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In-plane dissipation as a possible synchronization mechanism for terahertz radiation from intrinsic
Josephson junctions of layered superconductors
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Strong terahertz radiation from the mesa structure of a Bi2Sr2CaCu2O8+δ single crystal has been observed
recently, where the mesa intrinsically forms a cavity. For a thick mesa of a large number of junctions, there
are many cavity modes with different wave vectors along the c axis corresponding to almost the same bias
voltages. The mechanism responsible for exciting the uniform mode which radiates coherent terahertz waves
in experiments is unknown. In this paper, we show that the in-plane dissipation selects the uniform mode. For
perturbations with nonzero wave numbers along the c axis, the in-plane dissipations are significantly enhanced,
which prevents the excitation of corresponding cavity modes. Our analytical results are confirmed by numerical
simulations.
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I. INTRODUCTION

A layered cuprate superconductor, such as
Bi2Sr2CaCu2O8+δ (BSCCO), intrinsically forms a stack of
Josephson junctions.1 Because of the large superconducting
energy gap (60 meV), these build-in intrinsic Josephson
junctions (IJJs) can support oscillations with frequencies in
the terahertz (THz) band. IJJs are homogeneous and packed
on a nanometer scale, much smaller than THz electromagnetic
(EM) wavelength. If synchronized, they can radiate powerful
THz EM waves. The radiation frequency is determined by the
bias voltage according to the ac Josephson relation, thus in
principle can be tuned continuously. The THz generator based
on IJJs thus is promising to fill the THz gap.2,3

In 2007, coherent radiations from a mesa structure of
BSCCO without external magnetic fields were detected
experimentally.4 The radiation frequency and voltage follow
the ac Josephson relation, thus the radiation is due to the
Josephson plasma oscillation in the mesa. The frequency f is
determined by the lateral size Lx of mesa f = c0/(2Lx) with
c0 = c/

√
εc the Josephson plasma velocity where εc is the

dielectric constant of BSCCO. The measured relation between
Lx and f has revealed unambiguously that the mesa works as a
cavity to synchronize plasma oscillations in different junctions.
The cavity resonance mechanism has been confirmed by many
independent experiments.5–9

The experiments raise several questions. First, in exper-
iments a dc current is uniformly injected into the mesa.
One thus expects the superconducting phase would oscillate
homogeneously along the lateral directions, which, however,
seemed to be hardly reconciled with the observed cavity
modes. This question has been addressed in Refs. 10 and 11.
They suggested that the superconducting phase develops π

phase kinks near the cavity resonances. With the help of the
π phase kink, the standing wave of electromagnetic fields can
be stabilized and a large amount of energy is pumped into EM
waves from the dc current.

Secondly, as the mesa intrinsically forms a three-
dimensional (3D) cavity, cavity modes both along the c

axis and ab plane can be excited. When the frequency of
the plasma oscillation ω determined by the bias voltage

per junction is tuned to the cavity frequency ω′
c =√

(mxπ/Lx)2 + (myπ/Ly)2cq , the cavity mode (mx,my) is
excited,12 where cq depends on the wave vector q = nπ/

(N + 1) along the c axis with N the number of junctions and
n an integer. For a large N , such as N ≈ 1000 in experiments,
there are many cavity modes with different q within a narrow
window of bias voltage, and one would expect various modes
should be excited when the voltage is swept. Nevertheless,
for a given radiating sample, only the modes uniform along
the c axis (q = 0) are observed upon sweeping current in
experiment. The reason remains illusive.

Thirdly, understanding of possible cavity modes along the
c axis is also important for getting stronger radiation from the
mesa structure of BSCCO, which is still too weak for practical
applications to date. The radiation power can be enhanced by
using a thicker mesa with larger N , since the radiation power is
proportional to N2 in the superradiation region. One question
is whether there exists a fundamental limiting factor besides
the heating effect for N .

