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Rotating skyrmion lattices by spin torques and field or temperature gradients
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Chiral magnets like MnSi form lattices of skyrmions, i.e., magnetic whirls, which react sensitively to small
electric currents j above a critical current density jc. The interplay of these currents with tiny gradients of either
the magnetic field or the temperature can induce a rotation of the magnetic pattern for j > jc. Either a rotation
by a finite angle of up to 15 ◦ or—for larger gradients—a continuous rotation with a finite angular velocity
is induced. We use Landau-Lifshitz-Gilbert equations extended by extra damping terms in combination with a
phenomenological treatment of pinning forces to develop a theory of the relevant rotational torques. Experimental
neutron scattering data on the angular distribution of skyrmion lattices suggest that continuously rotating domains
are easy to obtain in the presence of remarkably small currents and temperature gradients.
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I. INTRODUCTION: SPIN TORQUES AND
SKYRMION LATTICES

Manipulating magnetic structures by electric current is
one of the main topics in the field of spintronics. By strong
current pulses one can, for example, switch magnetic domains
in multilayer devices,1,2 induce microwave oscillations in
nanomagnets,3 or move ferromagnetic domain walls.4,5 The
latter effect may be used to develop new types of nonvolatile
memory devices.6 It is therefore a question of high interest
to study the coupling mechanisms of currents to magnetic
structures.7,8

Here, the recent discovery9 of the so-called skyrmion
lattice in chiral magnets like MnSi provides a new op-
portunity for studying the manipulation of magnetism by
electric currents10,11 both experimentally and theoretically.
The skyrmions in MnSi form a lattice of magnetic whirls,
similar to the superfluid whirls forming the vortex lattice
in type-II superconductors. With Lorentz force transmission
electron microscopy, it is possible to obtain real-space pictures
of these whirls.12,13 While in ordinary ferromagnets currents
couple only to the canted spin configurations at domain
walls, the peculiar magnetic structure of the skyrmion lattice
allows for an efficient bulk coupling. Furthermore, the smooth
magnetic structure of the skyrmion lattice decouples efficiently
from the underlying atomic lattice and from impurities. As
a consequence, it was observed10 that the critical current
density needed to affect the magnetic structure was more than
five orders of magnitude smaller than in typical spin-torque
experiments.

These low current densities open opportunities for new
types of experiments to study quantitatively the physics of
spin-transfer torques. Due to the much lower current densities
it is now possible to perform spin-torque experiments in bulk
materials and thus avoid the surface effects that dominate in
nanoscopic samples. Moreover, for smaller currents the effects
of heating and Oersted magnetic fields created by the current
are suppressed.

In this paper we suggest experiments and develop a theory
with the goal of exploiting the rotational motion instead

of just translational motion to investigate the interplay of
electric currents and moving magnetic structures. Our theory
is directly motivated by recent experiments10 where a change
of orientation of the skyrmion lattice as a function of the
applied electric current was observed with neutron scattering.
In Ref. 10 we have shown that the rotation arises from the
interplay of a tiny thermal gradient parallel to the current and
the Magnus forces arising from the spin-torque coupling of
current and skyrmion lattice. For example, the rotation angle
could be reversed by reversing either the current direction or
the direction of the thermal gradient.

The basic idea underlying the theoretical analysis of our
paper is sketched in Fig. 1. In the presence of an electric
current several forces act on the skyrmion lattice. First,
dissipative forces try to drag the skyrmion lattice parallel
to the (spin) current. Second, the interplay of dissipationless
spin currents circulating around each skyrmion and the spin
currents induced by the electric current lead to a Magnus force
oriented perpendicular to the current for a static skyrmion
lattice (for the realistic case of moving skyrmions the situation
is more complicated). In the presence of any gradient across
the system (e.g., a temperature or field gradient), indicated by
the color gradient, these forces will vary in strength across a
skyrmion domain.

As in the experiment, we assume that the gradients are
tiny: on the length scale set by the skyrmion distance the
gradients have negligible effects. However, on multiplying the
tiny gradient with a large length, i.e., the size of a domain
of the skyrmion lattice (which can be14 several hundred
micrometers), one obtains a sizable variation of the forces
across the domain. These inhomogeneous forces can give
rise to rotational torques. Whether the torque arises from the
Magnus forces or the dissipative forces depends, however, on
the relative orientation of current and gradient and also on the
direction in which the skyrmion lattice drifts. Figure 1 gives
a simple example: if, for example, current and gradient are
parallel to each other (right panel) the forces perpendicular
to the current direction (red horizontal arrows) give rise to
rotational torques while the parallel forces do not contribute.
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FIG. 1. (Color online) Schematic plot of the forces on a skyrmion
lattice perpendicular and parallel to the current flowing in the vertical
direction. For a static, nonmoving skyrmion lattice the red horizontal
arrows correspond to the Magnus force and the green vertical arrows
to dissipative forces. In the presence of a temperature or field gradient,
these forces change smoothly across a domain, thereby inducing
rotational torques which depend sensitively on the relative orientation
of current and gradient (and on the direction in which the skyrmion
lattice moves). Small black arrows show the local orientation of the
magnetization projected into the plane perpendicular to the magnetic
field B. In each unit cell the magnetization winds once around the
unit sphere.

The situation is reversed when current and gradient are
perpendicular (left panel).

We therefore suggest using the rotation of magnetic
structures as a function of the relative orientation of current
and further gradients as a tool to explore the coupling of
magnetism and currents. We will show that the resulting
rotations depend very sensitively both on the relative size of
the various forces affecting the skyrmion dynamics and on how
these forces depend on the induced gradients. While we apply
our theory here to skyrmion lattices, our theoretical approaches
can also be used for other complex magnetic textures and our
results should also have ramifications for other setups.15,16

Quantitatively, we will only study the role of gradients induced
by changes in temperature or magnetic field but other options
are also possible. For example, macroscopic variations of the
cross section of a sample will lead to gradients in the current
density. Also changes in the chemical composition or strain in
the sample can induce gradients.

