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Free induction decay (FID) measured by nuclear magnetic resonance in a polycrystalline solid is the isotropic
average of the FIDs for individual single crystallites. It has been recently proposed theoretically and verified
experimentally that the long-time behavior of single-crystal FIDs has the universal form of exponentially decaying
sinusoidal oscillations. Polycrystalline averaging complicates the situation theoretically, while the available
experimental evidence is also ambiguous. Exponentially decaying sinusoidal oscillations have been observed for
129Xe in polycrystalline solid xenon but not for 19F in a powder of CaF2. In this paper, we present first-principles
FID calculations for powders of both CaF2 and solid xenon. In both cases, the asymptotic long-time behavior has
the expected form of exponentially decaying sinusoidal oscillations, which is determined by the single-crystallite
FID with the slowest exponential decay. However, this behavior appears only at rather small values of the
signal that have not yet been measured in experiments. At intermediate times accessible experimentally, a
polycrystalline FID depends on the distribution of the exponential decay constants and oscillation frequencies for
single-crystallite FIDs. In CaF2, these parameters are relatively broadly distributed, and as a result the sinusoidal
long-time oscillations become somewhat washed out. In contrast, the single-crystallite parameters are more
clustered in solid xenon, and, as a result, the experimentally observable range is characterized by a well-defined
oscillation frequency and exponential decay constant, even though neither of these parameters represents the true
long-time behavior. The above difference of the intermediate FID behavior originates from the difference of the
crystal structures of solid xenon and CaF2.
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I. INTRODUCTION

First-principles calculations of the free induction decay
(FID) measured by nuclear magnetic resonance (NMR) in
solids is a long-standing theoretical problem1 still lacking a
controllable solution.1 The most challenging aspect of this
problem is the prediction of the long-time behavior of the
FIDs. Recently some progress in this direction was made on
the basis of the notion of microscopic chaos;2–4 namely, it
was predicted that the generic long-time behavior of FIDs in
single crystals has the character of exponential decay with
or without sinusoidal oscillations. In the most common case
of magnetic dipolar interaction between nuclear spins, the
oscillatory regime is realized, and hence the long-time FID
behavior can be parametrized as

F (t) = Ae−γ tcos(ωt + φ), (1)

where A, γ , ω, and φ are some constants whose values were
not predicted. It was only estimated3 that, generically, the
values of γ and ω are of the order of

√
M2, where M2 is

the second moment of the FID. The explicit expression for
M2 in terms of microscopic interaction parameters is given
by Eq. (9) in the next section. It was also estimated that
the long-time behavior (1) becomes dominant after a time
on the order of several 1/

√
M2 from the beginning of the

FID. The above predictions agree with the experimental5–7

and numerical8,9 results for quantum and classical spin
systems.

The situation becomes somewhat more involved theoreti-
cally for polycrystalline samples or crystal powders. Different

orientations of single crystallites in polycrystals or powders
with respect to an external magnetic field imply different
microscopic Hamiltonians, and hence different values of γ

and ω, which in turn leads to additional averaging over
the oscillation frequencies. At sufficiently long times, the
crystallites exhibiting the smallest value of γ should start
dominating the overall response, and, therefore, the well-
defined frequency of these crystallites should also control the
overall decay. We call the latter regime the asymptotic long-
time behavior. It is to be distinguished from the intermediate
behavior, which we define as the regime when the individual
crystallites have reached their respective long-time regimes
but the asymptotic polycrystalline long-time behavior is not
yet reached. The challenge here is to understand how long the
above transition to the asymptotic behavior takes, and what the
intermediate behavior looks like. It is, in particular, possible
that the intermediate behavior exhibits a tentative “washing
out” of the FID beats.

On the experimental side, the available facts about the
long-time FID behavior in polycrystals and powders do not
reveal a consistent picture. On the one hand, no well-defined
long-time beats of form (1) have been observed in CaF2 powder
(within the range limited by the experimental signal-to-noise
ratio).6,10 On the other hand, in hyperpolarized solid
xenon, which is supposedly polycrystalline, the experiments
reveal well-defined beats of form (1) appearing rather
quickly.6,11

In the latter case, the situation is complicated by the fact that
hyperpolarized solid xenon is prepared in convection cells12

by first optically polarizing xenon gas13 and then rapidly
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cooling it into a liquid phase and subsequently quenching
the liquid into the solid phase. As a result, an uncertainty
remains about the proper thermalization of the resulting solid.
In addition, the formation of crystal structure in solid xenon
is controlled by the relatively weak van der Waals interaction,
which is known to allow significant residual atomic motion14

that further complicates the theoretical analysis. A related
unclear issue is the strength of the exchange coupling between
xenon nuclei.

