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Magnetization dynamics of buckling domain structures in patterned thin films
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The magnetodynamics of lens-shaped thin-film elements are studied using vector network analyzer
ferromagnetic resonance. A strong increase in the frequency at resonance is found when approaching the
switching field. From magnetic force microscopy imaging the increase in resonance frequency is ascribed to
the formation and evolution of a buckling domain state. The experimental data are qualitatively reproduced
by micromagnetic simulations of a model element. Thereby, the roles of the external magnetic field and the
buckling wavelength are extracted separately. Magnetic domain modes with dynamic magnetization modulations
parallel and perpendicular to the static magnetization are identified. Based on magnetostatic energy considerations
qualitative arguments are derived that allow for an interpretation of the dynamic response in such low-symmetry
magnetization distributions.
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I. INTRODUCTION

The dynamic magnetization response of magnetically sat-
urated films and micrometer- or nanometer-size elements has
been extensively studied in recent years.1–9 In the simplest case
a uniform precessional motion of the magnetization vector
is observed. The uniform resonance is described by Kittel’s
equation1 for Heff � Ms,

f 2
r =

(
γμ0

2π

)2

MsHeff, (1)

with the gyromagnetic ratio γ = 1.76 × 1011 T−1 s−1, the
vacuum permeability μ0 = 4π × 10−7 Vs/Am, the saturation
magnetization Ms , and the effective field Heff . In addition to
uniform resonance, a variety of modes, which are dominated by
dipolar or exchange fields, have been identified.2,7,9 Localized
modes are often observed due to a strong inhomogeneity of the
demagnetizing field (see, e.g., Refs. 4, 5, and 10). The dynamic
response of nonsaturated films and elements, on the other hand,
is strongly determined by the presence of magnetization inho-
mogeneities and domain walls. The first dynamic experiments
on nonsaturated ferrite films performed by Polder and Smit11

back in the 1950s promoted numerous studies on the resonance
phenomena in stripe domain structures.12–15 Since then, also
the dynamic behavior of films with in-plane anisotropy and
highly symmetric domain configurations has gained a lot of in-
terest, e.g., magnetic dots in the vortex state or square elements
with a Landau domain structure.16–21 So far, strongly confined
modes that are localized in the domain volume, at the vortex
center, or at the domain walls have been identified and studied
both experimentally and numerically. Higher order domain and
wall modes have been found, similar to spin-wave modes ob-
served in saturated films. Bailleul et al.21 elaborately discussed
the role of domain walls on the localization and quantization
of spin-wave modes in a Landau domain state. In element
geometries and domain structures of low symmetry a large set

of modes might be excited instead of a few individual quantized
modes due to a rather complex dipole-exchange dispersion.

For the purpose of understanding the dynamics in complex
magnetic domain configurations, here we present absorption
measurements on concertina or buckling domain patterns
at different magnetic fields. Concertina patterns may be
observed in soft ferromagnetic thin-film structures close to
zero magnetic field after saturation along the hard axis.22–24

However, such domain configurations often tend to collapse
by the nucleation and propagation of Blochlines that may be
triggered by small magnetic-field variations. In lens-shaped
elements the buckling domain state was found to be stable over
a wide magnetic-field range.25 Therefore, we first performed
static and dynamic measurements on elongated lens-shaped
structures. Associated with the reversal process we found
a significant increase in the main resonance frequency at
magnetic fields smaller than the switching field. This behavior
strongly differs from the frequency dispersion that accompa-
nies the switching process of extended films, exchanged biased
systems,26 or ring structures27 or the behavior of the gyrotropic
vortex mode in magnetic disks.28 In all these examples, a
decrease in the precessional frequency with an increase in
the applied field amplitude (negative dispersion) is found
until the structures switch into the new field direction. In the
second step, we simulated the dynamic response of a model
stripe to gain further understanding of the experimentally
observed resonance features, as well as their dependence on the
externally applied magnetic field and the buckling wavelength.
In the last section we derive qualitative arguments to explain
the dynamic domain modes based on dynamic magnetic charge
considerations.