It is also essential to investigate the effect of pinning of the
magnetic structure by inhomogeneities arising from crystalline
imperfections. Inhomogeneities distort the perfect skyrmion
lattice and lead to forces prohibiting (up to a very small
creep) the motion of the magnetic structure as long as the
current is below a critical value, j < jc. Also, for j � jc,
inhomogeneities induce an effective, velocity-dependent fric-
tional force on the moving skyrmion lattice connected to
local, time-dependent distortions of the skyrmion lattice.
Pinning has been widely studied both experimentally and
theoretically for charge-density waves and vortex lattices in
superconductors.17–20 As the dynamics of skyrmions differs
qualitatively (and quantitatively) from these two cases it is not
clear which of these results can be transferred to skyrmion
lattices. Due to the nonlinear dependence of the pinning forces

on the velocity, they cannot be described by a simple damping
term. Within this paper we will not try to develop a theory of
pinning but will instead use a simple phenomenological ansatz
to describe and discuss pinning effects.

Rotational torques can also arise in the absence of the types
of gradients discussed above. In Ref. 21 we have studied the
role of distortions of the skyrmion lattice by the underlying
atomic lattice, extending the methods used by Thiele22 to
rotational torques (this method will also be used below). Such
distortions indeed induce small rotational torques in a macro-
scopically homogeneous system, i.e., without any external gra-
dients. Similarly, also distortions induced by disorder can in-
duce rotational torques without external gradients, as has been
discussed in the seminal paper by Schmid and Hauger.17 But all
these effects are very small and they were not observed in the
experimental setup of Ref. 10 as no rotation was observed in
the absence of gradients. Therefore they will be neglected in
the following.

In the following we will first describe briefly the rele-
vant Ginzburg-Landau model and the Landau-Lifshitz-Gilbert
equation used to model the dynamics of the skyrmions. Here
we include a novel damping term α′ recently introduced in
Refs. 23–25 (we also add the corresponding β ′ term). We then
derive effective equations for the translational and rotational
modes where pinning physics is taken into account by an extra
phenomenological term. This allows us to develop predictions
for both static rotations by a finite angle and continuous
rotations. In the light of our results we interpret experimental
results on the angular distribution of skyrmion lattices in the
presence of currents and gradients.

II. SETUP

A. Ginzburg-Landau model

The starting point of our analysis is the standard Ginzburg-
Landau model of a chiral magnet in the presence of a
Dzyaloshinskii-Moriya interaction.26,27 After a rescaling of
the length r , the local magnetization M(r), and the magnetic
field B the free-energy functional reduces to9

F = γF

∫
d3r [(1 + t)M2 + (∇M)2

+ 2 M · (∇ × M) + M4 − B · M]. (1)

Here t ∝ T − T MF
c parametrizes the distance to the mean-field

phase transition at B = 0 from a phase with helical magnetic
order (t < 0) to a paramagnetic phase (t > 0).26,27 In the
presence of weak disorder t (and strictly speaking also the
prefactors of all other terms) fluctuates slightly as a function
of r .

The skyrmion lattice (stabilized by thermal fluctuations)
exists for a small temperature and field range.9 It is trans-
lationally invariant parallel to B and shows a characteristic
winding of the magnetization in the plane perpendicular to B;
see Fig. 1.

B. Landau-Lifshitz-Gilbert equation

To describe the dynamics of the orientation �̂(r,t) =
M(r,t)/|M(r,t)| of the magnetization M(r,t) in the presence
of spin-transfer torques due to electric currents, we use the
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standard Landau-Lifshitz-Gilbert equation,7,8,28,29 extended by
a new dissipative term,23–25

(∂t + vs∇) �̂ = −�̂ × Heff + α �̂ ×
(

∂t + β

α
vs∇

)
�̂

−α′
{
�̂ ·

[
∂i�̂ ×

(
∂t + β ′

α′ vs∇
)

�̂

]}
∂i�̂.

(2)

Here vs is an effective spin velocity parallel to the spin-
current density. More precisely, for smooth magnetic structures
with constant amplitude of the magnetization, it is given
by the ratio of the spin current30 and the size of the local
magnetization |M|. In a good metal (for example, MnSi)
vs is expected to be parallel to the applied electric current
and to depend only weakly on temperature and field. The
magnetization precesses in the effective magnetic field Heff ≈
− 1

M
δF

δ�̂
. Strictly speaking Eq. (2) is valid only for a constant

amplitude of the magnetization, |M| = const. Since |M| varies
only weakly9 in the skyrmion phase, we use as a further
approximation Heff ≈ − 1

M
δF
δM

∂ M
∂�̂

where M is the average

local magnetization, M2 = 〈M2〉.
The last two terms in Eq. (2) describe dissipation. α is

called the Gilbert damping and β parametrizes the dissipative
spin-transfer torque. The new damping term proportional to α′
was introduced (for β ′ = 0) in Refs. 23–25. It arises from the
Ohmic damping of electrons coupled by Berry phases to the
spin texture as can be seen by rewriting Eq. (2) in the form

−δF

δ�̂
= M�̂ × (∂t + vs∇) �̂ + αM

(
∂t + β

α
vs∇

)
�̂

+M�̂ × α′
[
Ee

i + β ′

α′ (vs × Be)i

]
∂i�̂, (3)

where Ee
i = �̂ · (∂i�̂ × ∂t�̂) can be interpreted as the emer-

gent electric field and Be
i = 1

2εijk�̂ · (∂j �̂ × ∂k�̂) as the
emergent magnetic field.11,31 These fields describe the forces
on the electrons arising from Berry phases which they pick up
when their spin adiabatically follows �̂(r,t). They couple to
the spin rather than to the charge: electrons with magnetic
moment parallel (antiparallel) to �̂ carry the “emergent
charge” −1/2 (+1/2), respectively.11 For vs = 0 the change
of the free-energy density is given by

∂tF = δF

δ�̂
∂t�̂ = −αM(∂t�̂)2 − α′M(Ee)2, (4)

which shows that the last term describes the dissipated power
∝(Ee)2 arising from the emergent electric field. α′M is
therefore approximately given by the spin conductivity σs .