In this paper, we assume that the hyperpolarized solid xenon
samples investigated in Refs. 6 and 11 can be described as
polycrystalline fcc lattices of immobile nuclear spins coupled
by magnetic dipole interaction. We perform first-principles
calculations of 129Xe FID on the basis of the approximation
procedure introduced in Refs. 2 and 15. We also perform a first-
principles 19F FID calculation for a powder of CaF2, where
19F nuclei form a simple cubic lattice. Our goal is to verify
whether the above calculations are sufficient to explain why
well-defined beats of form (1) were seen in polycrystalline
solid xenon6,11 but not in CaF2 powder.6,16

A comprehensive investigation of NMR FIDs for poly-
crystalline samples has also been made particularly urgent by
very recent experiments, which have revealed the appearance
of a second exponential mode in the FID tails17 and a
universal relationship between spin-echo shapes initiated in
the long-time FID regime.18 The first of these new properties is
supposed to be present in single crystals but not in polycrystals.
The second property is expected to be present in both single
crystals and polycrystals, but in polycrystals, it should be more
difficult to observe because of the delay in the onset of the true
asymptotic FID behavior.

Beyond the subject of the long-time FID behavior, this
paper also contains a very accurate calculation of the extended
initial behavior of the powder FID for solids of the type of
CaF2, where “like” nuclear spins form a continuous network
connected by the magnetic dipole interaction. The calculation
is based on averaging over the FIDs of individual single
crystallites. Previous attempts to compute powder FIDs for
CaF2 were based on a much cruder approach,16,19 which
involved matching the second and the fourth moments for
the powder FID without computing the behavior of the
contributing single crystallites. In principle, powder FIDs
based on the direct averaging over single crystallites can be
computed for small-size spin-1/2 clusters with the help of
direct numerical solution of the Schrödinger equation. This is
indeed done by various NMR software libraries.20–24 However,
either the clusters that can be handled by these routines are not
yet large enough to represent infinite connected lattices of
interacting nuclear spins,20–22,24 or the FIDs in these routines
are crudely approximated by the mixture of Gaussian and
exponential decays.23

II. THEORETICAL APPROXIMATION SCHEME

We will use the approximation scheme for FID calculations
that was introduced in Ref. 15 with small modifications added
in Ref. 2. This scheme is quite similar to the one introduced
earlier in Ref. 25.

The approximation technique of Ref. 15 results in a very
accurate description of the extended initial behavior of single-

crystal FIDs in CaF2. It also leads to long-time behavior
of form (1), but with constants noticeably different from
those observed experimentally (see below). As explained in
Ref. 3, an accurate prediction of the parameters in Eq. (1)
is not expected here due to the oversimplified nature of the
approximation. We are, however, mainly interested in the
qualitative question of the difference between the solid xenon
and the CaF2 powders posed in the preceding section. The
answer to this question presumably depends on the qualitative
differences in the distributions of γ and ω for different
orientations of single crystallites in an external magnetic field.
The approximations used should, therefore, be adequate for
detecting such differences, if they exist.

In CaF2, 19F nuclei are characterized by spin 1/2, gyro-
magnetic ratio γg = 25 166.2 s−1 G−1, and abundance ν =
1.0. These nuclei form a simple cubic lattice with period
d = 2.723 Å (at 293 K). For solid xenon, we perform the
calculation for a fcc lattice with the nearest-neighbor distance
d = 4.4 Å and abundance ν = 0.86 of 129Xe nuclei. This
abundance is representative of the sample most studied in
Refs. 6 and 11. Other nuclear isotopes present in this xenon
sample are assumed to be nonmagnetic. (Here, in particular, we
neglect the contribution of the magnetic isotope 131Xe, which
has spin 3/2 with a smaller gyromagnetic ratio. Its abundance
is 2% in the sample analyzed.) The 129Xe nuclei have spin 1/2
with gyromagnetic ratio γg = 7452.11 s−1 G−1.