II. EXPERIMENTS

A ferromagnetic thin film of amorphous Co40Fe40B20 with
a thickness of 60 nm was prepared on a glass wafer by means of
ultrahigh-vacuum magnetron sputtering at room temperature.
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FIG. 1. (Color online) (a) Normalized magneto-optical mag-
netization curve measured in magnetic fields H0 applied along
the easy axis (Ku‖y axis) of lens structures (see inset) and (b)
MFM measurements corresponding to magnetic fields indicated in
(a) by filled (red) circles. The (blue) rectangle highlights the area
where coarsening of the domain pattern occurred after increasing
the reversal-field amplitude to −4 kA/m. The sketch illustrates
the magnetization configuration in the buckling domain pattern and
indicates the wavelength λ.

To induce a uniaxial anisotropy, an in-plane magnetic field
of Hdep = 20 kA/m was applied during film deposition. An
array of lens-shaped structures with element dimensions of
2 × 20 μm2 [see inset in Fig. 1(a)], with the long axis being
parallel to the induced anisotropy axis, was structured using
photolithography. The lateral spacing between individual
element rows was chosen to be equal to the element dimensions
to reduce effects originating from magnetostatic interaction.
The whole array comprised 1350 × 230 lens-shaped thin-film
structures. A saturation magnetization of μ0Ms = 1.48 T was
extracted from out-of-plane magnetization curve measure-
ments of an unpatterned reference film (not shown). In-plane
magneto-optical hysteresis measurements along the magnetic
hard axis of the reference film (not shown) yielded a uniaxial
anisotropy field of Ha = 1.6 kA/m. A magnetization loop
along the magnetic easy axis of the patterned structures
[displayed in Fig. 1(a)] reveals a coercive field Hc of 4.4 kA/m.

A. Magnetic domain observation

Domain studies have been performed by magnetic force
microscopy (MFM), working with a commercial low-moment
magnetic tip in the tapping mode. Thereby, the cantilever
deflection is detected as a measure of the interaction strength
between the stray field of the tip and the stray field above
the sample surface generated by magnetic charges in the
sample.23,29 For an in-plane magnetized thin-film structure,
magnetic charges may emerge at the structure edges if
μ0 �Ms · �n �= 0, with n being the surface normal. Additionally,
dipolar magnetic volume charges are distributed in the tails
of magnetic Néel domain walls.23 In order to prevent the tip
magnetization to be switched by strong stray fields emerging
from the lens tips, only the inner region of the lenses was
scanned. Figure 1(b) shows MFM pictures of a representative
lens obtained at different magnetic fields. The field was applied
opposite to the previous saturation direction.

Note that the contrast in the MFM images is caused
by a superposition of stray fields emerging at the element
edges due to roughness and volume charges located at the
domain walls.30 When the external magnetic field parallel to
Ku is reduced from positive saturation to 0, a zigzag-like
canting of the magnetization is first observed (not shown),
which then transforms into a buckled domain pattern when
the field direction is reversed.25 The sketch in Fig. 1(b)
qualitatively illustrates the position of the domain walls and the
magnetization distribution in the buckling structure at a field
of −4 kA/m. The magnetization of the volume domains is
canted with respect to the easy axis, whereas the edge domain
magnetization remains parallel to the edges along the former
saturation direction to avoid magnetic surface charges. Neither
domain wall dragging nor any other irreversible change of
the domain structure due to the tip stray field was observed
during several scans at a constant magnetic field. Increasing
the field amplitude leads to a stronger domain wall contrast,
which we interpret as an increasing domain wall angle and
hence a stronger diploar charging of the walls due to a stronger
magnetization canting in neighbored volume domains. Despite
an increase in the field the wavelength λ of the buckling
pattern was found to be mainly constant (for H0 > −Hc).
Only in distinct areas [see (blue) rectangle in the lens center]
had some coarsening occurred. At H0 = −Hc the buckling
pattern breaks down and the magnetization switches to the
field direction.