We have also added a new β ′ term. The presence of such
a term becomes evident if one considers the special case of a
Galilean-invariant system. In this case, all forces have to cancel
when the magnetic structure is comoving with the conduction
electrons, �̂(r,t) = �̂(r − vs t). This is possible only for α =
β and α′ = β ′. Solids are not Galilean invariant and therefore
β ′ is different from α′ but one can, nevertheless, expect that
the two quantities are of similar order of magnitude.

Which of the damping terms will dominate? As pointed
out in Refs. 23–25, the naive argument, that the α′ terms are

suppressed compared to the α terms as they contain two more
derivatives, is not correct. The distance apart of skyrmions is9

proportional to 1/λSO, where λSO parametrizes the strength of
spin-orbit coupling. While the α′ term has two more gradients
compared to the α term, the contribution arising from α′ is,
nevertheless, of the same order in powers of λSO, if we assume
that α arises only from spin-orbit coupling, α ∝ λ2

SO, while
α′ ∝ λ0

SO [Ohmic damping (see above) does not require spin-
orbit effects]. As furthermore α is proportional to a scattering
rate while α′ is proportional to a conductivity and therefore
the scattering time,23–25 α′ and β ′ might be the dominating
damping terms in good metals.

III. DYNAMICS OF SKYRMIONS

Our goal is to describe both the drift and the rotation of
the skyrmion lattice in the limit of small current densities
and small magnetic or thermal gradients. We therefore assume
that vs is small compared to all characteristic velocity scales
of the skyrmion lattice [e.g., kB(Tc − T )/h̄ multiplied by the
skyrmion distance]. The gradients should be so small that
the total change across a domain of radius rd remains small,
rd∇λ � λ, where λ is B or Tc − T for magnetic or thermal
gradients, respectively. In this limit, both the drift velocities
vd � vs and the angular velocity ∂tφ ∝ vs · ∇λ characterizing
rotational motion remain small. Below we will show that even
∂tφ rd , the velocity at the boundary of the domain, remains
small in the considered limit.

We can therefore neglect macroscopic deformations of the
magnetic structure and consider the following ansatz:

�̂(r,t) = Rφ(t) · �̂0
(

R−1
φ(t) · (r − vd t)

)
. (5)

Here �̂0(r) describes the static skyrmion lattice, Rφ is a matrix
describing a rotation by the angle φ around the direction
of the skyrmion lines (i.e., around the field direction when
anisotropies are neglected, which will be assumed in the
following), and vd t describes the location of the center of the
skyrmion domain. This ansatz describes a magnetic domain
which rotates around its center, while the center is moving
with the velocity vd . When the torque forces are too weak
to induce a steady-state rotation, such that ∂tφ = 0, we will
study rotations by the finite angle φ as in the experiment of
Ref. 9. The ansatz (5) neglects the interface dynamics and
interactions between different domains. We will argue below
that the corresponding forces and torques can be neglected in
the limit of large domains. More importantly, we will have
to take into account pinning forces which arise from local
distortions of the skyrmion lattice at impurities; see below.
This effect is not included in Eq. (5) which assumes a rigid
lattice.

A. Drift of domains

To obtain an equation for the drift velocity vd we follow
Thiele22 and project Eq. (3) onto the translational mode by
multiplying Eq. (3) with ∂i�̂ and integrating over a unit cell
(UC). We thereby obtain to order (∇λ)0 (where no rotations
occur) an equation for the force per two-dimensional (2D)
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magnetic unit cell (and per length)32

G × (vs − vd ) + D(β̃vs − α̃vd ) + Fpin = 0,

Gi =
∫

UC
d2r MBe

i = GB̂i , G = 4πMW,

Dij =
∫

UC
d2r M∂i�̂ ∂j �̂ = DP ij , (6)

D′ =
∫

UC
d2r M (Be)2,

α̃ = α + α′D′/D, and β̃ = β + β ′D′/D,

where B̂ = B/|B|. Here the first term describes the Magnus
force, proportional to the topological winding number W ,
which is for the skyrmion lattice exactly given by W = −1.
G is called the gyromagnetic coupling vector, following
Thiele.22 The second term represents the dissipative forces
with the projector P into the plane perpendicular to B,

P = (1 − B̂ · B̂
T

).
Besides the forces discussed above, pinning forces, de-

scribed by the last term in Eq. (6), also have to be considered.
Formally, they are encoded in spatial fluctuations of δF/δ�̂

in Eq. (3). The Thiele approach, used above, which considers
only a global shift (or a global rotation;21 see below) of the
magnetic structure does not capture these pinning effects, as
for a perfectly rigid magnetic structure, random pinning forces
average to zero, such that no net effect remains in the limit of
a large domain. To describe pinning, it is necessary17,18 to take
into account that the magnetic structure adjusts locally to the
pinning forces, a complicated problem for which presently no
full solution exists20,33 and which is far beyond the scope of the
present paper. Instead, we use a phenomenological ansatz and
write for a finite drift velocity vd with direction v̂d = vd/|vd |

Fpin = −4πMvpinf (vd/vpin) v̂d (7)

to describe a net pinning force, which is oriented opposite to
the direction of motion. Its strength, which depends both on
the number (and nature) of defects responsible for pinning
and on the elastic properties of the skyrmion lattice, is
parametrized by the “pinning velocity” vpin. The function f (x)
with f (x → 0) = 1 and f (x → ∞) = xν parametrizes the
nonlinear dependence of the pinning force on the velocity.
Presently, it is not clear to what extent f (x) depends on
microscopic details, and also the exponent ν is not known. For
large driving velocities, however, pinning becomes less and
less important (ν < 1).19,20,33 If the driving forces are smaller
than the force 4πMvpin needed to depin the lattice, vd vanishes
and the pinning forces cancel exactly the driving forces. Note
that we do not consider creep, i.e., a tiny motion driven by
thermal (or quantum) fluctuations, which occurs even in the
pinning regime.20 If the dissipative forces can be neglected, it
is in principle possible to obtain f (x) from a measurement of
the velocity of the skyrmion lattice.11

