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We study the physics of the superconducting variant of Weyl semimetals, which may be realized in multilayer
structures comprising topological insulators and superconductors. We show how superconductivity splits each
Weyl node into two. The resulting Bogoliubov-Weyl nodes can be pairwise independently controlled, allowing
to access a set of phases characterized by different numbers of bulk Bogoliubov-Weyl nodes and chiral Majorana
surface modes. We analyze the physics of vortices in such systems, which trap zero-energy Majorana modes
only under certain conditions. We finally comment on possible experimental probes, thereby also exploiting the
similarities between Weyl superconductors and two-dimensional p + ip superconductors.
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I. INTRODUCTION

The discovery of topological insulators has stimulated a
broad inquiry into topological features of electronic energy
bands. Such features are present not only in fully gapped
systems but also in gapless ones. Of particular recent interest
are semimetals (zero-gap semiconductors) with Fermi points,
where conduction and valence bands touch at isolated mo-
menta in the Brillouin zone. In three dimensions, a linear
touching between two nondegenerate bands is a Weyl point1–3

and is completely robust to all perturbations that do not
break translational symmetry. Such Weyl nodes are predicted
to lead to a variety of measurable consequences, including
unusual surface states whose Fermi surface is open (“Fermi
arcs”), unusual Hall effects, and other unusual transport
features, and have been studied in a number of systems.3–17

Generally, Weyl points require a system with strong spin-
orbit coupling, and in addition the condition that the bands
be nondegenerate requires that at least either inversion or
time-reversal symmetry be broken.9,18 This might occur in a
bulk material through magnetic order or a noncentrosymmetric
crystal structure, but Weyl points can also be engineered. In
particular, an appropriate superlattice of alternating normal
and topological insulators has been shown to display Weyl
points.5,19

Weyl fermions have been discussed extensively in the
context of the A phase of 3He, which also exhibits Weyl
quasiparticles. 3He also supports the B phase in which
quasiparticles are fully gapped, but which nevertheless pos-
sesses interesting topological properties.2 In this paper, we
explore the connection of Weyl semimetals to Weyl and
topological superconductors, and, more generally, the effects
of superconductivity on Weyl semimetals. Specifically, we
consider another class of engineered structures, in which
the normal insulator of the aforementioned superlattice is
replaced by a (conventional, s-wave) superconductor. Simple
arguments show that only the Weyl semimetal produced by
time-reversal symmetry breaking, and not the one produced
by non-centro-symmetry, leads to nontrivial superconducting
states. Focusing on the former, we find that a variety of
superconducting phases, with and without Weyl points, and
with varying topological features, can be tuned, depending
upon the degree of time-reversal symmetry breaking and the

magnitude of the superconducting proximity effect upon the
topological insulating layers of the superlattice.

Each of these phases may be characterized in a number of
ways, which we discuss in the main text. In the bulk, they may
be parametrized by the number, location, and chirality of Weyl
points. At surfaces, depending upon both the phase and the
surface orientation, one or several branches of chiral Majorana
states may be present, and extend over a varying range of
momenta in the surface Brillouin zone. Gapless Majorana
states may also be present at vortex cores, again depending
in detail upon vortex orientation and phase. These Majorana
modes are relatives of those proposed for use in quantum
computing in two-dimensional topological superconductors.

The paper is organized as follows. In Sec. II, we discuss
how Weyl superconductors can be engineered in superlattices
of superconductors and topological insulators, and derive
the corresponding model. Section III is then devoted to
the characterization of this Hamiltonian. We analyze how
superconductivity acts on Weyl electrons in the bulk and
discuss the related topological surface physics. Based thereon,
a topological phase diagram is constructed. In Sec. IV, we
analyze the physics of vortices, which under certain conditions
can bind Majorana zero modes. We close with some proposals
for experimental signatures based on thermal and electrical
transport, which are given in Sec. V.

II. SUPERLATTICE

A Weyl semimetal can be understood as an intermediate
phase between a normal insulator (NI) and a topological
insulator (TI), arising due to a perturbation of the transition
between the two.18 One pathway to engineer Weyl semimetals
is thus the stacking of layers of topological and normal
insulators.5 In the very same spirit, a Weyl superconductor
arises upon alternating thin layers of topological insulators
and standard s-wave BCS superconductors (SC). In such a
structure, sketched in Fig. 1, the proximity effect induces
superconductivity in the surface states of the TI layers.

As remarked in the Introduction, to realize a Weyl
semimetal requires breaking of either time reversal or inversion
symmetry. In the bulk of this paper, we focus on the time
reversal symmetry breaking case, as it leads to much more
nontrivial results in the presence of superconductivity. Indeed,
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FIG. 1. The proposed heterostructure for an experimental real-
ization of Weyl superconductors. Magnetically doped layers of a
topological insulator (TI) are alternated with layers of an s-wave
superconductor (SC). The period of the superlattice is d . The arrows
in the TI layers depict their magnetization, which is along the
superlattice axis.

in Appendix A, we show that when inversion symmetry is
instead broken, while time reversal is preserved, superconduct-
ing proximity effect leads directly to a gapped, trivial phase.
Specifically, we model the topological insulator layers by a sin-
gle Dirac node per surface, with an imposed Zeeman splitting
that may be considered to arise from an exchange coupling to
randomly distributed magnetic impurities ferromagnetically
polarized perpendicular to the TI layers, while the coupling
between the TI surface modes and the magnetic field of the
impurities is neglected as usual in such systems.20–24 We
assume the individual layers to be thin, such that sample is
globally phase coherent. Furthermore, neighboring surface
layers are tunnel coupled. Longer-range tunneling is assumed
to be negligible.