B. Ferromagnetic resonance

Knowing the domain structure, vector network analyzer
ferromagnetic resonance (VNA-FMR)31 experiments were
carried out to study the corresponding dynamic response.
Thereby the self-inductance of a coplanar waveguide (width:
200 μm), loaded with an upside-down-oriented sample, is
measured for a wide range of frequencies of sinusoidal
excitation. A high magnetic field reference measurement is
subtracted from all measurements to get the pure magnetic
response. Any resonance phenomenon in the sample causes a
change in the self-inductance of the waveguide, resulting in a
dip in the microwave transmission parameter |S21|. Frequency
sweeps were performed at various bias fields H0, starting with
the sample being magnetized along a positive saturation field
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FIG. 2. (Color online) (a) FMR signal of lens structures measured
over a wide magnetic field range starting at positive saturation
as indicated by the black arrow. The field sweep corresponds to
the demagnetizing branch of the hysteresis curve. Dark colors in
the spectrum represent dips in the amplitude of the microwave
transmission parameter |S21| that is shown for selected field values in
(b). The thin and thick solid curves correspond to negative (red) and
positive (black) bias field values of 0.8 and 2.4 kA/m, respectively.
Whereas the f (H0) dispersion follows the Kittel relation for H0 > 0
and H0 < −Hc, a much more pronounced shift of the resonance dip
position towards higher frequencies is observed in the low negative
field range. In a frequency range between 9.7 and 10.3 GHz we
have masked a strong impedance change with a white bar. This
artifact was observed in all measurements and could be attributed
to disturbing reflections in the waveguide. As shown in (c), multiple
resonance modes are resolved for Hc < H0 < 0 in addition to the
stronger resonance increase.

(with the H0|| lens axis). Subsequently, the field was reduced
to 0 and an increasing negative H0 was applied. Consequently,
the field sweep followed the demagnetizing branch of the
hysteresis curve as indicated in Fig. 2(a). The intensity plot in
Fig. 2(a) illustrates the resonance behavior over a wide range
of H0. Dark colors represent the minima of the microwave
transmission parameter and indicate resonance in the sample.
The graph in Fig. 2(b) shows |S21| for two selected bias-field
values in the negative [left (red) curves] and positive [right
(black) curves] magnetic-field range.

To interpret the data, let us start with the simple case
where the positive bias field is strong enough to align the
magnetization with the field. Decreasing the bias field results
in a decrease in the effective field in the sample and thus in a
shift of the resonance dip to a lower frequency according to
Eq. (1), where f ∝ √

H0 + Hk . Here, the effective anisotropy
Hk represents the sum of the induced anisotropy Ha and the
shape anisotropy contribution. When the field is then increased
in the opposite direction with respect to the former saturation,
the resonance frequency follows a positive dispersion. For
−5 kA/m < H0 < 0 the frequency increase with bias field
is significantly enhanced [Fig. 2(a)] compared to the Kittel

behavior observed in the positive field range. As shown
more clearly in the finer-resolved FMR spectra in Fig. 2(c),
the dynamic spectrum exhibits several distinct modes in the
considered field range. The dip in the measurement curves
[see left (red) curves in Fig. 2(b)] is much broader compared
to the positive field regime, especially for small |H0|. In
addition to this main absorption peak, we observed a broad
resonance feature of low amplitude for −Hc < H0 < 0 (not
shown). It appears obvious that these effects are related to
the formation of the buckled domain structure and changes
in the domain state with increasing field amplitude. This as-
sumption manifests itself when reaching the switching field at
≈−5 kA/m, where the resonance frequency drops to the
uniform mode frequency as the magnetization has aligned
parallel to the direction of the applied field. By driving minor
loops of H0 (not shown), with H0 > −Hc, we could prove
the reversibility of the dynamic spectra. Consequently, the
spectrum is not influenced by irreversible changes in the
magnetic domain structure.