In the limit vs � vpin, where Fpin can be neglected, we
solve Eq. (6) for vs ⊥ B to obtain

vd = β̃

α̃
vs + α̃ − β̃

α̃3(D/G)2 + α̃

(
vs + α̃

D
G B̂ × vs

)
. (8)

B. Rotational torques

By symmetry, a small uniform current cannot induce any
rotational torques on a skyrmion lattice with perfect sixfold
rotation symmetry and therefore all effects arise from gradi-
ents. To derive an equation for the rotational torques which
determine the rotations around the B axis, we follow21,34,35 a
similar procedure as used for the translations by multiplying
Eq. (3) by the generator of rotations applied to �̂,

∂φ�̂ = B̂ × �̂ − [B̂(r × ∇)]�̂, (9)

with r = r − vd t and integration over r . This procedure
leads to several types of contribution.

For the first type of contribution, we observe that the second
term in Eq. (9), linear in r , is much larger than the first
one, which we can therefore neglect whenever the second
term contributes. The second term induces torques of the form
r × f where the force fi is obtained by multiplying ∇i�̂

with the terms of Eq. (3). In the presence of gradients of the
parameter λ we obtain∫

d2r B̂ · [r × f (λ(r))] ≈
∫

d2r(B̂ · [r × ∂λ f ])(r · ∇λ)

≈ A

4π
B̂ ·

[
∇λ × ∂λ

∫
f
]

, (10)

where A is the area of the domain. Here it is essential to
take the derivative with respect to λ for fixed vd , reflecting
that due to the rigidity of the skyrmion crystal vd is constant
across the domain. As the sum of all relevant forces vanishes
[Eq. (6)],

∑
i f i(λ,vd ) = 0, one obtains d

dλ

∑
i f i = 0 while

∂
∂λ

∑
i f i |vd

is finite. In Eq. (10) we have implicitly assumed
a symmetrically shaped domain, where integrals odd in r
vanish. In general, there will also be a shape-dependent torque
Tshape arising even in the absence of a gradient. As its sign is
random, it can easily be distinguished from the other torques
(and appears to be relatively small in the MnSi experiments).9

More difficult is the question of what happens at the interface of
different domains or when a domain comes close to the surface
of the sample. Nominally, surface forces are suppressed by
a factor proportional to 1/

√
A compared to the bulk terms

considered above, but the relevant prefactors are difficult to
estimate. We will neglect in the following formulas both extra
surface forces and shape-dependent torques.

A different contribution arises from the time derivatives
∂t�̂ = ∂tφ ∂φ�̂ − (vd∇)�̂ in Eq. (3). The contribution pro-
portional to vd is of the form discussed above. The term
proportional to ∂tφ leads to extra torques independent of
∇λ. By combining the linear term in r from ∂φ�̂ with
the second term of Eq. (9) we obtain for example the
contribution α ∂tφ

∫
M{(B̂[r × ∇])�}2 which is also linear

in A. Physically this term describes the frictional torque which
is linear in the angular velocity ∂tφ. The frictional torque per
volume is proportional to A because the velocity and therefore
the frictional forces grow linearly with the distance from the
center of the rotating domain.

Finally, a contribution exists which is independent of the
gradients ∇λ, of the angular velocity ∂tφ, and of vs . This
contribution describes that in the absence of any external
perturbation the skyrmion lattice has a preferred orientation
relative to the atomic lattice. Such terms express that angular
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momentum can be transferred directly from the skyrmion
lattice to the underlying atomic lattice, mediated by spin-orbit
coupling and small anisotropy terms [not included in Eq. (1)].
These terms have been discussed in detail in Ref. 21. This
torque per unit cell,

TL = −
∫

UC
d2r

δF

δ�̂
(Ĝrot�̂) = −∂FUC

∂φ
≈ −χ sin(6φ),

(11)

can be expressed by the change of free energy per unit cell,
FUC, upon rotation by the angle φ, where φ = 0 reflects the
equilibrium position and sin 6φ reflects the sixfold symmetry
of the skyrmion lattice. As has been discussed in Ref. 10,
the absolute value of χ in materials like MnSi is tiny as it
arises only to high order in spin-orbit coupling and, in contrast
to all other terms, it is not linear in the size of the domain.
Nevertheless, we have to consider this term, as it is the leading
contribution arising to zeroth order in ∇λ and vs .

Balancing all torques (per unit cell) we obtain as our central
result

0 = TL + TG + Tpin + TD,

TG = A

4π
∇λ ·

[
∂(Gvs)

∂λ
− ∂G

∂λ
vd

]
,

Tpin = A

4π
∇λ · [B̂ × v̂d ]

∂Fpin

∂λ
, Fpin ≡ |Fpin|, (12)

TD = −Aα̃D
2π

∂tφ

− A

4π
∇λ ·

[
B̂ ×

(
∂(Dβ̃vs)

∂λ
− ∂(Dα̃)

∂λ
vd

)]
.

The dependence of the torques on the relative orientation of
velocities and currents, is for vd = 0 (and ∂tφ = 0), fully
consistent with the simple picture shown in Fig. 1: the
dissipative torques TD arise when gradient and current are
perpendicular to each other while the reactive torqueTG arising
from the Magnus force is activated for a parallel alignment
of gradients and currents. For finite vd , however, this simple
intuitive picture cannot be used, especially as some of the
torques tend to cancel when vd approaches vs .

C. Rotation angle and angular velocity

Equation (12) can be rewritten in the compact form

sin 6φ = −γ ∂tφ + ∇λ · Vs , (13)

where γ = Aα̃D
2πχ

and the vector Vs = Vs[vs] can be obtained
by first solving Eq. (6) to obtain vd as a function of vs . This
function is inserted into Eq. (12) which, finally, is devided by
−χ . The function Vs[vs] with Vs[0] = 0 is proportional to the
area A of the domain and encodes all information on how the
current couples to small gradients and includes contributions
from Magnus forces, dissipative forces, and pinning.