A. Model Hamiltonian

Working in units of h̄ = 1, we model the system by the
Hamiltonian

H =
∑
�k⊥,i,j

c
†
�k⊥i

Hij c�k⊥j
+ HSC, (1)

Hij = vF τ z (ẑ × �σ ) · �k⊥ δi,j + m σz δi,j

+ tS τ x δi,j + 1

2
tD τ+ δi,j+1 + 1

2
tD τ− δi,j−1, (2)

HSC =
∑
�k⊥,i

�
(
c

top
�k⊥↑i

†c
top

−�k⊥↓i

† + cbot.
�k⊥↑i

†cbot.
−�k⊥↓i

†) + H.c., (3)

where c�k⊥i = (ctop
�k⊥↑i

,c
top
�k⊥↓i

,cbot.
�k⊥↑i

,cbot.
�k⊥↓i

)T comprises annihilation
operators for electrons of spin up and down in the top and
bottom surfaces of layer i with in-plane momentum �k⊥. The
unit vector along the perpendicular axis is ẑ. The Fermi
velocity of the Dirac nodes is vF , for simplicity considered
to be the same on each surface, and Pauli matrices �σ act on
the real spin. The additional pseudospin for the top/bottom
surface degree of freedom denoted by the Pauli matrices
�τ . The Zeeman mass (half the Zeeman splitting) is m, the
tunneling between top and bottom surfaces of the same TI
layer is denoted by tS , and the tunneling between different
TI layers is tD . The proximity induced superconductivity
is characterized by � = |�|eiϕ , with ϕ being the globally
coherent superconducting phase.

We proceed by Fourier transforming the Hamiltonian along
ẑ, where the superlattice constant is d. After a canonical
transformation,

σ± → τ zσ± , τ± → σ zτ± , (4)

and subsequent diagonalization in the �τ subspace, the Hamil-
tonian reads

H =
∑
�k,l=±

c
†
�kl
Hl c�kl

+
∑
l=±

HSC,l, (5)

H± = vF (ẑ × �σ ) · �k + M±(kz) σ z, (6)

M±(kz) = m ±
√

t2
S + t2

D + 2 tS tD cos(kzd), (7)

HSC,± =
∑

�k
� c

†
�k↑±c

†
−�k↓± + H.c., (8)

where c�k± = (c�k↑±,c�k↓±)T is now composed of the appropriate

eigenoperators resulting from the diagonalization in the �τ
subspace, and �k being the three-dimensional momentum.
Because the proximity induced superconductivity does not mix
the two �τ sectors, we can analyze the corresponding subspaces
separately.

B. Normal state

A Weyl node corresponds to the vanishing of an eigenen-
ergy of (5) for one momentum. In the case without super-
conductivity analyzed in Ref. 5, and assuming without loss
of generality that m > 0 and tS/tD > 0, two Weyl nodes of
opposite chirality can appear in the spectrum of H−. They are
located at �k = (0,0,π/d ± k0)T with

k0 = 1

d
arccos

[
1 − m2 − (tS − tD)2

2 tS tD

]
, (9)

as long as the condition

m2
c1 = (tS − tD)2 < m2 < (tS + tD)2 = m2

c2 (10)

is fulfilled. For m2 < (tS − tD)2, H− describes a trivial
insulator, while m2 > (tS + tD)2 corresponds to a quantum
anomalous Hall insulator. The Hamiltonian H+, on the other
hand, always describes a trivial insulator. It is adiabatically
connected to the case m = 0 that is topologically trivial.

C. Superconducting state

For the superconducting case, we keep m > 0 and tS/tD >

0, although a different choice does not change our results qual-
itatively. We start by analyzing the subspace corresponding to
τ z = −1, which in the normal case potentially exhibits Weyl
nodes. Technically, superconductivity is taken into account
by introducing a particle-hole pseudospin on which the Pauli
matrices �κ act, as well as the corresponding Nambu spinors.
Using ψ�k = (c�k↑−,c�k↓−,c

†
−�k↓−,c

†
−�k↑−)T , the τ z = −1 sector of

the Hamiltonian can be recast into the form

H− = 1

2

∑
�k

ψ
†
�k

[
(vF (ẑ × �σ ) · �k + M−(kz)σ

z)1�κ

+ σ z 1

2
(�κ+ + �∗ κ−)

]
ψ�k . (11)

Diagonalization of the �κ subspace yields

H− = 1

2

∑
�k,n=±



†
�k,n

Hn�
− 
�k,n

, (12)
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where

H±�
− = vF (ẑ × �σ ) · �k + M±�

− (kz) σ z, (13)

M±�
− (kz) = (m ± |�|) −

√
t2
S + t2

D + 2 tS tD cos(kzd), (14)

and


�k,+ = (
d�k ,d

†
−�k

)T
, 
�k,− = (

f�k ,f
†
−�k

)T
, (15a)

d�k = 1√
2

(
e−iϕ/2 c�k↑− + e+iϕ/2 c

†
−�k↓−

)
, (15b)

f�k = 1√
2i

(
e−iϕ/2 c�k↑− − e+iϕ/2 c

†
−�k↓−

)
. (15c)

In the basis of Bogoliubov quasiparticles d�k and f�k , the
Hamiltonian H− thus takes a similar form to a normal Weyl
semimetal upon replacing m → m ± |�|.

The subspace corresponding to τ z = +1 can be analyzed
in the same way, which leads to a Hamiltonian

H±�
+ = vF (ẑ × �σ ) · �k + M±�

+ (kz) σ z, (16)

M±�
+ (kz) = (m ± |�|) +

√
t2
S + t2

D + 2 tS tD cos(kzd). (17)

For m > |�|, this subspace is adiabatically connected to the
topologically trivial case m = |�| = 0, and Weyl nodes can
only appear in the τ z = −1 sector. By analogy to the normal
case, we find that for m > |�|, the spectrum of Eq. (12) has up
to four Bogoliubov-Weyl nodes of pairwise opposite chiralities
at �k = (0,0,π/d ± k�

± )T with

k�
± = 1

d
arccos

[
1 − (m ± |�|)2 − (tS − tD)2

2 tS tD

]
(18)

if the respective conditions

mc1 < m ± |�| < mc2 (19)

are fulfilled. For m ± |�| < mc1, the respective mode is
adiabatically connected to the case m = |�| = 0 and thus
topologically trivial.

If m < |�|, each �τ sectors contains one topologically trivial
mode as well as one mode that potentially has Weyl nodes. The
latter now exist in the range

mc1 < |�| ± m < mc2, (20)

at the same momenta �k = (0,0,π/d ± k�
± )T with

k�
± = 1

d
arccos

[
1 − (|�| ± m)2 − (tS − tD)2

2 tS tD

]
, (21)

and the topologically trivial regime corresponds to |�| ±
m < mc1.