The observed resonance behavior at magnetic fields
−5 kA/m < H0 < 0 differs remarkably from the negative
dispersion which was expected for this field range.5,26,28 To
allow for an interpretation of the observed resonance behavior
in the domain regime, the dynamic magnetization response
of a model system is simulated using the object-oriented
micromagnetic framework (OOMMF).32

III. MICROMAGNETIC SIMULATION

Using the dimensions of the experimentally investigated
lens structures in any numeric micromagnetic simulation is
challenging due to the huge computational time. Hence, for
a qualitative comparison a rectangular model stripe with
dimensions of Lx = 1.5 μm, Ly = 4 μm, and Lz = 60 nm,
discretized in (5 × 5 × 60)–nm3 cells, was chosen, as the
buckling pattern is expected to emerge in such a structure
too. In addition, periodic boundary conditions34 were applied
along y to promote the formation of a buckling pattern rather
than a closure domain state. To compensate for the large
shape anisotropy due to the periodic boundary conditions and
to stabilize the domain pattern, a relatively large uniaxial
anisotropy with Ku = 2950 J m−3 was set parallel to the
x axis. The exchange constant, saturation magnetization,
and damping constant were set to A = 28.4 × 10−12 J/m,33

μ0Ms = 1.48 T, and α = 0.005, respectively, in agreement
with static and dynamic measurements in unpatterned refer-
ence films. Domain patterns that form within the convergence
criterion of δm/δt = 1 × 10−8 are regarded as metastable,
low-energy configurations that are, in the second step, excited
by a pulse magnetic field of μ0Hx = 0.5 mT with a rise time of
6 ps and a Boltzmann shape. Such a pulse shape was proven to
cover the excitation frequency range of interest, whereby the
chosen pulse amplitude was regarded to be low enough to avoid
fundamental changes in the domain structure. The out-of-plane
susceptibility is proportional to the Fourier transform of the
precessing magnetization component Mz(t).

For the simulation, the initial magnetization was set along y.
For a positive field of μ0Hy = 19.4 mT the stripe is saturated
along y and the fast Fourier transform amplitude spectrum
in Fig. 3(a) (top) shows one pronounced peak at 9.4 GHz.
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FIG. 3. (Color online) (a) Amplitude spectra of a homogeneously
magnetized stripe at Hy = 19.4 and 0 mT (top) and of a stripe in
a reversed field of Hy = −19.4 mT (bottom), excited by a pulse
field along x. (b) The magnetization configuration (top row, left)
shows a repetition unit of the buckling pattern at Hy = −19.4 mT.
Spatial dynamic mode profiles correspond to the resonance features
marked in the amplitude spectrum. The color maps for the different
frequencies are scaled with respect to the corresponding maximum
intensity |I | = |Ai cos(φi)|.

This intense resonance feature corresponds to the uniform
precessional mode. The broadness of the peak reflects the
fact that the demagnetizing field perpendicular to the stripe
axis is not homogeneous. After reducing the field to 0, the
stripe remains saturated along the stripe axis due to the strong
shape anisotropy. In accordance with the Kittel equation, the
frequency of the uniform mode is reduced to 8.1 GHz at zero
field. The small peak that appears at a frequency of 14.4 GHz
originates from the excitation of a higher order quantized mode
with two nodes. Increasing the field in the opposite direction
with respect to the former saturation leads to the formation of
a buckling pattern until the reversed field is strong enough to
switch the magnetization towards the new field direction. The
wavelength λ of the buckling state strongly depends on the
chosen Ly due to the fact that the stripe length represents a
repetition unit in the periodic boundary condition calculation.
Furthermore, coarsening of the simulated buckling pattern
occurs when increasing the reversal field. For this reason
the ratio of buckling wavelength to stripe width is higher in
the simulation compared to the experiment. This artifact can
be tolerated for our purposes, as we do not intend to give a

quantitative reproduction of the presented measurement data.
Here we, rather, want to gain a qualitative understanding on
how the domain evolution affects the magnetization dynamics
at different applied fields. The role of the buckling wavelength
is discussed in Sec. III B by comparing the dynamic properties
of a coarse and a fine buckling pattern at a constant magnetic
field. Figure 3(a) (bottom) shows the amplitude spectrum
calculated for the buckling pattern at μ0Hy = −19.4 mT.
Instead of a single resonance peak, multiple broad resonance
features appear. An intense peak shows up at 13.3 GHz, which
is much higher than the resonance frequency of the uniform
mode. Several additional peaks appear in the low-frequency
part of the spectrum.

