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Substrate polarization effects in two-dimensional magnetic arrays
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The magnetostatic energy of a two-dimensional (2D) periodic array of magnetic particles (or a thin film
with periodic magnetization) is evaluated, including additional energy terms due to a polarizable substrate.
The polarization of the substrate is solved self-consistently using surface charges. This requires describing the
magnetic potential of the 2D array in terms of an equivalent surface charge distribution. Analytic expressions
for the magnetostatic self-energy of the 2D array as well as the energy due to the interaction of the magnetic
structure and polarizable substrate are presented. It is shown how substrates with large susceptibility significantly
alter the stray-field energy and, hence, the magnetic properties of the array, even promoting a spin-reorientation
transition. Our results suggest that system properties can be controlled in a simple way by exploiting substrates
with tunable polarizability.
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I. INTRODUCTION

Nowadays magnetism deals with more and more miniatur-
ized systems down to single magnetic atoms on surfaces.1

Nevertheless, many properties such as hysteresis are still
described in a quasiclassical manner.2 This is even more
the case if one has to consider the stray-field properties
of systems used in technical applications.3–5 In the case
of particles and thin films classical potential theory and
continuum theory describe the stray field sufficiently, even
if the characteristic dimensions are only of a few angstroms.
On the one hand, the stray or demagnetizing field of a single
particle becomes less important with decreasing particle size
as the total magnetic volume decreases. On the other hand,
due to the long-range character of the dipole-dipole interaction
stray-field energies are still important if one has to consider
large arrays of interacting small particles.6 Hence, on the
nanoscale—especially with respect to the superparamagnetic
limit—a detailed knowledge of the stray field and stray-field
energies remains important.

The stray-field problem consists in the solution of the
Poisson equation such that results strongly depend on the mag-
netization distribution and on boundary conditions.7 Although
the boundary value problem has a general solution,8,9 several
symmetry properties may reduce the general complexity.
Among other structures with simplified solutions are homo-
geneously magnetized cuboids,10 two-dimensional periodic
arrays of homogeneously magnetized rectangular elements,11

or thin films with periodic quasi-one-dimensional12 and two-
dimensional13 magnetization structures.

In this work we show that a strongly polarizable substrate
can significantly influence the energetics of magnetic arrays.
The effects are similar to a soft magnetic underlayer (SUL)
introduced below a hard magnetic material as in magnetic
recording devices.14,15 We present simplified analytical so-
lutions for two-dimensional (2D) arrays or thin films with
a 2D periodic magnetization distribution that is constant
in z. The solutions naturally include antidot arrays, such
that the presented results are also interesting for magnonic

applications.16 The results further take into account a semi-
infinite polarizable substrate, an unavoidable contribution in
every experiment. It is shown that the substrate stabilizes
perpendicular magnetization in patterned media. Note that in
the case of magnonics, i.e., in the GHz regime, one should
carefully consider the substrate’s time constants. Finally, all
effects described here also hold for ferroelectric materials on
top of an electrically polarizable substrate.17

II. EQUIVALENT SURFACE CHARGES

To calculate the magnetostatic energy, let us assume a quasi-
two-dimensional magnetization distribution that is periodic in
the x-y plane and within the limits −h < 2z < h. A special
case of such a distribution is shown in Fig. 1, where the 2D
periodicity is due to the geometrical structuring into cuboids
while the magnetization inside the cuboids is constant. The
magnetization can be written in the form (Mx,My,Mz) =
MS(ax( �ρ),ay( �ρ),b( �ρ)),18 where ρ = (x,y). The functions ai

and b naturally fulfill a2
x( �ρ) + a2

y( �ρ) + b2( �ρ) = 1 and have
the Fourier coefficients aq,x , aq,y , and bq . Defining �aq =
(aq,x,aq,y) the magnetic potential � of such a distribution has
the form

�(�r) = −MS

2

∑
�q

e2π i�q· �ρ
[

i
�aq · �q
|�q| t(|�q|,h,z) − bqu(|�q|,h,z)

]
,

(1)

where �q = (k/λx,j/λy)—(k,j ) ∈ Z2—is the wave vector
divided by 2π and12

t(q,h,z) =
{

sinh(πqh)
πq

e−2πq|z|; |z| > h
2 ,

2−exp(−πq|h+2z|)−exp(−πq|h−2z|)
2πq

; |z| � h
2 ,

(2)

and

u(q,h,z) =
{

sgn(z) sinh(πqh)
πq

e−2πq|z|; |z| > h
2 ,

sinh(2πq|z|)
πq

e−πqh; |z| � h
2 .