III. CHARACTERIZATION OF THE ACCESSIBLE PHASES

Having recast the Weyl superconductor Hamiltonian into a
more convenient form, we will now analyze it in detail. For
simplicity, we focus on the case m > |�|, when all of the
interesting physics happens in H− defined in Eq. (12). As the
discussion in the last section implies, the case m < |�| follows
upon interchanging the roles of m and |�| and considering
different subspaces of the full Hamiltonian.

We first recall some results for the limiting case |�| → 0, in
which a normal Weyl semimetal is recovered [see Fig. 2(a)].5

FIG. 2. Evolution of the masses M+�
− (upper curve) and M−�

−
(lower curve) defined in Eq. (14) upon increasing |�|. For |�| = 0 and
mc1 < m < mc2, the system has two Weyl nodes of chiral electrons,
located at the sign changes of M±�

− . With superconductivity, each
Weyl nodes splits into two Bogoliubov-Weyl nodes of equal chirality
and opposite particle-hole symmetry. Their separation grows with
increasing |�| from (a) to (d).

If the Zeeman mass m is small, m < mc1, the system is a
topologically trivial insulator. When m reaches mc1, two Weyl
nodes of opposite chirality appear at �K = (0,0,π/d)T . Close
to these points, �k = �K + �q, the dispersion is roughly given by

E ≈ ±vF �σ · �q, (22)

where ± defines the chirality of the node.
Upon increasing m, the Weyl nodes move in opposite

directions along the k̂z axis and to the momenta �k =
(0,0,π/d ± k�=0

± )T . For fixed kz, the combined Hamiltonians
H±�=0

− describe a gapped two-dimensional Dirac electron. The
mass of the latter changes sign at the Weyl nodes. The sign
change in the Dirac mass signals a quantum Hall transition.
For small |kz|, where the mass is negative, the system is still in
the topologically trivial regime. The two-dimensional systems
corresponding to momenta outside the Weyl nodes, however,
are in topologically nontrivial quantum Hall state. Chiral
surface modes appear on any surface that is not perpendicular
to ẑ for each value of kz between the Weyl nodes. This
restriction gives rise to so-called Fermi arcs.

A. Effect of pairing on nodes

When superconductivity is turned on, the Hamiltonian
decomposes into two copies of itself, acting on Bogoliubov
quasiparticles rather than electrons. This is due to the fact that
superconductivity splits each electronic state into a particle-
hole symmetric and particle-hole antisymmetric state with an
energy separation ∼2 |�|. For the Hamiltonian H−, these new
states correspond to d�k and f�k defined in Eq. (15).

Remarkably, the system does not develop a supercon-
ducting gap, but rather each Weyl node splits into two
separated Bogoliubov-Weyl nodes of opposite particle-hole
symmetry [see Fig. 2(b)]. Both Bogoliubov-Weyl nodes have
the same chirality, which is inherited from the initial electronic
Weyl node, and in this sense, half of the topological charge
of the initial Weyl node. The particle-hole symmetric and
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particle-hole antisymmetric subspaces are decoupled. For
fixed kz, each subspace describes a spinless p + ip-
superconductor, which is known to have both a topologically
trivial (“strong pairing”) and nontrivial (“weak pairing”)
phases.28 The transition between the strong and weak pairing
phases is still marked by the Weyl nodes that separate trivial
state at small |kz| from a nontrivial state at large |kz|.

If superconductivity is further increased, the distance
between the particle-hole symmetric and antisymmetric Weyl
nodes grows. This increases the topologically nontrivial
momentum range for one of them (the H+�

− subspace), and
shrinks it for the other one (the H−�

− subspace). For H−�
− ,

the Weyl nodes are pushed back towards �k = (0,0,π/d)T ,
where they annihilate. The corresponding subspace is left
in the topologically trivial insulating state. The Weyl nodes
of H+�

− move towards �k = 0. After their annihilation at the
origin, they leave the entire Brillouin zone of this subspace
in a topologically nontrivial insulating state. The motion
of the Weyl nodes upon increase of |�| is followed in
Fig. 2. Specifically, Fig. 2(b) depicts the situation where both
subspaces have topologically trivial and nontrivial momenta.
Figure 2(c) corresponds to an order parameter amplitude |�|
large enough to trivially gap out the H−�

− subspace, while the
H+�

− subspace still has Weyl nodes. Figure 2(d) corresponds
to even larger |�|, such that all Weyl nodes have annihilated.

B. Majorana surface states

For the topologically nontrivial momentum range of kz,
surface states are expected. We model a surface perpendicular
to ŷ by replacing m and |�| by some smooth functions of
y with m(y),|�|(y) = const for y < 0, and m(y),|�|(y) → 0
for y → +∞ (which realizes a trivial insulator equivalent to
the vacuum). The Hamiltonian

H+�
− = vF

(
kxσ

y + i
∂

∂y
σ x

)
+ M+�

− (kz,y) σ z, (23)

indeed, has eigenstates

�surf(kx,kz,y) = 1

N e
∫ y

0 dy ′ M+�
− (kz,y

′)/vF

(
e−iπ/4

eiπ/4

)
, (24)

which are normalizable and exponentially localized at the
surface only for momenta kz with M+�

− (kz) > 0 inside the
sample, as anticipated. N is the corresponding normalization
factor. The dispersion of the surface state is linear, E =
vF kx/2.

The “Majorana-ness” of this state can be understood by
counting. In particular, recall that the Nambu construction,
Eq. (11), nominally doubles the number of components of
the fermionic fields. This implies that ψk and ψ−k are not
independent. Thus corresponding to Eq. (24) there is one state,
i.e., one canonical (complex) fermion, for each momentum
satisfying the localization condition M+�

− (kz) > 0 with, say,
kx > 0, where the last condition is made to keep the states
independent. Equivalently, we can divide this complex fermion
into two real ones, and associate one real Majorana fermion
with each kx , with no restrictions on kx .

