
by γq = [cos(qxd) + cos(qyd)]/2, and V

(1,2)
q are defined by

V (1)
q ≡ 1

z

∑
lB

VjAlBe
iq·(rjA −rlB ), (B12a)

V (2)
q ≡ 1

z

∑
lA

VjAlAeiq·(rjA −rlA ). (B12b)

For the V1-V2 model, these can be simply written as V
(1)

q =
V1γq and V

(2)
q = V2 cos(qxd) cos(qyd).

We can obtain the spin-wave excitation spectra ω(q), which
correspond to the poles of the Green’s functions, by solving
the equation

det

[
ω(q)1̂ −

(
�AA

q �AB
q

�BA
q �BB

q

)]
= 0. (B13)

Moreover, we can calculate 〈b̂†j b̂j 〉 by applying the spectral
theorem to the Green’s functions(

GAA
q GAB

q

GBA
q GBB

q

)

=
[
ω1̂ −

(
�AA

q �AB
q

�BA
q �BB

q

)]−1(
σ z 0
0 σ z

)
. (B14)

The number of spin waves on each sublattice (α =A or B) is
given by

〈
b̂
†
jα

b̂jα

〉 = i

2π

2

N

′∑
q

lim
δ→0

∫ ∞

−∞

dω

eβω − 1

× [
Gαα

q,11(ω + iδ) − Gαα
q,11(ω − iδ)

]
, (B15)

where Gαα
q,11 is the (1,1) component of Gαα

q in Eq. (B14).

We took here the case of the checkerboard phases as
an example. The extension to other sublattice structures is
straightforward. For instance, the calculation for the SS2a
phase, in which the lattice sites are divided into four square
sublattices with lattice constant 2d, requires the use of a 8 × 8
matrix form instead of Eq. (B9).

APPENDIX C: DETAILS OF THE CMF CALCULATIONS

We present here the explicit forms of the effective fields h
z,eff
j and h

x,eff
j in Eq. (25) for the reader’s convenience. Here, as

examples, we show the expressions in the CMF calculations for checkerboard phases with NC = 3 × 3 and 4 × 4 clusters [see
Figs. 15(I) and 15(II)].

In the case of NC = 4 × 4, we have only one choice, Fig. 15(I), for the cluster embedded into the background sublattice
structure. In that sense, we can say that the use of clusters with even numbers of sites is compatible with the two-sublattice
checkerboard pattern of solid orders. The explicit forms of the effective fields for site “1” in Fig. 15(I) were already shown in
Eqs. (27) and (28). For the other sites, we have

h
z,eff
7 = h

z,eff
1 , h

z,eff
4,10 = −2V1m

z
A − 3V2m

z
B, h

z,eff
3,5,9,11 = −V1m

z
B − 2V2m

z
A, h

z,eff
2,6,8,12 = −V1m

z
A − 2V2m

z
B,

h
z,eff
13,14,15,16 = 0, h

x,eff
7 = h

x,eff
1 , h

x,eff
4,10 = 4Jmx

A, h
x,eff
3,5,9,11 = 2Jmx

B, h
x,eff
2,6,8,12 = 2Jmx

A, h
x,eff
13,14,15,16 = 0 (C1)

for the V1-V2 model and

h
z,eff
7 = h

z,eff
1 ,

h
z,eff
4,10 = −

(
4V eff

1 − 2V − 2V
√

5
3 − 2V

33
− 2V

√
13

3

)
mz

A −
(

4V eff
2 − V

√
2

3 − 2V

23
− V

√
8

3 − 2V
√

10
3 − V

√
18

3

)
mz

B,

h
z,eff
3,5,9,11 = −

(
4V eff

1 − 3V − 3V
√

5
3 − V

33
− V

√
13

3

)
mz

B −
(

4V eff
2 − 2V

√
2

3 − 2V

23
− V

√
8

3 − 2V
√

10
3

)
mz

A,
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h
z,eff
2,6,8,12 = −

(
4V eff

1 − 3V − 3V
√

5
3 − V

33
− V

√
13

3

)
mz

A −
(

4V eff
2 − 2V

√
2

3 − 2V

23
− V

√
8

3 − 2V
√

10
3

)
mz

B,

h
z,eff
13,15 = −

(
4V eff

1 − 4V − 4V
√

5
3

)
mz

B −
(

4V eff
2 − 4V

√
2

3 − 2V

23
− V

√
8

3

)
mz

A,

h
z,eff
14,16 = −

(
4V eff

1 − 4V − 4V
√

5
3

)
mz

A −
(

4V eff
2 − 4V

√
2

3 − 2V

23
− V

√
8

3

)
mz

B,

h
x,eff
7 = h

x,eff
1 , h

x,eff
4,10 = 4Jmx

A, h
x,eff
3,5,9,11 = 2Jmx

B, h
x,eff
2,6,8,12 = 2Jmx

A, h
x,eff
13,14,15,16 = 0 (C2)