We obtain the powder FID as the average over a large
number of single-crystallite FIDs. The orientation of each
crystallite in the external magnetic field is selected randomly.

For each crystallite, we calculate the FID as the infinite-
temperature correlation function1

F (t) = Tr
{
e

i
h̄
Ht

∑
n I x

n e− i
h̄
Ht

∑
m Ix

m

}
Tr

{∑
n I x

n
2
} (2)

for the microscopic Hamiltonian of the truncated magnetic
dipole interaction in the Larmor rotating reference frame:

H =
∑
m<n

Jmn

[
I z
mI z

n − 1

2

(
I x
mI x

n + I y
mI y

n

)]
, (3)

where m and n are the lattice site indices, I δ
m is the operator

of the δth (x, y, or z) component of the mth nuclear spin 1/2
with the z axis chosen along the direction of the external static
magnetic field, and Jmn are the coupling constants given by

Jmn = γ 2
g h̄2(1 − 3cos2θmn)

|rm − rn|3 . (4)

Here, rm is the position vector of the mth nucleus, and θmn is
the angle between the vector (rm − rn) and the z axis.

Extending the approximation scheme of Refs. 2 and 15
to the case of isotopic abundance ν < 1, we obtain the FID
function F (t) as the numerical solution of the following
integral equation:

F (t) = g(t) + α

∫ t

0
F (t − t ′)

dg(t ′)
dt ′

dt ′, (5)
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where

g(t) = exp

[
−1

2
M2f (ηt)2

] ∏
n

[
1 − ν + νcos

(
3

4h̄
Jmnηt

)]
,

(6)

α =
M4g

M2
2g

− M4

M2
2

M4

M2
2

− 1
, (7)

η =
√

M2

(1 + α)(M2 + M2f )
, (8)

M2 ≡ − d2F

dt2

∣∣∣∣
t=0

= 9ν

16h̄2

∑
n

J 2
mn, (9)

M4 ≡ d4F

dt4

∣∣∣∣
t=0

= 81

256 h̄4

{
7

3
ν2

n�=p∑
n,p

J 2
mnJ

2
mp

+ 2

3
ν2

n�=p∑
n,p

JmnJmpJ 2
np + ν

∑
n

J 4
mn

}
,

(10)

M2f = 2

7
M2 (11)

(see also Ref. 26),

M2g ≡ − d2g

dt2

∣∣∣∣
t=0

= η2(M2f + M2), (12)

M4g ≡ d4g

dt4

∣∣∣∣
t=0

= η4

[
3(M2 + M2f )2 + 81

256 h̄4 (ν − 3ν2)
∑

n

J 4
mn

]
.

(13)

The initial condition for Eq. (5) is F (0) = 1. The parameter α

given by Eq. (7) does not depend on η. Therefore, one can first
set η = 1, then calculate α, and finally use Eq. (8) to calculate
the actual value of η.

III. RESULTS AND DISCUSSION

In order to illustrate the performance of the above approxi-
mation scheme, we show in Fig. 1 the results of the calculations
of the initial and the long-time behavior of single-crystal
FIDs in CaF2 for three directions of the external magnetic
field. While the linear plots (insets) in each panel of Fig. 1
illustrate that the overall agreement of the theoretical and the
experimental curves is very good, the semilogarithmic plots

TABLE I. Experimental and theoretical values of the parameters
γ and ω for single-crystal CaF2. The parameters are obtained by
fitting the long-time tails of the FIDs presented in Fig. 1 by Eq. (1).

[100] [110] [111]

γ (μs−1) ω (μs−1) γ (μs−1) ω (μs−1) γ (μs−1) ω (μs−1)

Expt. 0.054 0.156 0.042 0.103 0.029 0.066
Theory 0.071 0.143 0.054 0.085 0.038 0.056
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FIG. 1. (Color online) Single-crystal FIDs for CaF2. The direc-
tions of the external magnetic fields are indicated above the plots.
Solid red lines represent the experimental results of Engelsberg and
Lowe (Ref. 5). Dashed blue lines represent the result of theoretical
calculations based on Eq. (5). Main panels contain semilogarithmic
plots; the insets are linear plots.