In this paper, we show analytically that in-plane dissipations
prevent the excitation of nonuniform cavity modes along
the c axis. For nonuniform perturbations with a large q,
effective in-plane dissipations are greatly enhanced, and thus
the perturbations quickly die out and no cavity mode is excited.
For perturbations with a small q, in-plane dissipations are
weak and vanish for q = 0. The weak dissipation along the
c axis cannot damp them efficiently, and thus cavity modes
with small q’s are excited. For N ≈ 103, only the cavity
mode with q = 0 can be excited. While for large N ≈ 104,
modes with finite but small q vectors can also be excited and
compete with mode q = 0. The analytical results are confirmed
by direct numerical calculations. The mechanism to achieve
synchronization by dissipation may be applied to other systems
as well by preventing the excitation of the out-of-phase mode.

II. MODEL

We consider a stack of IJJs with lateral sizes Lx ≈ 80 μm,
Ly ≈ 300 μm similar to those in experiments, see the inset
of Fig. 1. Because Ly � Lx , we can assume that the
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FIG. 1. (Color online) Stability diagram for the homogeneous
solution along the ab plane. In the filled region, the homogeneous
solution is unstable and the cavity mode (km,q) is excited. Inset is a
schematic view of the setup for THz radiation.

superconducting phase is uniform along the y axis. The
dynamics of the gauge invariant phase difference ϕl and
magnetic field By,l in the lth junction are described by13–17

∂2
t ϕl + βc∂tϕl + sinϕl = ∂xBy,l, (1)

[ζ
(2) − (1 + βab∂t )]By,l + (1 + βab∂t )∂xϕl = 0, (2)

where 
(2)fl ≡ fl+1 + fl−1 − 2fl is the finite difference
operator. ζ ≈ 105 is the inductive coupling, βc ≈ 0.02, and
βab ≈ 0.2 are the renormalized conductivity along the c axis
and ab plane, respectively.18 For BSCCO, it is well established
that the in-plane conductivity σab is much larger than the c-axis
conductivity σc, from microwave,19 infrared spectroscopy,20

and transport21 measurements. At temperature T = 0, σab ≈
4 × 106 (� · m)−1 and σc ≈ 0.2 (� · m)−1. Both βc and βab

depend on frequency, but the dependence is weak in the
interested frequency region.22,23 In the following discussion
we will neglect the frequency dependence. The generalization
is straightforward as we are working in the frequency domain.
The in-plane dissipation due to βab has been overlooked in
many theoretical models.

Equations (1) and (2) are supplemented by the boundary
conditions. When the phase oscillates uniformly along the
c axis, strong radiation of EM waves occurs, which can be
accounted for using the boundary condition24,25

By(ω) = ∓Ez(ω)

Z(ω)
, Z= 2√

εdLz

[|kω| − 2i
π

kω ln 5.03
|kω|Lz

] , (3)

where − (+) corresponds to the edge x = Lx (x = 0), and
kω = ω

√
εd with εd the dielectric constant of the dielectric

medium outside the IJJs. For stacks with height Lz � 100 μm,
Z � 1. For nonuniform oscillations along the c axis, the
radiation is weak and we can use the nonradiating boundary
condition By,l = ±IextLx/2 with Iext the bias current. We as-
sume that the IJJs stack is sandwiched by two good conductors,
such that the tangential current inside the conductor is zero.
We use the boundary condition By,l=1 = By,l=0 and similarly

for l = N , which corresponds to ∂zBy(z) = 0 in the continuum
limit.

III. INSTABILITY OF THE HOMOGENEOUS SOLUTION

In experiments, one first ramps up the bias current and when
current exceeds the critical one, the IJJs switch into the resistive
state. One then reduces the current to the target value where
radiation is observed. In the resistive state with the current
close to the critical one, the phase ϕl oscillates homogeneous
along the x direction. The phases may be either uniform along
the c axis or different in different junctions. Here we show
that the solution with ϕl homogeneous along the x direction
is unstable when the bias current is reduced and that only the
cavity modes with a long wavelength q � 1 along the c axis
can be excited.

For the uniform solution along the c axis ϕl = ϕ0, the
solution to Eqs. (1) and (2) in the THz frequency region ω � 1
can be written as ϕ0 = ωt + g(x) exp(iωt) with

g(x) = 1

−ω2 + iβcω

[
i − cos [(x−Lx/2) ω]

Z sin (Lxω/2) −i cos (Lxω/2)

]
.