1. Dependence on size of gradients

Qualitatively, three different regimes have to be distin-
guished. For j < jc, when pinning forces cancel all reactive
and dissipative forces, there is neither a motion nor a rotation of
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FIG. 2. (Color online) Rotation angle φ (in units of 1 ◦) and
angular velocity ω̄ (times the prefactor γ ) as a function of ∇λ · Vs

determined from Eq. (13).

the skyrmion lattice, Vs = 0,φ = 0, within our approximation.
Note, however, that it is well known from the physics of
charge-density waves or vortices20 that even below jc a slow
creep motion is possible. Whether during this creep rotations
are also possible is unclear, but the rather sharp onset of the
rotation in the experiments of Ref. 10 (see Fig. 8) seems to
contradict a scenario of pronounced rotations during creep.
For j > jc, the domains move and Vs will generally be finite.
In this case, one can control the size and direction of rotations
by the size of ∇λ as shown in Fig. 2. For |∇λ · Vs | < 1, one
obtains a solution where ∂tφ = 0 but the gradients induce a
rotation by a finite angle

φ = 1
6 arcsin ∇λ · Vs , (14)

which grows upon increasing ∇λ from zero until it reaches the
maximal possible value π/12 = 15◦ (rotations by an average
angle of 10◦ have already been observed;10 see Fig. 8). For
|∇λ · Vs | > 1 the domain rotates (see Fig. 2) with the (average)
angular velocity

ω̄ =
√

(∇λ · Vs)2 − 1

γ
(15)

and Eq. (13) is solved by

φ(t) = 1

3
arctan

[
1 + γ ω̄ tan(3ω̄t)√

1 + γ 2ω̄2

]
, (16)

displayed in the inset of Fig. 3. As both γ and Vs are
linear in the area A of the domain, ω̄ ≈ (∇λ · Vs)/γ becomes
independent of the domain size for A → ∞. In this limit, the
domain rotates continuously, φ = ω̄t . Close to the threshold,
∇λ · Vs = 1; however, the rotation becomes very slow close
to an angle of 15 ◦ (plus multiples of 60 ◦).

A way to detect the rotation of the magnetization is
to exploit the emergent electric field Ee which obtains a
contribution proportional to ∂tφ and can be measured in a
Hall experiment.11 In Fig. 3 we therefore show the modulus
of the Fourier components, |cn| = |∫ ei6ω̄nt ∂tφ dt |, of ∂tφ as a
function of ∇λ · Vs . At the threshold, all Fourier components
are of equal weight while for large gradients the rotation gets
more uniform.
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FIG. 3. (Color online) Inset: Rotation angle (in units of 1 ◦) as
a function of time for three values of ∇λ · Vs > 1; see Eq. (16).
For torques close to the value where rotation sets in, the rotation is
strongly anharmonic. This can also be seen by considering the Fourier
coefficients cn = |∫ 2π/6ω̄

0 ∂tφein6ω̄t dt | shown in the main panel as a
function of ∇λ · Vs .

For fixed ω̄ the velocities at the boundary of the domain,
vb = ω̄rd , grow linearly with the radius of the domain rd .
As we have assumed that the gradients across the sample and
therefore also across a single domain are small, rd ∇λ � λ, the
velocities nevertheless remain small, vb � |Vs |λ/γ � vs/α̃.
While our estimate does not rule out that vb can become
somewhat larger than vs or vd , we expect that the typical
situation is that the velocity vb arising from the rotation
remains smaller than the overall drift velocity of the domain
vd . This estimate also implies that violent phenomena like the
breakup of domains due to the rotation will probably not occur.

2. Domain-size dependence and angular distribution

In a real system, there will always be a distribution of
domain sizes A. Both Vs and γ are linear in A and therefore
both the rotation angle Eq. (14) and the angular velocity
Eq. (15) will in general depend on the domain size and
therefore on the distribution of domains.

Only in the limit |∇λ · Vs | � 1 does the dependence on
A cancel in Eq. (15) and all domains rotate approximately
with the same angular velocity. For |∇λ · Vs | � 1 one will in
general obtain a distribution of rotation angles which can be
calculated from the distribution of domain sizes Pd (A). For
the static domains only angles up to 15 ◦ are possible with

P s
φ =

∫ Ac

0
dAPd (A)δ

(
φ − arcsin(A/Ac)

6

)

= 6Ac cos(6φ) Pd [Ac sin(6φ)] for 0 � φ � π

12
, (17)

where Ac = A/(|∇λ · Vs |) is the size of a “critical” domain
which just starts to rotate continuously.

The continuously rotating domains also have a nontrivial
angular distribution as their rotation will be slowed down when
the counterforces are strongest, i.e., for φ = 15 ◦; see the inset
of Fig. 3. The time-averaged angular distribution P r

φ of the
rotating domains is calculated from the distribution of domain
sizes Pd (A) and the time-averaged angular distribution pr

φ(A)

0 10 20 30 40 50 60
 φ 

0

2

4

6

8

P φ

A0/Ac=0.25
A0/Ac=0.5
A0/Ac=1.0
A0/Ac=2.0
A0/Ac=4.0

FIG. 4. (Color online) Angular distribution Pφ of the rotation
angle of the skyrmion lattice for various values of A0/Ac ∝ ∇λ (see
text). Here we assumed a distribution of domain sizes of the form
Pd (A) = e−A/A0A/A2

0. While static domains contribute only for 0 �
φ � 15 ◦, one obtains a smooth angular distribution when one takes
the rotating domains with A > Ac into account.

of a single domain

P r
φ =

∫ ∞

Ac

dAPd (A) pr
φ(A),

pr
φ(A) = 1

T

∫ T

0
δ(φ − φ(t))dt = 1

T ∂tφ

∣∣∣∣
φ(t)=φ

(18)