In conclusion, we find that the Bogoliubov Hamiltonians
H+�

− and H−�
− essentially each describe half of a normal Weyl

semimetal. They are subject to respective effective Zeeman
gaps m ± |�|. A pair of Bogoliubov-Weyl nodes of opposite
chirality exists if mc1 < m ± |�| < mc2. In the sense that two
Bogoliubov-Weyl nodes arise from a single normal Weyl one,
each of the former carries half of the topological charge of the
latter. However, this notion is tied up with the nonindependence
of Bogoliubov states. The corresponding quasiparticles are
characterized by their chirality and particle-hole symmetry
rather than just chirality in the nonsuperconducting case.
The Bogoliubov-Weyl nodes are located at momenta �k =
(0,0,kz)T , with

M±�
− (kz) = 0. (25)

The vanishing of M�
± (kz) reflects a topological transi-

tion, regarding the quasiparticles as two-dimensional ones
parametrized by kz. For any kz that satisfies

M±�
− (kz) > 0, (26)

the respective Hamiltonian H±�
− maps to a topologically

nontrivial spinless p + ip superconductor and has a chiral
surface mode. The latter describes a Majorana particle with
linear dispersion perpendicular to ẑ and the surface, E =
vF

�k · (ê⊥ × ẑ)/2. The spin of the surface mode is locked to
the direction of propagation. Negative values of M±�

− (kz), on
the contrary, correspond to a trivial insulator.

C. Topological phase diagram

The Hamiltonians H±�
− can separately be tuned from

a topologically trivial to topologically nontrivial state by
changing both m and |�|. In our model, these two parameters
can be tuned separately, although a finite magnetization can in
principle affect the proximity induced superconductivity in the
TI/SC interfaces. An analysis of the effect of the magnetization
on the gap (and of the superconductivity on the magnetic
ordering) requires a theory of the superconducting mechanism,
like BCS theory, which goes well beyond the treatment here
and we think deserves a separate study from this manuscript.

If we exclude a substantial magnetic field due to magnetic
impurities, they could most importantly affect the supercon-
ductivity in the TI/SC interfaces by an exchange coupling of
the nearby superconductor layers to the magnetic impurities.
A weakening of the superconductivity there would in turn
diminish the proximity effect at the interfaces. Since, however,
the superconductor layers are separated from the magnetic
impurities by the interfaces, the exchange coupling of the
SC to the magnetic impurities is certainly much weaker than
the Zeeman term in the interfaces. It is therefore reasonable
to neglect the explicit dependence of � from m. Similarly,
a proximity effect of the SC on the impurities potentially
weakening their ferromagnetic ordering is disregarded. This
approximation would break down if either the magnetic field
of the impurities were important, or if the tunnel coupling
between the superconductor and the magnetic impurities was
strong.

Neglecting their weak interdependence, a simultaneous
modification of m and |�| allows to access a number of
different phases with nb = 0,1,2 pairs of Bogoliubov-Weyl
nodes in the bulk and ns = 0,1,2 two-dimensional Majorana
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FIG. 3. Phase diagram of a Weyl superconductor in a TI/SC
heterostructure as a function of Zeeman gap m and proximity induced
superconducting order parameter amplitude |�|. The values of mc1

and mc2 are set by the tunneling amplitudes between the surface Dirac
layers of the heterostructure depicted in Fig. 1, see Eq. (10). Each
phase is characterized by nb, the number of pairs of bulk Bogoliubov
Weyl nodes, and ns , the number of two-dimensional Majorana surface
modes. The phases are labeled as nb,ns . The black dots locate the
different subfigures of Fig. 2.

surface modes (potentially living in a restricted kz range).
Figure 3 shows the phase diagram as a function of m and |�|,
the phases are labeled according to their values of (nb,ns).
The phase diagram is mirror symmetric for negative values
of m. The tunability of Weyl superconductors (which can be
mapped to four copies of a spinless p + ip superconductor per
value of kz, only two of which are potentially topologically
nontrivial) is similar to the one of superconducting quantum
anomalous Hall insulators (which can be mapped to two
topologically potentially nontrivial copies of a spinless p + ip

superconductor), although the increased complexity leads
to a richer phase diagram for Weyl superconductors.29 Of
particular interest are the phases (0,1), which corresponds
to a truly topological superconductor (in class D and thus
with two-dimensional topological invariants similarly to a
three-dimensional quantum anomalous Hall state), and (1,1),
which is precisely half of a normal Weyl semimetal. We will
analyze them further in the next section.30

IV. VORTICES IN WEYL SUPERCONDUCTORS

One of the most interesting features of two-dimensional
topological superconductors is that they may host a zero-
energy Majorana mode localized around a vortex. Collections
of such Majorana bound states allow for nonlocal storage of
quantum information, which may make the stored information
less sensitive to decoherence.31 This motivates the analysis of
vortices in Weyl superconductors. We specifically discuss the
behavior of vortices in the simplest (0,1) and (1,1) phases of
Fig. 3, which minimize the number of surface Majorana modes.
The vortex physics in other phases is qualitatively similar, but
may involve more Majorana modes.

The suppression of superconductivity inside a vortex puts
its core in either the (0,2), (2,2), or (0,0) phase. For simplicity,

FIG. 4. The two classes of vortices in Weyl superconductors. (a)
sketches a vortex along the superlattice axis ẑ, with bound states along
a tube through the whole sample. (b) depicts a vortex perpendicular to
ẑ. Whereas there are no states bound to the vortex, the surface states
can be used for Majorana interferometry (thick line).

we consider the core to be in the trivially insulating (0,0) phase.
In general, the finite size of the core suggests that in any case
the core cannot be sharply distinguished from a trivial state, in
a full treatment. The (0,0) state can always be realized for an
appropriate choice of m and |�|. Nevertheless, our results are
not affected by this assumption. Different values of m and |�|
will at most change the number and/or direction of propagation
of the interface Majorana modes.

Because the heterostructure has one special direction,
namely, the ẑ axis along which the different layers are
stacked, vortices parallel and perpendicular to ẑ have to be
distinguished, as depicted in Fig. 4. The qualitative physics
of vortices can be understood by analogy to 3He-A, which
also is a Weyl superconductor.2,32 As pointed out in Ref. 32,
the momentum range in which Majorana bound states at a
vortex exist is proportional to êv · ẑ, where êv is the direction
of the vortex. In particular, a vortex perpendicular to ẑ has no
bound states. In the following, we will analyze the behavior of
vortices in TI/SC heterostructures in more detail.