(4)

The first term in the square bracket of Eq. (4) is due to
plasma oscillation and the second term is due to radiation.
The frequency ω can be tuned by the bias current Iext

(or voltage).
To reveal the instability of the homogeneous solution, we

add small perturbations to the uniform solution ϕl = ϕ0 + θl ,
By,l = B0 + B̃y,l with B0 = ∂xϕ0, θl � 1 and B̃y,l � 1. Since
the perturbations are nonuniform along the c axis, the radiation
contribution can be neglected, thus we can use the nonradiating
boundary condition, ∂xθl = 0 and B̃y,l = 0. The solution for
θl and B̃y,l can be written as

θl(x,t) =
∑
m,q,p

cos(ql) cos (kmx) ap(m,q) exp[i(pω − �)t]

(5)

B̃y,l(x,t)=
∑
m,q,p

cos(ql) sin (kmx) bp(m,q) exp[i(pω − �)t],

(6)

with km = mπ/Lx , q = nπ/(N + 1) and p an integer. The
perturbations with frequency � couple with the nonlin-
ear Josephson current sin ϕl and induce frequency har-
monics pω − �.26 From Eq. (2), we have bp = −c2

qkmap

with the plasma velocity cq(ω) = [1 + 2ζ (1 − cos q)/(1 +
βabiω)]−1/2. Substituting Eqs. (5) and (6) into Eqs. (1) and (2),
and comparing each frequency component, we obtain an
equation for perturbations

[
ω2

m(ωp) − ω2
p + iωpβc

]
ap + ap−1 + ap+1

2

−Ap−2 − Ap

2i
= 0,

where ω2
m = c2

qk
2
m, ωp = pω − �, and Ap = 2

Lx

∫ Lx

0 dx

g(x)θp(x) cos(kmx). Because of the in-plane damping βab, ω2
m

is a complex number. We can split ω2
m into real and imaginary
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parts ω2
m(ω) = �2

m(ω) + iBab(ω)ω, with

�2
m(ω) = 1 + 2ζ (1 − cos q) + β2

abω
2

[1 + 2ζ (1 − cos q)]2 + β2
abω

2
k2
m, (7)

Bab(ω) = 2ζ (1 − cos q)βab

[1 + 2ζ (1 − cos q)]2 + β2
abω

2
k2
m. (8)

�m(ω) is the cavity resonance frequency for the mode (km,q).
For the nonuniform perturbations along the c axis q > 0, the
effective in-plane damping is enhanced according to Bab. It is
this enhanced in-plane dissipation that prevents the excitation
of a nonuniform cavity mode along the c axis with a large q

as revealed later.
In the region of ωm � 1 and βc � 1, we have |�2

m − ω2
p=0|� 1. Thus the dominant wave vector of θp(x) is km. The

dominant wave vector for g(x) is kx = 0 because the radiation
contribution is small. Then we can approximate θp(x)g(x)
by ḡθp (km) cos(kmx) with ḡ the spatial average of g(x),
because other modes are negligibly small. Neglecting the small
dissipation contribution βc in ḡ, we have

ḡ

2i
= 1

−2ω2
+ 1

Lxω3 [cot (Lxω/2) + Zi]
= 1

−2ω2
+Rr+ iRi,

where Rr is the real part of the radiation contribution and Ri

is the imaginary part. We then have Ap = ḡap. The equation
for perturbations then can be written as[

�2
m − ω2

p + Rr − 1

2ω2

]
ap + i[ωp(βc + Bab) + Ri]ap

+ 1

2
(ap−1 + ap+1) + 1

2ω2
ap−2 − Rrap−2 − iRiap−2 = 0.

(9)

The radiation shifts the resonance frequency by Rr and also
the contribution to the damping through Ri . Both Rr and Ri

have the order 1/ω2 � 1 for Lx ∼ 1. The resonant frequency
for perturbations with a wave vector (km,q) is � = ωc with ωc

given by ω2
c = �2

m(ωc) + Rr (ω) − 1
2ω2 . ωc is also the cavity

frequency for the cavity mode (km,q).
We then show that the parametric instability develops at a

voltage when ω = 2ωc + δ with δ � 1. As � ≈ �m ≈ ωc, the
dominant frequency components are p = 0 and 1. The other
frequency harmonics (p > 1 or p < 0) are small because their
amplitude is of order ([(2p − 1)2 − 1]�2

m)−1a0,1 � a0,1 thus
can be neglected. Then Eq. (9) can be written as

[−2ωc�δ + i (−ωc (βc + Bab) + Ri)] a0 + a1/2 = 0, (10)