= 3

π

√
A2 − A2

c

A − Ac sin 6φ
,

where T = 2π/(6ω̄). While both P s
φ and P r

φ are nonanalytic
at φ = 15 ◦, the total distribution Pφ = P s

φ + P r
φ is smooth for

φ > 0 and normalized to 1,
∫ 2π/6

0 Pφ dφ = 1. In Fig. 4 we show
Pφ , assuming the domain distribution Pd (A) = e−A/A0 A

A2
0

for

various values of A0/Ac.
In elastic neutron scattering, the skyrmion phase is observed

by six Bragg spots forming a regular hexagon in a plane
perpendicular to the magnetic field. A rotation of the skyrmion
domain results in a rotation of these Bragg spots. Therefore the
angular distribution Pφ of rotation angles is directly observable
(see Sec. III D below) by measuring the scattering intensity as
a function of angle. By comparing angular distributions for
different strengths of the current or gradient, one can—at least
in principle—obtain not only Ac as a function of ∇λ or j

but also the distribution of domain sizes. The latter can be
extracted most easily in the regime where most of the domains
do not rotate continuously by plotting Pφ/ cos 6φ as a function
of sin 6φ using Eq. (17).

3. Dependence on strength of current

While the behavior of φ and ω̄ as a function of ∇λ is
rather universal and independent of microscopic details, its
dependence on the strength of the current for fixed ∇λ is
much more complex. As discussed above, Vs = 0 for j < jc.
Directly at jc, when the domain starts to move with vd ≈ 0,
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Vs jumps to the finite value

Vs |vs=vpin = − A

4πχ

[(
−∂Gvs

∂λ
+ Gvs

Fpin

∂Fpin

∂λ

)

+ B̂ ×
(

∂Dβ̃vs

∂λ
− Dβ̃vs

Fpin

∂Fpin

∂λ

)]
. (19)

Note that the jump is independent of α and α′ as well as
of their gradients, as the skyrmions are not moving directly
at the depinning transition (see Fig. 7). Depending on the
direction and size of ∇λ, the jump of Vs leads either to a jump
of the rotation angle for |∇λ · Vs | < 1 or immediately to a
continuous rotation for |∇λ · Vs | > 1.

Upon increasing the current, ∇λ · Vs can either increase,
decrease, or even change its sign depending on (i) the direction
of ∇λ and (ii) the question of which of the forces changes most
strongly when λ is varied (i.e., temperature or magnetic field).

Motivated by existing experimental data (discussed below
in Sec. III D) we study the case of a temperature gradient
λ = t based on the following assumptions. First, we assume
that all damping constants are temperature independent (this
assumption is relaxed later). Second, we need also a theory
for the temperature dependence of the pinning force. Here we
use the experimental observation11 that the critical current is
almost temperature independent at least for a certain range of
temperatures. Within our theory, Eqs. (6) and (7), this implies
that all temperature dependence of Fpin [i.e., the dependence
on the parameter t in Eq. (1)] arises from the temperature
dependence of the magnetization M which we calculate from
the Ginzburg-Landau theory (1). From the Ginzburg-Landau
theory, we obtain also the temperature dependence of the other
parameters; see Fig. 5.

In Fig. 6 we show a typical result (for temperature-
independent dissipation constants) for the rotation angle and
angular velocity of a skyrmion domain as a function of vs in the
presence of a temperature gradient. For a temperature gradient
perpendicular to the current (lower panel of Fig. 6), the rotation
angle increases after the initial jump. For the gradient parallel
to the current, however, we obtain that the rotation angle drops
after the initial jump (upper panel). For larger values of vs the
angle rises again until it reaches its maximal value of 15 ◦. This
qualitative shape of the curve appears to be rather independent

-1.1 -1 -0.9 -0.8
t
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14
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, 
D

 ,
 D

’
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FIG. 5. (Color online) Change of G,D, and D′ defined in Eq. (6)
with temperature t . The applied magnetic field is h/

√
2 (0,0,1).

Dashed lines are for h = 0.9 and continuous lines for h = 1.1.

-30 -20 -10 0 10 20 30vs

-15

-10

-5

0

5

10

15

φ

φ

-2

-1

0

1

2

ω
  γ

ω γ

vs

Δt

-10 -5 0 5 10vs

-15

-10

-5

0

5

10

15

φ

φ

-2

-1

0

1

2

ω
  γ

ω γ

t    vs

Δ

FIG. 6. (Color online) Rotation angle φ (in units of 1 ◦)
and angular velocity γ ω̄ as functions of vs for a tempera-
ture gradient parallel [∇t ‖ vs , ∇t = (−0.1,0,0), upper panel]
and perpendicular [∇t ⊥ vs , ∇t = (0,−0.05,0), lower panel] to
the current [α = 0.2,β = 0.45,α′ = 0.01,β ′ = 0.2,A/χ = 200,t =
−1,B = (0,0,1/

√
2),vpin = 1,f = 1]. For both geometries one ob-

serves a jump of φ at vs ≈ vpin from zero to a finite rotation angle.
After the initial jump the rotation angle increases for the perpendicular
configuration (b) while for the parallel arrangement first a drop and
then an increase up to the maximal angle of 15 ◦ occurs. For larger
vs a continuous rotation characterized by the angular velocity ω̄ sets
in for both configurations. For the calculation we assumed that the
damping parameters and vpin are independent of t .

of the precise values of the various parameters if we assume
that all damping parameters are temperature independent.