A. Vortex along the superlattice axis

At first, we turn to a magnetic field �B applied along ẑ, the
stacking axis of the heterostructure. For modest field strengths,
only few vortices are present, and interactions between vortices
can be neglected. This situation is sketched in Fig. 4(a).
By assumption, the vortex core is in a topologically trivial
insulating state. The boundary of the vortex is thus equivalent
to an interface between a Weyl superconductor and vacuum
and has one Majorana edge mode. If the Weyl superconductor
is in the (1,1) phase, this mode has a restricted range of
momenta kz (it lives “between the Bogoliubov-Weyl nodes”),
the (0,1) phase has interface modes for any momentum kz. We
restrict the discussion to |�| < m when all relevant physics
happens in H−, but the results can easily be generalized.

Exploiting the cylindrical symmetry with respect to the
vortex axis, we model the latter by a radially dependent
Zeeman gap m and superconducting order parameter �(�r) =
|�(r)|eiϕ(φ), where ϕ(φ) = ϕ0 − (
/
0) φ is the phase of the
order parameter. The latter is now twisted due to the presence
of a magnetic field (φ denotes the angular coordinate). The
twist is proportional to the flux 
 trapped by the vortex,

054504-5



TOBIAS MENG AND LEON BALENTS PHYSICAL REVIEW B 86, 054504 (2012)

which itself is quantized in units of 
0 = hc/2e = π/e, as
usual for superconductors. The phase ϕ0 corresponds to the
superconducting phase without magnetic field. The radius of
the vortex is considered to be R, and m(r) and |�(r)| are
smooth functions interpolating between fixed values m and
|�| for r > R, and |m| < mc1,|�| = 0 inside the core of the
vortex. The magnetic field is �B = B ẑ inside the vortex and
for simplicity assumed to vanish everywhere else. This gives
rise to a vector potential

�A(�r) = A(r) êφ, A(r) = Br

2
�(R − r) + BR2

2r
�(r − R)

(27)

in êφ direction, that is taken into account by minimal coupling
�k → �k − e �A in the Hamiltonian (1). After a canonical transfor-
mation σx → −σy,σ y → σx , the relevant Hamiltonian H− in
Eq. (11) becomes

H− =
∑
kz

∫
d2r ψ

†
kz

(�r)H− ψkz
(�r), (28a)

H− =
(
HA |�(r)| eiϕ(φ) σ z

|�(r)| e−iϕ(φ) σ z H−A

)
, (28b)

HA = M−(kz,r) σ z + vF

(
0 −i e−iφ

−i eiφ 0

)
∂

∂r

+ vF

(
0 − e−iφ

eiφ 0

)[
1

r

∂

∂φ
+ ie A(r)

]
. (28c)

For any given kz, this Hamiltonian may be interpreted as
two copies of a spinless p + ip superconductor threaded by a
magnetic flux. By analogy, the vortex binds one Majorana zero
mode per topological value of kz and per topological subsector
if it traps an odd number of flux quanta, and no zero mode for
an even number of trapped flux quanta.28 Assuming that there
is only a single topologically nontrivial subsector, one can
thus define a unique zero-energy Majorana mode bound to the
vortex. See Appendix A for more details.

Physically, the Majorana bound state can be understood
in terms of an Aharonov-Bohm like phase, a Berry phase
and a geometrical phase for the Majorana surface states.
Consider the topologically equivalent situation of a Weyl
superconductor with a tubelike hole along the ẑ axis. Without
a magnetic field inside the hole, we know that chiral Majorana
surface states exist when kz is chosen in the range where the
two-dimensional superconductor is in the topological phase.
Since the spin is locked to the momentum, the surface states
pick up a Berry phase of π upon encircling the hole once.
This shifts the zero-momentum mode away from zero energy
and can be interpreted as effectively antiperiodic boundary
condition on the geometrical phase in order to counterbalance
the Berry phase. If now a unit flux is threaded through
the tube-like hole, the surface states pick up an additional
phase of π . The latter derives from the winding of the order
parameter phase and is similar to an Aharonov-Bohm effect. It
compensates the Berry phase and thus allows for zero-energy
bound states. Similar effects have also been discussed for

confined magnetic flux tubes imposed in three-dimensional
strong topological insulators.34,35 For momenta kz, which are in
the topologically trivial range, of course, no bound states exist
both with and without magnetic flux. Because the magnetic
field vanishes outside the vortex, the topological character and
especially the existence of surface states is unchanged there.
We thus conclude that a vortex with an odd number of flux
quanta traps a Majorana zero mode for every topologically
nontrivial value of kz.

In a more realistic model, the Majorana bound states do not
form totally flat bands as a function of kz. The presence of a
zero-energy Majorana mode for odd-integer fluxes is however
partially robust. As an effective model at lowest energies, we
consider the zero energy band of Majorana modes as a function
of kz. After transforming to Wannier orbitals, we obtain a set
of Majorana bound states at different heights z, as depicted
in Fig. 4(a). This Hamiltonian can be interpreted as a one-
dimensional chain of decoupled sites. Next, we introduce a
small hopping along the chain, thus allowing the Majoranas
to move up and down the vortex tube. In dimensionless units,
their dispersion is given by

E = − cos(kz). (29)

Therefore, zero-energy Majorana bound states exist if (i) a
Majorana bound state can be defined for kz = ±π/2, i.e.,
M±�

− (±π/2) > 0, and if (ii) kz can take the values ±π/2.
The first condition is always fulfilled in the (0,1) phase, but

depends on the exact position of the Bogoliubov-Weyl nodes in
the (1,1) phase. The second condition depends on the number
of layers of the TI/SC heterostructre and the boundary condi-
tions. Choosing for instance hard wall boundary conditions,
one finds exactly one zero-energy Majorana mode if the system
has an odd number of superlattice layers, and no zero-energy
Majorana modes for an even number of layers. This result
is quite natural, in a weak tunneling picture. Majorana states
in a pair of layers can mix to form a Dirac fermion, moving
away from zero energy. Only for an odd number of layers is
an unpaired Majorana left behind at zero energy.