[−2ωc (δ − �δ) + i (ωc (βc + Bab) + Ri)] a1 + a0/2 = 0,

(11)

with � = �δ + ωc and �δ � 1. The spectrum of the perturba-
tions � is given by equating the determinant of the coefficients
matrix in Eqs. (10) and (11) to zero, which yields

�δ =
(

− iBab

2
− iβc

2
+ δ

2

)

±
(

i

4ωc

− i

2
ωcδ

2 − δRi + i

2ωc

R2
i

)
.

The homogeneous solution along the x direction is unstable
when Im[�δ] > 0, which gives

δ2 < − (Bab (ωc) + βc)

ωc

+ 1

2ω2
c

+ 1

ω2
c

R2
i . (12)

From this expression, it becomes clear that the radiation tends
to destabilize the homogeneous solution, albeit with a small
impact Ri ∼ 1/ω2 � 1. More importantly, both the effective
in-plane dissipation Bab and dissipation along the c axis βc

tend to stabilize the solution homogeneous along the x axis.
For long wavelength perturbations along the c axis, ζq2 � 1,
the dissipation is weakBab (ωc) + βc < 1/(2ωc) thus the cavity
mode (km,q) can be excited. By using Eqs. (7), (8), and
(12), the condition for the excitation of the mode (km,q) for
βab > 0 is

q2 < − 1

ζ

(
βc − 1

2ωc

) (
1+β2

abω
2
c

)(
ω2

cβab + βc − 1

2ωc

)−1

.

(13)

The stability diagram is presented in Fig. 1 with the given
parameters. Only the cavity mode with long wavelength along
the c axis can be excited. As q = nπ/(N + 1), for N ≈ 103

used in experiments, only the uniform cavity n = 0 can be
excited. For a larger N > 104, modes with finite but small n

can also be excited.
For the solution that is homogeneous along the x axis but

nonuniform along the c axis, the radiation contribution can
be neglected and the phase oscillates according to ϕl = φl +
ωt + i/(−ω2 + iβω), where φl accounts for the phase shifts
in different junctions and is randomly distributed. The stability
analysis is the same as the case of uniform solution, but now
there is no radiation contribution Rr = Ri = 0. The stability
diagram is the same as that in Fig. 1 because the radiation
contribution is small for Lx ≈ 80 μm used in experiments.

For a small crystal proposed in Ref. 25, Lx ≈ 4 μm,
ωc ≈ 150. The cavity modes cannot be excited for such a high
frequency according to Eq. (13). The homogeneous solution
along the lateral directions is thus stable. In the single junction
limit N = 1, the parametric instability leads to the excitation
of solitons, which manifests as the zero-field current step in IV
characteristics.27

For nonuniform perturbations along the c axis, the in-
plane current Jx,l is induced according to the Ampere’s law
4πJx,l/c = −(By,l+1 − By,l)/s where we have neglected the
displacement current.14 Jx,l has contribution from the normal
current and supercurrent Jx,l = σab

�0
2πc

∂tPl + c�0

8π2λ2
ab
Pl where

Pl = ∂x�l − 2πAx/�0 is the in-plane superconducting mo-
mentum with superconducting phase �l and vector potential
Ax . The in-plane dissipation in units of ωJ

4π
( �0

2πλcs
)2 is

Pab(km,q,ω) = 2 sin2(q/2)βabω
2

(βabω)2 + 1

∣∣c4
q

∣∣ k2
m

∣∣ap (km,q)
∣∣2

, (14)