To identify the different resonance modes, the precessional
amplitude Ai(f ) and phase φi(f ) in each cell i were deter-
mined for several frequencies via Fourier transformation of
the local precessional motion Mz(i,t). The spatial profiles of
the resonance modes are found by extracting I = Ai cos(φi)
for the peak frequencies.19 To save computation time, the
dynamic response of every fifth cell (in the x and y direction)
was analyzed, which has been proven to be fine enough to
resolve all relevant mode features. Snapshot representations
of the magnetic precessional motion [shown in Fig. 3(b)]
reveal the relative out-of-plane magnetization amplitudes,
where red and blue areas represent dynamic magnetization
components pointing out of or into the film plane, respectively.
Clearly, the first three peaks in the low-frequency range
correspond to modes whose amplitudes are localized at the
domain walls. Wall modes with zero, two, and five nodes
are identified, for which the mode frequency increases with
increasing nodal number. In contrast, the amplitude of the
high-frequency peak is spread over the entire domain area.
The width of the peaks can be explained by an overlap of
the susceptibility of similar modes whose frequency spacing
is too small to be resolved (compare, e.g., mode images for
13.3 and 13.36 GHz). In contrast to the dynamic response
of saturated highly symmetric elements, no individual well-
resolved modes are observed in irregularly shaped elements
with inhomogeneous magnetization patterns.21 Analyzing the
snapshot representations of the domain mode profile in more
detail, it is obvious that no uniform dynamic response is
excited. Instead, the phase-corrected amplitude Ai cos(φi)
varies along and perpendicular to the magnetization direction
inside the individual domains. Thereby, the mode profiles
clearly reflect the position of domain walls in the underlying
domain structure as well as the change in the magnetization
direction from the closure to the basic domains. Comparing
the local magnetization amplitudes with the color scale bar
reveals that there is a net dynamic magnetization deflection
out of the film plane because the deflection is positive over
almost the entire domain area.

Note that a discretization of the simulation volume along
the thickness would presumably result in further modes. We
restricted the simulations to the two-dimensional case, as the
results reflect the measurement data sufficiently well. Possible
modes with an amplitude modulation along the film thickness
of 60 nm are expected to exhibit much higher frequencies due
to a strong exchange energy contribution.

In the following we concentrate on the discussion of the
high-frequency domain mode, as it lies in the frequency range
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of the main dynamic response in our experimental measure-
ments. To understand the origin of the drastic resonance
frequency increase that goes along with the formation of
the domain pattern in our experiments, let us now study the
dynamic response of the buckling pattern at varying external
field strengths.

A. Effect of static magnetic field

In order to elude changes in the buckling wavelength in
the first step, the coarsened domain state that was found just
before switching [at H0 = −19.4 mT; see Fig. 3(b)] was
taken as the initial state. To study the effect of different
applied magnetic-field amplitudes we then traced back the
hysteresis branch to negative fields of −15 and −14 mT.
Hence, a refining of the coarse initial pattern does not occur
since the formation of additional domain walls would require
the overcoming of an energy barrier. In accordance with our
experimental observations (Sec. II A), the magnetization of the
basic domains gradually tilts back towards the easy axis when
reducing the applied negative field. The angle of the diagonal
domain walls and the length of the horizontal walls adapt to
these changes in order to avoid magnetic charges at the walls
[compare magnetization details in Fig. 4(b)].

Figure 4 compares the dynamic response of a buckling
pattern with a constant wavelength at different negative mag-
netic fields. The frequencies of similar domain wall modes are
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FIG. 4. (Color online) (a) Comparison of the permeability spectra
of a buckling pattern with varying negative magnetic fields. Symbols
group peaks of similar character but at different applied fields H0.
The change in frequency with increasing negative field is indicated
by a (black) arrow for each group. (b) Simulated buckling patterns
for different negative fields (left column) and corresponding dynamic
snapshots related to the peaks tagged in (a).

found to decrease as the negative field increases. However, the
domain mode frequency shows the opposite trend. Increasing
the negative field results in a higher domain mode frequency as
long as the field is smaller than the switching field (|H0| < Hc).
Hence, the numerical results qualitatively reflect the measured
FMR data. As exemplarily shown in Fig. 4 for the field of
−15 mT, small side peaks close to the main domain mode may
appear in the spectra, depending on the applied field strength.
One can see from the corresponding mode images at 11.5
and 11.9 GHz that closely spaced domain modes of similar
character are excited. Due to the different f (H0) dispersion,
these modes may be resolved as individual peaks or result in
one broad domain resonance peak. The excitation of similar
domain modes explains the observation of multiple distinct
resonance features in the FMR spectra for 0 < H0 < Hc.