B. Vortex perpendicular to the superlattice axis

Viewing the vortex, as in the previous section, as a
cylindrical hole enclosing a flux, the discussion in Sec. III B
implies that a vortex perpendicular to the axis ẑ of the
heterostructure should also host Majorana modes. In our
model, they run between the front and back surfaces of the
heterostructure on the side walls of the vortex. For a thin
vortex, however, already a small coupling across the flux line
is sufficient to hybridize and consequently gap out these two
states. We thus recover the result of Ref. 32.

The hole comprising the vortex also introduces a new edge
at the sample boundary (the circular ends of the cylindrical
hole). The nearby surface states will rearrange in order to
host the vortex and locally run along this new edge, as
depicted in Fig. 4(b). While there are no states bound to
the vortex, a special class of surface state paths allows for
Majorana interferometry, depicted by thick lines in Fig. 4(b).
It may be interesting to study experimental measurements of
interference in such structures.
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V. EXPERIMENTAL PROBES

A. Anomalous thermal Hall effet

Because Majorana particles do not carry electric charge,
a natural way to measure surface Majorana states is to
detect their thermal transport. We again focus on a Weyl
superconductor in the (0,1) or (1,1) phase. As there is only
a single Majorana surface mode, these phases should exhibit
only half of the thermal transport of a normal Weyl semimetal
in the corresponding regime.

On a surface perpendicular to ŷ, thermodynamics can
be calculated from the effective Majorana surface partition
function

Z =
∫

D(�ωn,kx ,kz
,�ωn,kx ,kz

)kx>0e
−S , (30)

S =
∑
ωn,

kx > 0,kz

�ωn,kx ,kz
(−i ωn + vF kx)�ωn,kx ,kz

, (31)

where the operators �
†
ωn,kx ,kz

create excitations above the
Bogoliubov vacuum. Note the restriction to kx > 0, which is
because pairs of Majorana fermions at kx and −kx have been
recombined into the canonical � fermion (cf. Sec. III B).

If a thermal gradient ∇T is applied across the Weyl
semimetal, each surface mode transports heat only in its
direction of propagation. Therefore the thermal gradient leads
to a net heat transport perpendicular to ∇T , as depicted
in Fig. 5. This phenomenon is known as the thermal Hall
effect. It has been proposed as an experimental signature
of various other chiral edge states, for example in the spin
Hall effect, the fractional quantum Hall effect or topological
superconductors.28,37–39 We presume any bulk transport to be
parallel to the gradient, so that it can be separated from the
surface contribution. In any case, the dependence upon field,
density, etc., of any possible bulk contribution would be very
different from that of the surface one.

For concreteness, consider a temperature gradient ∇T

imposed across the sample in the ŷ direction. This leads to a
net difference in the distribution of quasiparticles on the y = 0
and y = Ly surfaces. The result is an excess heat current IQ,
in the x direction, which defines the thermal Hall conductance
Kxy , according to

IQ = Kxy |∇T |. (32)

FIG. 5. (Color online) Sketch of the anomalous thermal Hall
effect in Weyl superconductors. The sample is shown from above.
A thermal gradient ∇T is applied across the sample. The upper
surface is at a temperature T> larger than the temperature T< of
the lower surface. This leads to a net heat current from side A to
side B perpendicular to the temperature gradient transported by the
surface modes running around the sample.

For small temperature differences between the surfaces, the
excess heat current is obtain by differentiation, and we obtain

Kxy =
∑
kz

∫ ∞

0

dkx

2π
v2

F kx

∂ nF (vF kx)

∂T
(33)

=
∑
kz

1

2

k2
Bπ2T

3h
, (34)

with kz being summed over all topologically nontrivial values
for the given phase of the Weyl superconductor [either (0,1)
or (1,1)] and nF denoting the Fermi-Dirac distribution at
the temperature T . Note that we have restored physical
units such as Boltzmann’s constant kB and Planck’s constant
h for concreteness. As expected, the surface of a Weyl
superconductor has half of the thermal Hall conductance
of a quantum Hall edge state per allowed momentum kz.
This is not surprising because the thermal Hall coefficient
is proportional to the central charge c of the surface modes,
Kxy = c π2k2

BT /(3h), similar to the heat capacity.28,40

Coming back to the Weyl superconductor in the (0,1)
or (1,1) phase, the thermal Hall effect has an anomalous
coefficient proportional to the distance 2k�

+ between the
Weyl nodes defined in Eq. (18). Concretely, the thermal Hall
conductance is proportional to the length of the system in the
ẑ direction, Kxy = κxyLz, with

κxy = 1

2

k2
Bπ2T

3h

k�
+
π

. (35)

In the (0,1) phase, where k�
+ = π/d, each TI layer

contributes the full Majorana quantum (1/2) π2k2
BT /(3h)

to the thermal Hall coefficient. Although thermal transport
measurements are experimentally demanding, the higher
dimensionality of the surface states in a Weyl superconductor
as compared to fractional or spin quantum Hall edge states
hopefully tends to result in more approachable experiments.

B. Electrical transport

As discussed in Sec. III, the surface physics of a Weyl
superconductor can be understood as layers of spinless p + ip

superconductors stacked in momentum space along kz, with
potentially associated edge states. In order to minimize bulk
transport, we now specialize to the (0,1) phase. The surface
of the Weyl superconductor is then equivalent to just one
nontrivial spinless p + ip superconductor edge state per
value of kz. In this phase, electric transport experiments that
have been proposed for p + ip superconductors can simply
be transferred to Weyl superconductors. The general idea is
to bring different samples with Majorana edge modes into
contact. Whenever an interface has two edge modes running
into the same direction, electrons can tunnel into the interface
by decomposition in the two Majorana particles. These two
Majorana particles can then be transported in parallel, giving
rise to a one-directional electronic transport channel along
the interface.41 In alternative setups, the two Majoranas can
be separated and recombined with different Majorana modes,
which leads to distinct signatures in conductance and noise.42

The latter experiments are however less appropriate for Weyl
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superconductors where each surface has a large number of
generically coupled Majorana modes at different values of kz.