In Fig. 7 we plot the rotation angle for small current
densities, taking an extra effect into account which is present
in the experiments described in Ref. 10: as the temperature
gradients are induced by the currents, they grow quadratically
with vs . This does not give rise to any qualitative changes.
The thin blue curve in Fig. 7 thereby reflects the same physics
as the corresponding curve in Fig. 6 (note the different scale
on the x axis). The thick green curve of Fig. 7 shows that
one can, however, obtain qualitatively different results (an
increase rather than a reduction of the rotation angle after
the initial jump for T gradients parallel to the current, upper
panel) by including a small temperature dependence of the
Gilbert damping α. As we will discuss in Sec. III D, this can
reproduce qualitatively the experimentally observed behavior.
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FIG. 7. (Color online) Rotation angle φ (in units of 1 ◦) as a
function of vs for a temperature gradient parallel (∇t ‖ vs , upper
panel) and perpendicular (∇t ⊥ vs , lower panel) to the current. The
parameters are the same as in Fig. 6 with two exceptions. First,
we have taken into account that in the experiments of Ref. 10 the
temperature gradient grows with the square of the applied current,
∇t = (−0.1v2

s ,0,0) and ∇t = (0,−0.05v2
s ,0), for current parallel and

perpendicular to vs , respectively. For the thin blue curve we assumed
(as in Fig. 6) that the damping constants are independent of t while for
the thick green curve a weak temperature dependence of the damping
constant α, ∇α = 0.035∇t , was assumed. This parameter has been
chosen to reflect the experimental observation; see Fig. 8. For even
stronger currents (not measured experimentally and not shown in the
figure) the size of the torque drops again and a finite rotation angle is
obtained for 1.57 � vs � 2.53 in the parallel configuration with the
temperature-dependent damping constant.

4. Dependence on orientation of gradients

Figure 6 shows that the rotational torques on the system
depend strongly on the relative orientation of gradient and
current. More importantly, one probes different physical
mechanism for gradients parallel or perpendicular to the
current. This effect was already discussed in the Introduction
(see Fig. 1), where, however, only the simple case of a static
domain without pinning was described. In reality, the situation
is more complex. All directional information is encoded in
the function Vs[vs] which can be obtained by first solving
Eq. (6) to obtain vd and then comparing Eqs. (12) and (13).
Unfortunately, a rather large number of unknown parameters
(most importantly, the pinning forces and their dependence

on λ) enters the description. Therefore we will discuss in the
following only a few limiting cases.

A drastically simplified picture occurs in regimes when
only two forces dominate in Eq. (6). For example, close to
the depinning transition, the Magnus force is of the same
order as the pinning force while the two dissipative forces
are typically much smaller. In this case one can use Eq. (6)
to show that v̂d becomes proportional to B̂ × (vs − vd ). Thus,
for an λ-independent vs , both the reactive rotational coupling
vector and the rotational pinning vector become proportional
to ∇λ · (vs − vd ). Therefore the ratio of the components of Vs

parallel (Vs
‖) and perpendicular (Vs

⊥) to vs depends only on
the direction in which the skyrmion lattice drifts:

Vs
‖

Vs
⊥ ≈ (vs − vd )‖

(vs − vd )⊥
= −v⊥

d

v
‖
d

. (20)

The ratio Vs
‖

Vs
⊥ can be obtained experimentally by measuring

the rotation angle or the angular velocity for ∇λ parallel
and perpendicular to the current, from which one can obtain
directly Vs

‖

Vs
⊥ using Eqs. (14) and (15). For small angles,

arcsin x ≈ x, for example, one obtains Vs
‖

Vs
⊥ directly from the

ratio of the two rotation angles. A different, but probably more
precise, way to determine this ratio is to find experimentally
the “magic angle” φm of gradient vs current, where all rotations
vanish, ∇λ · Vs = 0. In this case one obtains

Vs
‖

Vs
⊥ = 1

tan φm

. (21)

This should allow for a quantitative determination of v⊥
d / v

‖
d .

As v
‖
d can be measured independently using emergent electric

fields generated by the motion of skyrmions,11 one can
obtain the complete information on the drift motion by
combining both experiments. It is also instructive to compare
skyrmions and vortices in a superconductor. Vortices and
skyrmions follow essentially the same equation of motion,
Eq. (6). The relevant parameters (and therefore also the
pinning physics) are, however, rather different. For vortices in
conventional superconductors20,33 the dissipation is very large,
Dα � G. Therefore, vortices drift—up to small corrections—
predominantly perpendicular to the current while for magnetic
skyrmions we expect that, at least not too close to the depinning
transition, the motion is dominantly parallel to the current.

In the limit where the pinning forces can be neglected, i.e.,
vs � vpin, to linear order in β̃ and α̃ the vector Vs is given by

Vs = − A

4πχ
(B̂ × vs)

(
(β̃ − α̃)

∂G
∂λ

D
G + ∂D(β̃ − α̃)

∂λ

)

(22)

= − A

4πχ

(
B̂ × vs

) 1

G
∂

∂λ
(DG(β̃ − α̃)). (23)

Here we also neglected a possible λ dependence of vs . In
this limit the rotation can be induced primarily by gradients
perpendicular to vs , reflecting that the motion of skyrmions is
mainly parallel to the current; see Eqs. (8) and (20). This is also
consistent with the behavior shown in Fig. 6 where we used a
two-times smaller gradient for the perpendicular configuration
and obtained nevertheless an onset of the rotational motion for
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values of vs much smaller than in the parallel configuration.
Note that in a Galilean-invariant system, α̃ = β̃, no torques
can be expected.

D. Experimental situation

Our study is directly motivated by recent neutron scattering
experiments in the skyrmion lattice phase of MnSi.10 In the
presence of a sufficiently large current, a rotation of the
magnetic diffraction pattern by a finite angle was observed
when simultaneously a temperature gradient was present
(only temperature gradients parallel to the current have been
studied). The rotation angle could be reversed by reversing
either the direction of the current, the direction of the magnetic
field, or the direction of the temperature gradient. This clearly
showed that rotational torques in the experiment were driven
by the interplay of gradients and currents as studied in this
paper.