Again, the domain modes spread over the entire basic
and closure domain volume. When the magnetization of the
basic domains progressively tilts out of the bar axis with
increasing negative field, the degree of inhomogeneity of the
dynamic mode in the basic domains increases as well. A
dominant modulation parallel to �M is clearly visible in the
basic domain at μ0H0 = −14 mT. Such a mode character is
similar to the low-energy magnetostatic spinwave modes found
in homogeneously magnetized films, known as backward
volume modes.37 However, at the higher reversal field of
μ0H0 = −19.5 mT the amplitude is strongly reduced and
a modulation perpendicular to �M becomes more apparent.
Furthermore, it seems that the element geometry is additionally
reflected in the mode profile (see the modulation parallel to the
element edges).

Before discussing the origin of the resonance increase in
the domain mode, we first investigate how the domain modes
depend on the buckling wavelength at a fixed static field H0.

B. Effect of buckling wavelength

Due to the fact that the domain size depends on the
simulation geometry and the applied field, it is important to
investigate how the wavelength of the buckling state affects
the dynamic response. For a given bias field H0 our numeric
simulation results in either a broad (λ2) or a narrow (λ1)
wavelength buckling pattern depending on the field history
[see inset in Fig. 5(a)]. The latter was obtained by decreasing
the field from positive saturation to −15 mT. A further decrease
in the field to −19.4 mT results in coarsening of the buckling
pattern. The coarse configuration is then conserved when the
field amplitude is reduced again to −15 mT. In the following
we investigate relaxed magnetic domain structures of varying
λ at an applied bias field of H0 = −15 mT [see magnetization
states in Fig. 5(b)].

Both the domain mode and the wall mode frequencies
are strongly affected by the wavelength of the two initial
states. Comparing the domain wall mode images for different
buckling wavelengths [Fig. 5(b)], a change in the wall mode
character becomes obvious. This is related to the different
separation of neighbored basic domain walls, i.e., a stronger
wall interaction in the case of the λ1 state. The frequency
of comparable wall modes is reduced after coarsening. In
contrast, the domain mode frequency increases significantly,
from 10.5 to 11.9 GHz after coarsening. Also, for the
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short-wavelength buckling state an amplitude modulation
parallel to the local magnetization dominates the domain
mode character. It seems that such a dynamic modulation can
more easily adapt to the smaller change of the magnetization
direction across the domain walls, resulting in a more
homogeneous mode character. This may be due to the reduced
domain wall angle on the one hand. On the other hand, the
magnetization inside the smaller closure domains is less
homogeneous than in the case of longer wavelengths because
the tails of the diagonal Néel walls extend farther into the
interior of the closure domains.

IV. DISCUSSION AND CONCLUSIONS

Following the reversal branch of the magnetization curve
and increasing the magnetic field, the buckling domain pattern
is altered in terms of (i) an increasing magnetization rotation
out of the element’s long axis inside the basic domains, (ii) an
increase in the buckling wavelength within distinct areas, and,
finally, (iii) a collapse of the domain pattern and alignment
of the magnetization along the field direction. It has been
shown experimentally and numerically that case i provokes an
increase in the domain mode frequency. Hence, the presence of
the buckling domain state for fields 0 < H0 < 5 kA/m causes a
strong resonance frequency increase, in contrast to the negative
dispersion found in Refs. 26–28. There, the magnetization
remains uniform and oriented opposite to the reversal field
direction before switching due to the different element shapes
and material properties.