for the Vdip model. Using these expressions, we solved the CMF self-consistent equations, Eqs. (29), for the mean fields m
z,x
A

and m
z,x
B .

Next, we show the case of NC = 3 × 3, although we did not use this size of cluster for the scaling analysis in this paper. In
this case, we have to treat the two clusters given in Fig. 15(II) and the two corresponding cluster Hamiltonians ĤC1 and ĤC2 . The
effective fields for the upper cluster in Fig. 15(II) are given by

h
z,eff
1,3,5,7 = −2V1m

z
B − 3V2m

z
A, h

z,eff
2,4,6,8 = −V1m

z
A − 2V2m

z
B, h

z,eff
9 = 0,

h
x,eff
1,3,5,7 = 4Jmx

B, h
x,eff
2,4,6,8 = 2Jmx

A, h
x,eff
9 = 0 (C3)

for the V1-V2 model and

h
z,eff
1,3,5,7 = −

(
4V eff

1 − 2V − 2V
√

5
3

)
mz

B −
(

4V eff
2 − V

√
2

3 − 2V

23
− V

√
8

3

)
mz

A,

h
z,eff
2,4,6,8 = −

(
4V eff

1 − 3V − 2V
√

5
3

)
mz

A −
(

4V eff
2 − 2V

√
2

3 − V

23

)
mz

B,

(C4)

h
z,eff
9 = − (

4V eff
1 − 4V

)
mz

B −
(

4V eff
2 − 4V

√
2

3

)
mz

A,

h
x,eff
1,3,5,7 = 4Jmx

B, h
x,eff
2,4,6,8 = 2Jmx

A, h
x,eff
9 = 0

for the Vdip model. The expressions for the lower cluster in Fig. 15(II) can be obtained by exchanging m
z,x
A and m

z,x
B in Eqs. (C3)

and (C4).

APPENDIX D: ACCURACY ESTIMATION
OF THE CMF METHOD

To evaluate the quantitative accuracy of our CMF scaling
procedure, we compare the results for the simple model only
with the NN interaction (i.e., the V1-V2 model with V2 = 0)
with the corresponding QMC data. It is known that no CSS
phase appears for V2 = 0 and the system exhibits only the
direct first-order transition from the CS to SF phase.37,58 More-
over, since the quantum fluctuations do not lift the degeneracy
at (J,h) = (0.5V1,0) (called the Heisenberg point), the value
of Jc = 0.5V1 does not change with the cluster size NC.

In Fig. 16(a), we see that the region of the CS phase
gradually gets more narrow with increasing the size of the
cluster used in the CMF calculations, which means that the CS

phase is first overestimated in the MF theory and then gradually
improved by taking into account correlation effects within the
cluster. This kind of systematic behavior is also seen in other
types of cluster extensions of the MF theory.56 We perform
a linear extrapolation toward λ = 1 using the three samples
of NC = 2 × 3, 3 × 4, and 4 × 4, which is indicated as the
thick solid curve in Fig. 16(a). We can see that the scaled
value and the QMC data are in good accordance, although
the extrapolation still slightly overestimates the CS phase.
The linear fits of the three points are quite good as shown
in Fig. 16(b). However, it gets worse for very small values of
J/V1, which is attributed to the fact that the cluster- “shape”
dependence becomes more pronounced. The scaled values
should be improved by using the results of larger-size clusters
as sample data for the extrapolation.
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10G. G. Batrouni, F. Hébert, and R. T. Scalettar, Phys. Rev. Lett. 97,
087209 (2006).

11F. J. Burnell, M. M. Parish, N. R. Cooper, and S. L. Sondhi, Phys.
Rev. B 80, 174519 (2009).
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