which is much larger than the dissipation along the
c axis Pc(km,q,ω) = 1

2ω2βc|ap (km,q) |2 for q’s when
sin2(q/2) > [(βabω)2 + 1]/[4βab|c4

q |k2
m]. Thus the nonuniform

perturbations with a large q quickly die out due to the strong
in-plane dissipation Pab, while for perturbations with q � 1
the in-plane dissipation is weak or absent, and the perturbations
lead to the excitation of the cavity mode with a small q.
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FIG. 2. (Color online) Snapshots of the electric field (first row), magnetic field (second row), and Josephson current sin(ϕl) (third row)
without the in-plane dissipation βab = 0 [(a)–(d)] and with the in-plane dissipation βab = 0.2 [(e)–(f)]. When βab = 0, various cavity modes
(m,n) = (7,5) in (a), (m,n) = (9,3) in (b), (m,n) = (7,2) in (c) and (m,n) = (4,1) in (d) are excited when the bias current is swept. For
βab = 0.2, only the modes with n = 0, [(m,n) = (1,0) in (e), other cavity modes with m > 1 are not shown here] are excited for N = 103.
For N = 104, irregular patterns of the EM fields are excited even with the in-plane dissipation βab = 0.2. The supercurrent forms blocks with
alternating sign between neighboring blocks indicating ±π phase jumps at the interface of each block. We use Lx = 0.4λc, ζ = 7.1 × 104 in
simulations.

IV. NUMERICAL SIMULATION

We also perform numerical simulations by solving Eqs. (1)
and (2) with the nonradiation boundary condition By,l =
±IextLx/2 to check the above analytical results. For numerical
details, see Appendix A. Let us first present the results without
in-plane dissipation βab = 0 as shown in Figs. 2(a)–2(d). Upon
sweeping the current, various cavity modes both along the
x axis and c axis are excited for N = 103. It is difficult
to excite the uniform mode q = 0 due to the existence of
other competing cavity modes in the crystal with this large
N at a given voltage. Interestingly, when we turn on the
in-plane dissipation by putting βab = 0.2, only the cavity
modes uniform along the c axis can be excited when the
current is swept as shown in Fig. 2(e), consistent with the
above analytical results. The corresponding IV characteristics
are shown in Fig. 3. At the cavity resonances, a large amount
of energy is pumped into the plasma oscillation and current
steps are induced, and the radiation power is enhanced.

For N � 4000 in simulations, only the uniform mode can
be excited due to the in-plane dissipation, consistent with the
results in Fig. 1. For an even larger number of IJJs, such
as N = 104, irregular patterns of EM fields are developed
in simulations for the adopted parameters, see Fig. 2(f). It
is consistent with the analytic result summarized in Fig. 1
where cavity modes with n = 0,1,2 can be excited. Other
mechanisms to synchronize all junctions are needed in order
to achieve strong radiation for thick mesas. Here, we note that
for small values of N < 100, the voltage corresponding to
various cavity modes is discrete because cq is well separated

for different values of n, thus one can select the cavity modes
simply by tuning the voltage.

For βab = 1.0, we found numerically that the uniform
plasma oscillation with q = 0 becomes stable again for
N = 104. This suggests that stronger in-plane dissipation
is important to achieve uniform plasma oscillation. βab

increases with temperature, while on the other hand thermal
fluctuations tend to destroy the uniform oscillation. There-
fore the synchronization is optimal at some intermediate
temperatures.

One peculiar feature in Fig. 2 is that the supercurrent
forms blocks in space, where the current changes sign between

FIG. 3. (Color online) IV curve obtained with βab = 0.2 and
N = 103. Other parameters are the same as those in Fig. 2. The
radiation power is estimated using Sr = |E2

ac|/(2|Z|) and εd = 1
where Eac is the averaged ac electric field at edges.28 The maximal
power at the first cavity mode m = 1 is about 2800 W/cm2. The
experimental measured IV deviates significantly from the theoretical
one in the high bias region due to the strong self-heating effect.
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neighboring blocks, or equivalently at nodes of the oscillating
electric field. This means that there is a ±π phase jump
or ±π phase kink at the interface of blocks. The phase
kinks stack along the c axis with alternating signs, such as
(. . . ,1, − 1,1, − 1, . . .)π . The state with the phase kink with
q = 0 was first suggested in Refs. 10 and 11 as a possible
mechanism for strong THz radiation observed in experiments.
A characterization of the kink state with a general q is
presented in Appendix B.

V. DISCUSSIONS

One should also check the stability of the excited cavity
modes. This has already been done in Refs. 28–30 and
found that the kink states associated with cavity modes
with q = 0 are stable for a small N , which is also con-
firmed by the results in Fig. 2. For a large N , it was
shown in Ref. 30 that long wavelength instability devel-
ops and the kink states with uniform plasma oscillation
q = 0 become unstable. This is consistent with the results
in Fig. 2(f).