(3)
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FIG. 1. Square lattice of magnetic cuboids of dimensions l × w ×
h. The array with lattice constants λx and λy is on top of a substrate
with the interface at 2z = −h. A magnetization in the [111] direction
is sketched as dark gray arrow.

In contrast to the rather complicated expression for the
potential of a magnetization distribution, the potential �C of a
periodic 2D charge distribution at 2z = −h reads

�C(�r) = σ0

4πμ0

∑
�q

e2π i�q· �ρsq

e−π |�q||2z+h|

|�q| . (4)

Note that the charge distributions is truly 2D; i.e., σ (x,y,z) =
σ ( �ρ)δ(2z + h). The total charge of a unit cell sums up to
zero, i.e., sq = 0 for q = 0, as the charge has its source in the
magnetic structure. The factors sq are the Fourier coefficients
of the function s( �ρ), where σ ( �ρ) = σ0s( �ρ), and it is convenient
to set σ0 = μ0MS.

For 2z < h as well as for 2z > h the potential � of the
periodic magnetic structure can be given in the form of an
equivalent surface charge, which is placed at 2z = −h or 2z =
h, respectively. In each of the two cases the equivalent surface
charge does not describe the potential in the other half space as
this space contains sources of the field, namely the magnetic
2D structure. If the magnetic array is supposed to be on top of a
polarizable substrate, the substrate is affected by the potential
for 2z < −h, which can be described by a surface charge at
2z = −h.

Comparing Eq. (1) and Eq. (4) the Fourier coefficients of
the equivalent surface charge have the form

sq = (e−2π |�q|h − 1)

(
i
�aq · �q
|�q| + bq

)
. (5)

The potential of a magnetization distribution and the potential
of its corresponding equivalent surface charge are shown in
Fig. 2.

III. SELF-CONSISTENT SOLUTION FOR THE
SUBSTRATE POLARIZATION

In general the substrate that supports the 2D magnetic array
is polarized due to the stray field of the array. Moreover,
the polarization produces a stray field modifying the total
energy, i.e., the magnetostatic energy of the array as well as
of the substrate itself. If the polarization of the substrate is
proportional to the local field, i.e., the tensor of polarizability
is isotropic, it can be substituted by a scalar. In this case the
polarization of the substrate only produces surface charge.
This is due to the fact that the field inside the substrate has
zero divergence—there are no sources. To stress the point,
for isotropic polarizability a polarization due to the field of a
surface charge distribution only creates a surface charge, i.e.,
modifies the initial distribution. From a mathematical point of
view, this is a huge difference to a soft magnetic layer. Hence,
if the magnetic array produces a surface charge distribution
σ stat

0 , the polarization results in σ ind
0 , where the polarization

naturally is caused by σ stat
0 + σ ind

0 .
As the polarization only has surface charge the self-

consistent calculation of σ ind
0 only has to consider the z

component of the field at the surface. The self-consistent
potential �sc reads

�sc(�r) = MS

4π

∑
�q

e2π i�q· �ρ (
sstat
q + s ind

q

) e−π |�q||2z+h|

|�q| , (6)
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FIG. 2. (Color online) Magnetic potential of an array of cubes (l = w = h and λx = λy = 2h) magnetized in the [111] direction. Contour
plot of the x-z plane for y = 0 (left). The potential due to the equivalent surface charge is shown in the right panel. The two solutions are
identical for 2z � −h, but differ for 2z > −h, as the magnetic array has sources of the field inside this volume. Hence, the divergence of the
potential is nonzero here, while an equivalent surface charge can only reproduce the potential in a region of zero divergence.
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where s ind
q are the Fourier coefficients of the induced charge

normalized by σ0. The z component of the field at the surface
is

Hz|surface = − d

dz
�sc(�r)|surface = lim

z↗− h
2

MS

2

∑
�q

e2π i�q· �ρ

× (
sstat
q + s ind

q

) sgn (2z + h)

eπ |�q||2z+h|

= −MS

2

∑
�q

e2π i�q· �ρ (
sstat
q + s ind

q

)
. (7)

The induced charge distribution can be expressed either as

σ ind = μ0χ lim
z↗− h

2

Hz(z) = −χ
σ0

2

∑
�q

e2π i�q· �ρ (
sstat
q + s ind

q

)
(8)

or as

σ ind = σ0

∑
�q

e2π i�q· �ρs ind
q . (9)