(main panels) amplify the discrepancy in the long-time tails.
The comparison of the theoretical and the experimental values
of γ and ω for long-time fits of form (1) is presented in Table I.
It indicates a typical discrepancy of about 20%.
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FIG. 2. (Color online) 19F FID for CaF2 powder. The solid red line
represents the experiment of Ref. 6. The solid magenta line represents
the earlier experiment of Barnaal and Lowe (Ref. 10). (The data points
are actually extracted from Ref. 16.) The dashed blue line represents
the theoretical calculation described in the text. (a) Linear plot.
(b) Semilogarithmic plot with the thin green line representing a fit
of form (1) for the asymptotic long-time behavior of the theoretical
FID. (c) Semilogarithmic plot with an attempt to fit the intermediate
FID behavior by formula (1).

The calculated FIDs for the CaF2 powder and for polycrys-
talline solid xenon are shown in Figs. 2 and 3. These FIDs
were obtained as averages over 1000 randomly oriented single
crystallites.

Let us first examine the discrepancies between the theoret-
ical calculations and the experimental curves. For the CaF2

powder, the discrepancies appear starting from the intermedi-
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FIG. 3. (Color online) 129Xe FID for polycrystalline xenon. The
solid red line represents the experiment of Ref. 6; the dashed blue
line is the theoretical calculation described in the text. (a) Linear plot.
(b) Semilogarithmic plot with the thin green line representing a fit of
form (1) to the asymptotic long-time behavior of the theoretical FID.
(c) Semilogarithmic plot with an attempt to fit the intermediate FID
behavior by formula (1).

ate section of the FID. We believe that these discrepancies are
due to the limitations of the theoretical approximation scheme
based on Eq. (5). On the other hand, the discrepancy for the
solid xenon appears from the very beginning of the FID. It is
related to the fact that the theoretical and the experimental
values of the second moment M2 are different from each
other (2.64 and 1.6 ms−2, respectively). Since the theoretical
value of M2 is the input rather than the output parameter for
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TABLE II. The long-time parameters γ and ω corresponding
to the theoretical calculations and experiments for CaF2 powder
and polycrystalline solid xenon. The numbers in the “Theory
(asymptotic)” row are obtained from fitting Eq. (1) to the true
theoretical long-time behavior as exhibited in Figs. 2(b) and 3(b).
The numbers in the “Theory (intermediate)” row are obtained from
fitting the intermediate behavior of the theoretical FIDs in Figs. 2(c)
and 3(c) by Eq. (1). The experimental numbers for solid xenon are
cited from Ref. 6.

CaF2 solid Xe

γ (μs−1) ω (μs−1) γ (ms−1) ω (ms−1)

Theory (asymptotic) 0.040 0.055 1.35 2.66
Theory (intermediate) 0.050 0.053 1.55 2.48
Experiment 1.25 2.06

the theoretical approximation scheme, the above discrepancy
indicates the inadequacy of our initial assumptions about either
the form or the parameters of the Hamiltonian (3). It may be
related to insufficient thermalization and/or atomic motions in
the quenched solid xenon samples.6 Leaving this discrepancy
to be investigated in a later experimental work, below we focus
on the outcome of the theoretical calculation and examine
the differences between the long-time FID behavior for CaF2

powder and polycrystalline solid xenon.
Figures 2(b) and 3(b) include fits of the true theoretical long-

time behavior to the asymptotic formula (1), while Figs. 2(c)
and 3(c) attempt to fit the middle section of the theoretical
FIDs with Eq. (1). The parameters of these fits are given in
Table II. In CaF2, the intermediate FID behavior is not well
described by Eq. (1). At the same time, the asymptotic long-
time behavior becomes pronounced relatively quickly—after
about three beats. On the contrary, the intermediate behavior
of the solid xenon FID is well described by Eq. (1), which
covers about six beats and five orders of magnitude, while the
asymptotic long-time behavior emerges only at relatively late
times and small values of FID.

It is expected that the behavior of the middle section of
the FIDs is controlled by the typical single-crystallite values
of γ , while the true long-time behavior is controlled by the
crystallites with the smallest value of γ . In order to clarify this
issue further, we present in Figs. 4(a) and 5(a) the theoretical
values of the long-time parameters γ and ω for the single
crystallites included in the powder average, while Figs. 4(b)
and 5(b) show the histograms of the resulting points.