Our numerical simulations reveal distinct wall modes in
the low-frequency range of the dynamic permeability spectra.
However, we could not identify well-resolved low-frequency

modes in our FMR measurements. Sharp domain wall modes
are not expected in the FMR experiment due to the variation
in domain wall length (due to the varying element width) and
pinning landscape in the lens structures. Hence, various wall
modes with closely spaced frequencies will smear and result
in one broad peak. The frequency of the FMR low-frequency
mode decreases with increasing H0, which is in accordance
with the field-dependent simulations at a constant buckling
wavelength. We assume that the origin of the reduction in the
wall mode frequency is due to the increasing wall length as H0

increases. The stiffness of a horizontal domain wall decreases
as the distance between the two pinning sites—the intersection
point with the diagonal walls on one side and the stripe edge on
the other—increases. A lower domain wall stiffness results in a
reduction in energy that is associated with a homogeneous os-
cillation of the wall and thus a lower frequency.36 Park et al.17

also observed a reduction in the resonance frequency of diago-
nal walls in a Landau domain pattern when the wall length was
increased by a larger element size. The higher order wall modes
in our simulation involve larger dipole and exchange energies
and thus exhibit a higher frequency the shorter the length of
the domain wall. However, it is not trivial to derive the nodal
character of the wall modes from simple symmetry arguments
in such a buckling domain state. A decrease in the buckling
wavelength results in a stronger interaction between neighbor-
ing walls and therefore affects the wall mode character.

The domain mode exhibits amplitude modulations parallel
and perpendicular to the local magnetization direction inside
the center and the edge domains. Thereby, the resonance
frequency of the domain mode shows a trend towards in-
creasing with the degree of inhomogeneity of the amplitude
modulation. Generally, a modulation of the magnetization
parallel to �M comprises less magnetostatic energy compared
to a modulation perpendicular to �M , as the latter involves
head-to-head magnetization configurations (similar to the
higher energy of Damon-Eshbach spin-wave modes compared
to backward volume modes).37 The same argument holds
for static magnetization ripple structures, for which the
magnetization is modulated longitudinally along the mean
magnetization direction due to a lower stray-field energy being
involved.23 Hence, the more the dynamic modulation deviates
from the pure longitudinal (‖M) character (in other words,
with increasing inhomogeneity), the higher is the measured
resonance frequency.

The higher the magnetic field, the stronger is the tilt of
the magnetization out of the easy axis and the larger are
the domain wall angles. The same is observed for increasing
buckling wavelength: When λ increases, the magnetization of
the basic domains deviates more strongly from the easy axis
and therefore the domain wall angles are increased. Hence,
for the cases of the field and wavelength dependence of the
buckling state dynamics, we have shown that small domain
wall angles between closure and basic domains result in
a lower domain mode frequency. When the magnetization
changes only slightly across a low-angle domain wall the
propagation vector of the dynamic modulation can adapt
easily to the change in the magnetization direction [see
Fig. 5(b), top row; f = 10.49 GHz]. This results in a relatively
homogeneous dynamic charge pattern in the whole element. In
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other words: sinks and sources of the dynamic magnetization
are homogeneously distributed, resulting in a lower dynamic
magnetostatic energy contribution. Distinct modes that were
observed in the FMR spectrum [compare Fig. 2(c)] correspond
to similar high-frequency domain modes whose frequency
spacing varies with the applied field.

In conclusion, the magnetodynamics of buckling domain
states were studied, both experimentally and numerically, by
varying the magnetic field amplitude and for different buckling
wavelengths. We have shown that the modeled high-frequency
domain mode qualitatively explains the measured FMR data
of lens-shaped elements in the domain regime for 0 < H0 <

5 kA/m. Qualitative arguments based on magnetostatic energy
considerations were derived to allow for an interpretation of
the dynamic response in such low-symmetric magnetization
distributions. No well-resolved quantized modes can be ex-
pected in buckling domain configurations due to the complex
anisotropic and nonmonotonic dipole-exchange dispersion.21

An increase in the domain wall angles due to magnetization
rotation or domain coarsening results in a higher dynamic
dipolar potential and therefore in a higher domain mode
frequency. After the collapse of the buckling state, the
resonance frequency drops back and follows the expected
Kittel behavior.
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