VI. SUMMARY AND CONCLUSIONS

We have shown how a variety of gapless and/or topological
superconducting phases can be achieved in superconducting-
topological insulator superlattices. These phases are analogous
to quasiparticle states of 3He. The most interesting (0,1) and
(1,1) phases exhibit Majorana surface states on some surfaces,
and bound to the cores of vortices. Particularly in the gapless
phases, such as (1,1), these Majorana states exist only for
a range of momenta, kz, along the modulated direction of
the superlattice. In such a case, no local (in z) description of
the Majorana modes is possible, as opposed to the situation in
the (0,1) phase, in which the Majorana modes can be modeled
in terms of a real-space tight-binding Hamiltonian in the z

direction, and the state can be considered as a sort of stack of
two-dimensional topological superconductors.

It is hoped that the proposed structures might be explored
experimentally in the future. While we do not discuss materials
in any detail here, we note that recent studies have shown
that CuxBi2Se3

25–27 becomes a superconductor with x ≈ 0.14,
while it is a topological insulator for x = 0, so that a
superlattice with modulated x might be a candidate realization
of this proposal. Some ab initio modeling of such a superlattice
would probably be useful prior to any experimental attempts.
Alternatively, spin-triplet superconductors have recently been
identified to exhibit Weyl superconducting phases as well.43,44

There is significant scope for further theoretical study of
Weyl and topological superconductors in three dimensions.
The Majorana surface states of (0,1) and (1,1) phases are
rather analogous to the “chiral surface sheaths,” which occur
in three-dimensional quantum Hall systems,45,46 where inter-
esting vertical transport, quantum interference, and universal
conductance fluctuations have been studied, and it would
be interesting to see how such phenomena translate to the
superconducting case. We have also not touched on the
Adler-Bell-Jackiw anomaly associated with Weyl points. This
has been discussed recently for normal Weyl semimetals,
where it may lead to anomalous magnetotransport.7 It is not
obvious what the consequences are for Weyl superconductors.
One might also consider Josephson effects for currents along
the z axis. We leave these questions for future work.
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APPENDIX A: GAPLESSNESS OF INVERSION
SYMMETRIC WEYL SUPERCONDUCTORS

In this Appendix, we discuss the qualitative behavior of
Weyl semimetals under superconducting proximity effect.
We assume that either time reversal or inversion symmetry

is conserved, while the respective other symmetry needs
to be broken for the system to exhibit Weyl physics. As
has been mentioned in the introduction, the fate of the
Weyl superconductor depends on which of the symmetries is
conserved. For inversion symmetric, time reversal symmetry
broken Weyl semimetals, the presence of a Weyl node at �k0

implies the presence of a Weyl node of opposite chirality at
− �k0. In Weyl semimetals with broken inversion symmetry,
however, time reversal symmetry guarantees the presence of
Weyl nodes of equal chirality at ±�k0. When a superconducting
proximity effect is turned on, the low energy modes at
these two Weyl nodes mix. However, the superconducting
correlations more precisely couple electrons on one Weyl
node to holes on the other, instead of electrons to electrons
as a more standard perturbation would do. This effectively
inverts the chirality of one of the Weyl nodes. Consequently,
the proximity effect in inversion symmetric systems effectively
mixes Weyl nodes of the same chirality and no gap opens. In
time-reversal symmetric systems, on the contrary, the mixed
Weyl nodes effectively have opposite chiralities, and a gap is
to be expected.

To be more concrete, we consider the effective low energy
theory of a Weyl semimetal, which corresponds to electrons
living close to Weyl nodes. Since standard superconductivity
couples electrons at momenta ±�k, we focus our effective model
on two of the Weyl nodes located at momenta ±�k0. For an
inversion symmetric system, where the nodes are of opposite
chirality, this already describes a complete minimal model.
For a time-reversal symmetric system, the nodes at ±�k0 have
the same chirality, and there must exist at least two additional
nodes, say at ±�k1, of the respective opposite chirality. Since
these two pairs of nodes are decoupled, we can understand
the system as two copies of the following Hamiltonian (A4)
describing only two Weyl nodes. The latter thus allows us to
decide on the presence or absence of a gap.

As advertised, our result will only depend on whether the
two initial Weyl nodes have the same or opposite chirality.
We therefore assume one Weyl node to have positive chirality,
H1 ∼ �σ · �k, while the second node is so far keep in a general
notation, H2 ∼ ± �σ · �k in order to tackle both the time-reversal
symmetric and inversion symmetric cases simultaneously. The
electrons close to these nodes are described by the operators
c1,�k,σ and c2,�k,σ , respectively. We furthermore measure the
momenta relative to the respective Weyl nodes, such that the
nonsuperconducting Hamiltonian reads

H0 =
∑

�k

(
c
†
1,�k,↑,c

†
1,�k,↓

)
(vF �σ · �k)

(
c

1,�k,↑
c

1,�k,↓

)

+
∑

�k

(
c
†
2,�k,↑,c

†
2,�k,↓

)
(± vF �σ · �k)

(
c

2,�k,↑
c

2,�k,↓

)

=
∑

�k
�

†
�k,0

(
vF �σ · �k 0

0 ± vF �σ · �k

)
��k,0

(A1)

with ��k,0 = (c1,�k,↑,c1,�k,↓,c2,�k,↑,c2,�k,↓)T . We assume that the
superconducting part of the Hamiltonian only contains terms
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of the from

HSC ∼ h(�k) c
†
1,�k,σ

c
†
2,−�k,σ ′ + H.c., (A2)

which in particular includes s-wave and p-wave pairing. It
is now useful to rewrite the nonsuperconducting part of the
Hamiltonian as

H0 =
∑

�k
�

†
�k,�

(
vF �σ · �k 0

0 ∓ vF �σ · �k

)
��k,�

, (A3)

where ��k,� = (c
1,�k,↑,c

1,�k,↓,c
†
2,−�k,↓, − c

†
2,−�k,↑)T . We note that

the sign of the second Weyl node in the Hamiltonian has to
be reversed due to the inversion of creation and annihilation
operators. This precisely corresponds to the effective inversion
of the chirality of the second node under proximity effect,
see above. Including a general superconducting term, the full
Hamiltonian H = H0 + HSC can be written as

H =
∑

�k
�

†
�k,�

H��k,�
, (A4)

H =
(

vF �σ · �k [α(�k) 1σ + �β(�k) · �σ ]

[α(�k)∗ 1σ + �β(�k)∗ · �σ ] ∓ vF �σ · �k

)
.