One can now appreciate the qualitative difference between
the powder of simple-cubic crystallites and the powder of fcc
crystallites. The long-time parameters γ and ω for the simple-
cubic lattice are much broader and increase or decrease roughly
proportionally to each other. Therefore, the typical values of
γ and ω are sufficiently different from those representing the
asymptotic decay. The poor performance of the middle section
fit is in large part due to the larger difference of frequency ω

between a typical value and the asymptotic long-time value.
On the contrary, all possible values of γ and ω are more

clustered for the fcc polycrystal and do not exhibit much of a
systematic dependence on each other. As a result, the typical
value of γ is rather close to the true long-time value. This
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FIG. 4. (Color online) (a) Theoretical values of parameters γ and
ω for 1000 randomly chosen single-crystal orientations of CaF2. The
blue shape appearing in the plot consists of 1000 points. Each point
represents a pair of values (γ,ω) for one single-crystal orientation.
(b) Histogram Nh(γ,ω) of all sampled points in (a).

explains why the fit (1) to the intermediate FID behavior works
so well over an extended time interval.

The more clustered behavior of the parameters γ and ω for
the fcc powder was, in fact, expected. The differences in γ and
ω originate from the differences in the truncated Hamiltonians
for different orientations of the magnetic field with respect
to single crystallites. The orientation-dependent differences
are expected to be smaller for the fcc lattice, because the fcc
lattice is in a sense more isotropic: each lattice site has 12
nearest neighbors as opposed to 6 nearest neighbors in the
case of simple cubic lattice. The 12-neighbor environment is
obviously more isotropic than the 6-neighbor environment.
The higher sensitivity of the simple cubic lattice to different
orientations of the magnetic field can be illustrated by the
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FIG. 5. (Color online) (a) Theoretical values of parameters γ

and ω for 1000 randomly chosen single-crystal orientations of solid
xenon. The blue shape appearing in the plot consists of 1000 points.
Each point represents a pair of values (γ,ω) for one single-crystal
orientation. (b) Histogram Nh(γ,ω) of all sampled points in (a).

example of the magnetic field oriented along the [111] crystal
direction, in which case the coupling constants (4) to all six
nearest neighbors become equal to zero—the so-called “magic
angle” condition.

In principle, the polycrystal or powder average also depends
on the distribution of parameters A and φ in Eq. (1), but

we found that the parameter A has comparable values for
all orientations and that its distribution does not add any new
qualitative insight to the above discussion. Likewise, we were
not able to find any particularly important aspect associated
with the distribution of φ, apart from the observation that it
makes the frequency ω of the intermediate section fit for CaF2

powder smaller than the minimal value of ω for individual
single crystallites.

IV. CONCLUSIONS

We have presented first-principles FID calculations for a
powder of CaF2 and for polycrystalline solid xenon. The
long-time FID decay for powders and polycrystals is the
superposition of the long-time decays for individual single
crystallites. The typical single-crystallite values of the long-
time parameter γ control the middle section of the resulting
FIDs, whereas the true long-time behavior is controlled by
single crystallites with the smallest value of γ . We have found
that the single-crystallite parameters γ and ω are rather broadly
distributed in CaF2, and as a result, the intermediate section
beats become washed out and relatively quickly evolve to
the asymptotic long-time behavior. Such behavior might be
observable in future CaF2 powder experiments with improved
signal-to-noise ratio. On the contrary, in the case of solid
xenon, the single-crystallite values are more clustered, and as
a result the middle section is characterized by a well-defined
beat frequency and an exponential decay constant over several
orders of magnitude, while the true long-time behavior appears
only at relatively later times. We explain the above clustering
of the parameters γ and ω by the more isotropic character of
the fcc lattice in comparison with the simple-cubic lattice. Our
findings suggests that the experiments conducted so far in solid
xenon have been able to access only the intermediate section
of the powder or polycrystalline FIDs, and hence observed the
well-defined behavior (1).

It is clear that, although observation of well-defined
behavior (1) in the intermediate FID section requires suitable
crystal structures, such behavior would be extremely unlikely,
if the long-time behavior of single crystallites were different
from (1). Therefore, experiments accessing the intermediate
section of FIDs in polycrystalline fcc solids are appropriate
to test the theoretical long-time predictions3,4 originally made
mostly for single crystals. As discussed in Ref. 4, the same
conclusion is likely true for solids with disordered arrange-
ments of magnetic nuclear sites, but further experimental and
theoretical investigation of this situation is necessary.
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