When a strong magnetic field is applied parallel to the
ab plane, the Josephson vortices (JVs) are induced. The JVs
favor the triangular lattice in the low velocity region due to the
strong intervortex repulsion in a long IJJs stack.31 As shown in
Appendix C, our simulations show that the in-plane dissipation
mechanism becomes insufficient to achieve the rectangular
JVs lattice and in-phase plasma oscillation, consistent with
the analytical results in Ref. 17. A new mechanism for
synchronization is needed in this case.
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APPENDIX A: NUMERICAL METHOD

Here we present the numerical method to solve Eqs. (1)
and (2). The model is discrete inherently along the c axis, and
we only need to discretize along the x axis. The phase ϕ is
defined at nodes (j,l), and the magnetic field By is defined at
nodes (j + 1/2,l) with integer j and l, see Fig. 4. The grid
size along x is dx, and the time step is dt . Equation (1) then

FIG. 4. (Color online) Schematic view of the numerical grids.

becomes

ϕm+1
l,j + ϕm−1

l,j − 2ϕm
l,j

dt2
+ βc

ϕm+1
l,j − ϕm−1

l,j

2dt

+ sin ϕm
l,j = Bm

l,j+1/2 − Bm
l,j−1/2

dx
. (A1)

We know ϕ and By at the mth time step, and we can obtain
ϕ at the (m + 1)th step directly from Eq. (A1). We use an
implicit method to discretize Eq. (2). After some simple
manipulations, we have

ϕm+1
l,j+1 − ϕm+1

l,j−1 + ϕm
l,j+1 − ϕm

l,j−1

2dx

+βab

(
ϕm+1

l,j+1 − ϕm+1
l,j−1

) − (
ϕm

l,j+1 − ϕm
l,j−1

)
dtdx

+βab

Bm
l,j+1/2

dt
− (1 − ζ
(2))

Bm
l,j+1/2

2

= (1 − ζ
(2))
Bm+1

l,j+1/2

2
+ βab

Bm+1
l,j+1/2

dt
. (A2)

Equation (A2) can be written as a matrix equation. Inverting
the matrix at the right-hand side of Eq. (A2) using ϕm+1

l,j

obtained from Eq. (A1), we then obtain Bm+1
l,j+1/2. The electric

field is given by Em
l,j = (ϕm+1

l,j − ϕm−1
l,j )/(2dt).

APPENDIX B: CHARACTERIZATION OF THE KINK
STATE WITH A GENERAL q

In the kink state, ϕl can be written as

ϕl = ωt + ϕs,l(x) − i
∑
m,q

Am,q cos(kmx) cos(ql) exp(iωt),

(B1)

where the rotating phase at the right-hand side (rhs) of Eq. (B1)
is due to the voltage, the second term at the rhs is the static
phase kink, and the last term at the rhs is the cavity mode
both along the c axis and x axis. For stacks with a large N ,
there are many cavity modes (m,q) corresponding to a same
frequency ω, thus a summation over all modes are needed.28

The magnetic field is

Bl = Bs,l(x) − i
∑
m,q

Cm,q sin(kmx) cos(ql) exp(iωt), (B2)

where Bs,l is the static magnetic field due to the phase kink. We
have neglected the frequency harmonics in Eqs. (B1) and (B2),
which is valid when Am,q < 1. From Eq. (2) we obtain Cm,q =
−Am,qkmc2

q and [1 − ζ
(2)]Bs,l(x) = ∂xϕs,l(x). Substituting
Eqs. (B1) and (B2) into Eq. (1), we obtain a closed equation
for ϕl . For the frequency component ω, we have[

ik2
mc2

q − (βcω + iω2)
]
Am,q cos (kmx) cos (ql) = −ieiϕs,l .