Comparing Eqs. (8) and (9) one easily gets

s ind
q = − χ

2 + χ
sstat
q . (10)

Note that as the substrate provides a surface charge with similar
Fourier coefficients, only scaled by −χ (2 + χ )−1, it can be
interpreted as the field of a scaled mirror image of the magnetic
structure. This interpretation gives an intuitive picture of the
interaction. The self-consistent solution for the potential inside
the substrate then reads

�sc(�r) = 2

2 + χ

MS

4π

∑
�q

e2π i�q· �ρsstat
q

e−π |�q||2z+h|

|�q| ; (11)

i.e., the potential inside the substrate is reduced by the factor
of 2(2 + χ )−1.

IV. MAGNETOSTATIC ENERGIES

The knowledge of s ind
q enables the calculation of the

total magnetostatic energy of the magnetic-structure-substrate
system, which can be decomposed into two parts, the self-
energy of the periodic magnetic structure, and the energy
gained by bringing the structure into contact with the substrate.

The self-energy volume density of the magnetic structure
has the form

E stat

Kd
=

∑
�q

[ |�q · �aq |2
|�q|2

(
1 − 1 − e−2π |�q|h

2π |�q|h
)

+ |bq |2 1 − e−2π |�q|h

2π |�q|h
]

, (12)

where 2Kd = μ0M
2
S. This form is a generalization of the

formulas given in Refs. 11 and 12. A more general but
rather complicated form, not restricted to a confinement in
−h < 2z < h, is given in Ref. 19. Note that the energy is given
per volume and not per magnetic volume. To get the latter one,
naturally Eq. (12) has to be divided by the area fraction that
the structure occupies per cell area A. In the given example
one has A = λxλy .

The interaction energy of the magnetic structure and the
substrate can be evaluated as almost trivial, as it is already
expressed in terms of equivalent surface charges. Following
Ref. 20 the energy change due to the substrate can be calculated
as a surface integral of the form

Estat−ind = 1

2

∫
dS�statσ ind, (13)

which differs by a factor of 1/2 from the simple charge-charge
interaction.21 To emphasize that the potential is due to the
magnetic structure only, the index “stat” is added here.

The energy density reads

E stat−ind = 1

2Ah

∫
A

d �ρ σ ind�stat
sc

= 1

2Ah

∫
A

d �ρ
⎛
⎝σ0

∑
�q

e2π i�q· �ρs ind
q

⎞
⎠

×
⎛
⎝MS

4π

∑
�k

e2π i�k· �ρ sstat
k

|�k|

⎞
⎠ . (14)

This integral is only nonzero if �q = −�k such that the integral
becomes independent of x and y. The trivial solution reads

E stat−ind

Kd
= −1

2

χ

2 + χ

∑
�q

(1 − e−2π |�q|h)2

2π |�q|h

×
∣∣∣∣i �aq · �q

|�q| + bq

∣∣∣∣
2

. (15)

A Taylor expansion for small χ reproduces the results of
Ref. 12, but without the complicated evaluation of field
and induced magnetization and basically without integration
except trivial ones.

V. SPIN-REORIENTATION TRANSITION IN A SQUARE
LATTICE OF CUBOIDS

To emphasize the effect of a strongly polarizable substrate
we consider a quadratic grid of cubes. The cubes have l =
w = h; see Fig. 1. The grid has a periodicity of λ and is on
top of a substrate with polarizability χ . Inside the cubes a
homogeneous magnetization is assumed, i.e.,

�M = MS(sin θ cos φ, sin θ sin φ, cos θ ), (16)

where θ and φ are the standard spherical coordinates. In this
case the geometric and magnetic part of the Fourier series has
the form

i
�q · �aq

|�q| + bq =
(

i
�q(sin θ cos φ

sin θ sin φ

)
|�q| + cos θ

)

× sin πhqx

πqxλx

sin πhqy

πqyλy

. (17)

The first term contains only the information about the direction
of the magnetization while the second term is defined by the
particle shape. The self-energy per magnetic volume of the
array in the case of magnetization directions in the [100], [001],
and [111] directions as a function of the array’s periodicity is
shown in Fig. 3. Naturally, the energy density per magnetic
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FIG. 3. Energy per magnetic volume of an array of cubes as a function of array periodicity. (a) Self energy of the freestanding array.
(b) Corrections due to the substrate. Note that the substrate self-energy shows the same behavior, however, with a different scaling. (c) Total
energy E tot for χ = 1, i.e., a combination of (a) and (b). The curves correspond to magnetization in the [100] (dashed), [001] (doted-dashed),
and [111] direction (continuous). Note that the substrate induces a spin-reorientation transition from in-plane, white area in (c), to out-of-plane,
gray area in (c).