(A5)

For an inversion symmetric system, where the lower (plus)
sign applies, the diagonal is proportional to the unit matrix in
Nambu space. Superconductivity can therefore never open up
a gap, but only shift the Bogoliobov-Weyl nodes in momentum
space. For time-reversal symmetric systems, the Hamiltonian
is, however, generically gapped. As an example, we consider
s-wave superconductivity. The latter corresponds to

Hs−wave =
∑

�k
� c

†
1,�k,↑c

†
2,−�k,↓ + H.c.

=
∑

�k

�

2

(
c
†
1,�k,↑c

†
2,−�k,↓ − c

†
2,�k,↓c

†
1,−�k,↑

) + H.c.,

(A6)

where we neglect the superconducting phase for simplicity,
i.e., � = |�|. The total Hamiltonian then reads

H =
∑

�k
�

†
�k,�

(
vF �σ · �k �

2 1σ

�
2 1σ − vF �σ · �k

)
��k,�

. (A7)

The eigenvalues of this Hamiltonian are easily found as

E = ±
√

(vF �σ · �k)2 + |�|2
4

, (A8)

and the system is gapped as expected. Finally, consider
adiabatically restoring inversion symmetry. Throughout this
process, superconductivity ensures the system to be gapped.
A time reversal symmetric, inversion symmetry broken Weyl
superconductor can thus adiabatically be connected to the
trivial state respecting both symmetries and is, therefore, a
trivial insulator itself.

APPENDIX B: EXPRESSION OF THE ZERO ENERGY
MAJORANA BOUND STATE

A vortex in a Weyl superconductor traps a unique zero-
energy bound state if it contains an odd number of flux quanta.
To explicitly show this, let us first discuss the bound state for a
simple limiting case where the algebra can be done explicitly,
and then turn to the general solution.

The limiting case is defined as follows. We assume that the
Zeeman mass m is constant in the entire Weyl superconductor
(and in particular takes the same value inside and outside
the vortex). Moreover, we assume that mc1 < m < mc2 , such
that there is one momentum kz = k0

z with M−(r,k0
z ) = 0

everywhere. As follows from Fig. 3, we are then able to find
a |�| = �0 outside the vortex such that only one subsector
is topologically nontrivial, and expect a single zero-energy
Majorana mode bound to the vortex for this choice of |�|. In
addition, we assume that there is only a single flux quantum
inside the vortex. Outside the vortex, the Hamiltonian (28)
reads for kz = k0

z ,

H− =
∫

r>R

d2r ψ
†
k0
z
(�r)H− ψ

k0
z
(�r), (B1a)

H− =
(HB |�(r)| eiϕ(φ) σ z

|�(r)| e−iϕ(φ) σ z H−B

)
, (B1b)

HB = vF

(
0 −i e−iφ

−i eiφ 0

)
∂

∂r

+ vF

(
0 − e−iφ

eiφ 0

)(
1

r

∂

∂φ
+ ie

BR2

2r

)
. (B1c)

The order parameter amplitude |�(r)| goes to zero in the
vortex core and takes the value |�(r)| = �0 far away from
the vortex. For kz = k0

z , this Hamiltonian has two linearly
independent normalizable zero-energy bound state solutions,

�outer
1 = 1

N ′′
1√
r

e− ∫ r

R
dr ′ |�(k0

z ,r
′)|/vF

⎛
⎜⎜⎜⎝

e−iφ

0

0

i eiφ

⎞
⎟⎟⎟⎠, (B2)

�outer
2 = 1

N ′′
1√
r

e− ∫ r

R
dr ′ |�(k0

z ,r
′)|/vF

⎛
⎜⎜⎜⎝

0

i

1

0

⎞
⎟⎟⎟⎠. (B3)

Inside the vortex. i.e., for r < R, where

HB = vF

(
0 −i e−iφ

−i eiφ 0

)
∂

∂r

+ vF

(
0 − e−iφ

eiφ 0

)(
1

r

∂

∂φ
+ ie

Br

2

)
, (B4)

only the state

� inner
2 = 1

N ′′′ e−1/vF

∫ r

R
dr ′ (|�(k0

z ,r
′)|+eBr ′/2)

⎛
⎜⎜⎜⎝

0

i

1

0

⎞
⎟⎟⎟⎠ (B5)
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is normalizable. The state that would be connected to �1 is
given by

ψ inner
1 ∼ e−1/vF

∫ r

R
dr ′ (|�(k0

z ,r
′)|+1/r ′−eBr ′/2)

⎛
⎜⎜⎜⎝

e−iφ

0

0

i eiφ

⎞
⎟⎟⎟⎠. (B6)

This state, however, diverges at the origin as ψ inner
1

r→0∼ 1/r

and is thus not normalizable. Consequently, there is only a
single normalizable zero-energy state bound to the vortex. Up
to the normalization, it is given by

� = � inner
2 �(R − r) + �outer

2 �(r − R). (B7)

When we consider a momentum kz close to k0
z or change the

Zeeman gap m a little bit, the system will stay in the same
extended topological phase. There will thus always be a single
zero energy bound state per topological momentum as long
as there is no topological phase transition. We find that the

Hamiltonian (28) always exhibits two linearly independent
zero-energy bound states for r > R. For M+�

− (kz,r
′) > 0 and

M−�
− (kz,r

′) < 0 at large r , they are given by

�outer
+� ∼ 1√

r
e− ∫ r

R
dr ′ M+�

− (kz,r
′)/vF

⎛
⎜⎜⎜⎝

e−iφ

i

1

i eiφ

⎞
⎟⎟⎟⎠, (B8)

�outer
−� ∼ 1√

r
e+ ∫ r

R
dr ′ M−�

− (kz,r
′)/vF

⎛
⎜⎜⎜⎝

e−iφ

−i

−1

i eiφ

⎞
⎟⎟⎟⎠. (B9)

The bound state will be a superposition of these two states that
connects to the normalizable solution for r < R. The special
case considered previously corresponds to M+�

− = −M−�
− =

|�(r)| and �2 ∼ �+� − ��−.
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