In Fig. 8(a) we reproduce Fig. 3(A) of Ref. 10, which
shows the average rotation angle (defined as the maximum
of the azimuthal distribution of the scattering intensity) as a
function of current density. Above a critical current, j > jc, the
rotation sets in. The rotation angle initially increases abruptly,
followed by a slower increase for larger current densities.
When comparing these results with our theory one has to take
into account that the temperature gradient in the experiment
was not independent of the strength of the applied electrical
current density as it originated in the resistive heating in the
sample. Therefore the temperature gradient was growing with
j 2 (i.e., the heating rate due to the electric current). This was
taken into account in Fig. 7 as discussed above. For a full
quantitative comparison of theory and experiment, it would
be desirable to have data where the applied current as well as
both the strength and the direction of the gradients are changed
independently. As such data are presently not available, we
restrict ourselves to a few more qualitative observations.

In our theory we expect a jump of the rotation angle
at jc, which depends on the domain size. This appears to
be consistent with the steep increase of the rotation angle
as observed experimentally at jc, especially when taking
into account that the experimental results are subject to a
distribution of domain sizes.

Interestingly, the experimentally observed increase of the
rotation angle after its initial jump is apparently not consistent
with the predictions from the extended Landau-Lifshitz-
Gilbert equation shown in Eq. (2) if we assume that α,α′,β,β ′
are independent of temperature. As shown in Fig. 7, we can,
however, describe the experimentally observed behavior if
we assume a weak temperature dependence of the Gilbert
damping.

An important question concerns whether the existing
experiments already include evidence of some larger domains
that rotate continuously. Figure 8(a) shows that for the largest
currents average rotation angles of up to 10 ◦ have been
obtained. As this is rather close to the maximally possible
value of 15 ◦ for static domains, it suggests that continuously
rotating domains either are already present in the system or
may be reached by using slightly larger currents or temperature
gradients.

FIG. 8. (Color online) (a) Average rotation angle φ (in units of
1 ◦) of the skyrmion lattice in MnSi measured by neutron scattering in
the presence of an electric current and a temperature gradient parallel
to the current. The figure is taken from Ref. 10, where further details
on the experimental setup can be found. (b) Angular distribution
Pφ of the intensity normalized to 1 for currents of strength j = 0
(black diamonds) and j ≈ −2.07 × 106 A/m2 for T = 27.4 K (red
circles). The lines are Gaussian fits serving as a guide to the eye. The
distribution of angles extends up to the maximally possible rotation
angle of 15 ◦, which suggests that some of the larger domains are
rotating with finite angular velocity for this parameter range.

We have therefore investigated the angular distribution of
the scattering pattern using the same set of experimental data
analyzed in Ref. 10 (technical details of the experimental
setup are reported in this paper). In Fig. 8(b) we show
the azimuthal intensity distribution with and without applied
current. Already for zero current a substantial broadening
of the intensity distribution is observed. The origin of this
broadening lies in demagnetization effects which lead to small
variations of the orientation of the local magnetic fields in the
sample, tracked closely by the skyrmions. It has been shown14

that this effect can be avoided in thin samples when only the
central part of this sample is illuminated. For the existing data
this implies that a quantitative analysis of Pφ is not possible.
We observed that the measured experimental distribution of
angles extends up just to 15 ◦. Therefore, from the present data
we can neither claim nor exclude that continuously rotating
domains already exist for this set of data but slightly larger
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current densities or gradients should be sufficient to create
those.

IV. CONCLUSIONS

The magnetic skyrmion lattices first observed in MnSi have
by now been observed in a wide range of cubic, chiral materials
including insulators,36,37 doped semiconductors,38 and good
metals.9,39 This is expected from theory: in any material with
B20 symmetry, which would be ferromagnetic in the absence
of spin-orbit coupling, weak Dzyaloshinskii-Moriya interac-
tions induce skyrmion lattices in a small magnetic field. While
in bulk they are stabilized only in a small temperature window
by thermal fluctuations close to the critical temperature, they
are much more stable in thin films.12,13

From the viewpoint of spintronics, such skyrmions are
ideal model systems to investigate the coupling of electric,
thermal, or spin currents to magnetic textures: (i) the coupling
by Berry phases to the quantized winding number provides
a universal mechanism to create Magnus forces efficiently,
(ii) the skyrmion lattice can be manipulated by extremely small
forces induced by ultrasmall currents,10,11 and (iii) the small
currents imply that new types of experiments (e.g., neutron
scattering on bulk samples) are also possible.

We think that the investigation of the rotational dynamics of
skyrmion domains provides a very useful method to study in
more detail which forces affect the dynamics of the magnetic
texture. As we have shown, the rotational torques can be
controlled by both the strength and the direction of field or
temperature gradients in combination with electric currents.
They react very sensitively not only to the relative strength
of the various forces but also to how the forces depend on
temperature and field.

While some aspects of the theory, e.g., the dependence on
the strength of the gradients, can be worked out in detail, many
other questions remain open. An important concern is, for
example, to identify the leading damping mechanisms and their

dependence on temperature and field. Also, an understanding
of the interplay of pinning physics, damping, and the motion
of magnetic textures is required to control spin-torque effects.
Here future rotation experiments are expected to give valuable
information. Furthermore, it will be interesting to study the
pinning physics in detail and to learn to what extent skyrmions
and vortices in superconductors behave differently.

One way to observe the rotation of the skyrmion lattice is
to investigate the angular distribution of the neutron scattering
pattern as discussed in Sec. III C. This, however, provides only
indirect evidence for the expected continuous rotation of the
skyrmion lattice. Therefore it would be interesting to observe
the continuous rotation more directly. For example, one can
use the fact that time-dependent Berry phases arising from
moving skyrmions induce emergent electrical fields which can
be directly measured11 in a Hall experiment. Here it would be
interesting to observe higher harmonics in the signal, which
are expected to appear close to the threshold where continuous
rotations set in; see Fig. 3.

In future, it might also be interesting to use instead of
electrical current other methods, e.g., pure spin currents
or thermal currents, to manipulate skyrmion lattices (e.g.,
in insulators). We expect that in such systems also the
investigation of rotational motion driven by gradients will give
useful insight into the control of magnetism beyond thermal
equilibrium.
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