volume of the freestanding array converges to Kd/3, the
demagnetizing energy of a single cube. In case of λ = h, i.e.,
the closed film, in-plane magnetization results in zero energy,
while out-of-plane magnetization gives the well-known result
of Kd. Interestingly, in the case of a magnetization in the [111]
direction the result is independent of λ. Hence, the increase in
energy due to the in-plane components is exactly compensated
by the decrease due to the out-of-plane component. From a
mathematical point of view this can be understood looking
at Eq. (12). For a magnetization in the [111] direction all
h-dependent terms in Eq. (12) become odd in qx and qy such
they add up to zero in the Fourier sum. Moreover, this property
is independent of the particle shape; it only requires that the
magnetization is in [111] direction with respect to the array.

In Fig. 3(b) one can see the important impact of the
substrate. Although the energy due to the substrate is small
compared to the structure’s self energy, it introduces a spin-
reorientation transition (SRT) at finite λ, which can be seen
as a crossing of graphs present in Fig. 3(c) but not present
in Fig. 3(a). Note that this is true for all χ > 0. For λ = 1
one has a closed film and the substrate plays no role. In
all other cases, however, the energy is affected. The energy
is lowered most in the case of a z magnetization. Hence,
the polarizable substrate shifts the height-dependent SRT for
cuboids to smaller h. Substrates with χ > 0, hence, stabilize
a perpendicular magnetization. To show this effect Table I and
Fig. 4 compare the SRT of a freestanding array and an array
on top of a substrate with χ = 1. The critical ratio w/h is set
to the point where the total magnetostatic energy is identical
for �M = (M,0,0) and �M = (0,0,M). Note that for all λ the
critical height is reduced by approximately 6%.

TABLE I. Critical ratio h/w (l = w) for the spin-reorientation
transition in an array of cuboids on substrates with and without
polarizability.

λ 1.8 2 3 5 ∞
χ = 0 6.26 2.16 1.15 1.03 1
χ = 1 5.92 2.04 1.08 0.97 0.95

Pure paramagnetic substrates with χ close to 1 present a
theoretical extreme. Nevertheless, smaller χ will still have
an impact on the SRT and the system stability. The latter is
especially the case when referring to the superparamagnetic
limit, where small changes in energy affect the system
properties exponentially.

VI. SUMMARY

Formulas to calculate the self-energy of two-dimensional
periodic magnetic structures have been presented. The pe-
riodicity may be due to a periodic magnetization vector
field and/or due to a periodically structured thin film. The
effect of a polarizable substrate has been taken into account
by introducing equivalent surface charges at the substrate–
magnetic structure interface. The virtual surface charges allow
for an easy calculation of the substrate–magnetic structure
interaction. The substrate–magnetic structure interaction can
be of importance as, e.g., in patterned media, dot or antidot.
In either case the presented formulas allow for an exact
calculation of the substrate’s influence.

Furthermore, the results may be used as an approximation
for SUL. In the case of a soft ferromagnetic material the
formulas are a good approximation if bulk charges are
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w
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FIG. 4. Phase diagram showing the spin-reorientation transition
in a square array of cuboids. The black line corresponds to the critical
values of a freestanding array, while the gray curve takes into account
a substrate with χ = 1.
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negligible22 and the surface charge is proportional to the local
field. It is, however, worth mentioning that the gain in stability
by a drastic change from χ = 1 in a paramagnet to χ ≈ 105

in a SUL is far less drastic, as the factor χ (2 + χ )−1 only
changes from 1/3 to approximately 1. The strength of the
virtual image moments, hence, only increase by a factor of
3. The importance of a pure paramagnetic substrate has been
shown using the example of the spin reorientation in a square
array of cuboids.

In summary we have shown that polarizable substrates
can significantly influence the energetics of magnetic arrays.
Paramagnetic substrates with large susceptibility significantly

alter the stray-field energy similar to soft ferromagnetic
underlayers, even promoting a spin-reorientation transition. It
can be concluded that substrates with tunable polarizability
give new possibilities to control the properties of nanodot
arrays.23,24
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