(B3)

Projecting exp(iϕs) into the cavity mode (m,q), we obtain the
amplitude of the plasma oscillation

Am,q = −iFm,q

ik2
mc2

q − (βcω + iω2)
, (B4)
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with the coupling between the cavity mode and phase kink

Fm,q = α

NLx

N∑
l=0

∫
exp(iϕs,l) cos (kmx) cos (ql) dx, (B5)

where α = 2 for q = 0 and α = 4 for q > 0. When the voltage
is tuned close to the cavity resonance, the amplitude of plasma
oscillation is enhanced. The linewidth of the resonance is
determined by βab and βc. The IV characteristics are given
by Iext = βcω + 〈sin(ϕl)〉x,l,t where 〈· · ·〉x,l,t denotes average
over space and time. We then obtain

Iext = βcω + Re

[∑
m,q

|Fm,q |2/(2α)

ik2
mc2

q − (βcω + iω2)

]
. (B6)

Now let us consider the static component

∂2
xϕs(x,z) = iζ

2

(2)

∑
m,q

[
Am,qcos(kmx) cos(ql)e−iϕs,l

]
. (B7)

The solution of ϕs,l depends on the spatial profile of the plasma
oscillation. To present the analytical results, we consider a case
where the plasma profile has well-defined nodes as shown
in Figs. 2(a)–2(d), where we may approximate the spatial
profile by a dominant mode A cos(k1x) cos(ql). Without loss
of generality, we have taken the m = 1 mode. The variation
of ϕs,l along the c axis is ϕs,l = (−1)lϕs0 except for the node
region of the plasma oscillation, which is much faster than the
plasma mode q. We may approximate Eq. (B7) as

∂2
xϕs0 = 2ζRe[A]cos(k1x) cos(ql) sin(ϕs0). (B8)

Equation (B8) is invariant under the transformation x ←
Lx − x and ϕs0 ← π − ϕs0, which gives the static π phase
kink along the x axis at the nodes of oscillating electric
field when cos(k1x) = 0. The width of the kink is λk =
1/

√
2ζRe[A]| cos(ql)|, which is small λk � 1 except for the

node region of cos(ql) ≈ 0. The kink in the lth junction can be

excited only when λk � Lx . Near the nodes of the oscillating
Ez or By along the c axis where cos(ql) ≈ 0, λk may be
comparable to Lx , thus no kink exists in the node region,
consistent with results in Fig. 2. When cos(ql) changes sign,
ϕs0 acquires a π shift, because Eq. (B8) is invariant when
cos(ql) ← − cos(ql) and ϕs0 ← π + ϕs0. Thus there are ±π

phase jumps at the nodes of oscillating electric fields both
along the c and x axis.

APPENDIX C: EFFECT OF THE IN-PLANE DISSIPATION
ON THE DYNAMICS OF JOSEPHSON VORTICES

When a strong magnetic field is applied perpendicular to the
c axis of a BSCCO single crystal, the Josephson vortices are
induced and form the triangular lattice. Driving by the Lorentz
force induced by a transport current, the Josephson vortices
move and excite Josephson plasma. The motion of the Joseph-
son vortex lattice provides an alternative routine to achieve a
strong THz radiation.32 Due to the strong intervortex repulsion,
the Josephson vortices favor the triangular lattice33,34 and the
radiation is weak. The rectangular lattice is observed in a
small mesa35 where the surface potential favors the rectangular
lattice. Here we investigate the possible synchronization of the
Josephson vortices by the in-plane dissipation.

The simulation results are presented in Fig. 5. When the
bias current increases, the Josephson vortices evolve toward a
rectangular lattice. The rectangular lattice is achieved only by
a high bias current, which is difficult to realize experimentally
due to the strong self-heating effect. Our simulations are
consistent with the analytical results obtained by Koshelev and
Aranson,17 who found that the rectangular lattice can only be
stable in a high velocity region. The in-plane dissipation does
not stabilize the in-phase plasma oscillation or rectangular
lattice of Josephson vortices due to the strong intervortex
repulsion. The realization of the in-phase oscillation in the case
of Josephson vortices is still an open problem and requires a
new mechanism.

FIG. 5. (Color online) Snapshots of the Josephson current sin(ϕl) in the flux-flow region with the in-plane dissipation βab = 0.2. Here the
applied magnetic field is Ba = 1 T, Lx = 0.1λc, N = 500, ζ = 7.1 × 104. The core of Josephson vortex is located at ϕ = (2m + 1)π .
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