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Probing dynamical magnetization pinning in circular dots as a function of the external
magnetic field orientation
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We performed ferromagnetic resonance measurements of square arrays of noninteracting Permalloy circular
dots for different orientations of external magnetic field with respect to the patterned film plane (θ ). Out-of-plane
angular dependence of the main resonance peak was measured in the whole range of the field angles 0◦ �
θ � 90◦. The main eigenmodespatial distribution is strongly nonuniform due to the dot nonellipsoidal shape.
Nevertheless, for dots with small aspect ratio b = L/R � 0.1 (where R is dot radius and L is dot thickness)
Kittel’s equation, assuming uniform dynamic magnetization (no pinning at the dot lateral edges), describes the
peak position with high accuracy. Analytical calculations and micromagnetic simulations confirmed the gradual
evolution of the main mode profile and a smooth transition from the strong to relatively weak pinning conditions
with the change of external magnetic field angle.
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The spin excitation frequency spectrum of small magnetic
particles is quantized.1 The discrete values of the eigenfre-
quencies are mainly determined by magnetostatic interaction
and depend on the particle sizes and the magnetization static
configuration (the ground state). A typical magnetization
ground state of small flat particles (dots) is an inhomogeneous
vortex state. The corresponding spin excitations are strongly
nonuniform,2 but even in the case of an ideal spatially uniform
ground state (saturated or single-domain particles), the spin
eigenmodes have nonuniform magnetization distribution due
to inhomogeneous internal magnetic fields. The only known
exception is Kittel’s quasiuniform eigenmode, which can be
exactly uniform in ellipsoidal particles. This mode corresponds
to the maximal interaction to the external rf driving field, and
therefore, it is the main mode in the excitation spectra of the
small magnetic particles. The eigenmode spatial distributions
are determined by the symmetry of the particle due to the influ-
ence of the inhomogeneous internal fields. The proper choice
of the eigenmodes and calculation of the eigenfrequencies can
be done accounting dynamic magnetization pinning at the dot
lateral edges.

The general exchange-surface anisotropy boundary con-
ditions for the dynamic magnetization were formulated by
Rado and Weertman.3 Then, by analysis of the magnetization
dynamics measurements in patterned films, it was realized
that it is also necessary to include within the boundary con-
ditions a contribution from the strongly nonuniform internal
magnetostatic field existing near the element lateral edges.
The magnetostatic pinning on the dot lateral surface S was
introduced explicitly in Ref. 4 in the limiting form (m · n)S =
(mn)S = 0 (n is the normal to the side surface) to calculate
the vortex gyrotropic mode in cylindrical dots. Accounting the
exchange interaction in Refs. 5 and 6 has led to a large but finite
value of the pinning parameter d in the vortex state cylindrical
dots defined by the equation R∂mn/∂n + dmn|S = 0. This

parameter was calculated for rectangular magnetic stripes,
vortex state and perpendicularly magnetized circular dots,7,8

and in-plane magnetized circular dots.9 The general boundary
conditions for thin dots were formulated in Ref. 8, where the
pinning parameter was written as the ratio of contributions
of the surface and volume magnetostatic charges near the
dot surface, accounting for a relatively small correction due
to the exchange interaction. These boundary conditions were
confirmed by detailed simulations10 and were widely used for
interpretation of numerous experiments on the magnetization
dynamics in patterned films.

Continuous wave ferromagnetic resonance (FMR) is a
powerful experimental technique to probe the magnetic param-
eters (different types of magnetic anisotropy fields, exchange
interactions, etc.) of continuous thin films,11 multilayers,12 and
dot arrays.13 Ferromagnetic resonance was also successfully
used to study standing spin waves in both continuous14

and patterned15–21 magnetic systems. In the case of narrow
resonance line width, FMR experiments have the capability
of obtaining the resonance positions with an extremely high
degree of accuracy (± a few Oersteds). Another advantage
of FMR is that the resonance field in most cases is larger
than the saturation field of the sample; thus, the influence
of domain structure is suppressed. And finally, it is very
important that the measurements of resonance field angular
dependence, both polar and azimuthal, can be easily done
using a computer-controlled goniometer with an accuracy
of 0.1◦.

In this paper, we consider the case when Kittel’s equation
is a good approximation to describe the main excited spin
wave mode in soft magnetic cylindrical dots and establish
a border of applicability of such simplified description. We
introduce the pinning parameters for dynamic magnetization
m of magnetostatic origin at the dot lateral edges and show that
the pinning is relatively weak and can be neglected for a wide
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range of the external bias field angles measuring ferromagnetic
resonance, but the magnetization pinning and the main mode
nonuniformity should be accounted for the angles close to the
normal to the dot plane.

Square arrays of Permalloy circular dots were fabricated
on a silicon wafer using electron beam (EB) lithography and
lift-off techniques. The total patterned area of the samples
was 2 × 2 mm, big enough to obtain a strong FMR signal.
After resist development, a ferromagnetic layer was deposited
from a Permalloy target on a rotating water-cooled substrate
with an EB patterned sample with a growth rate of 0.1 nm/s.
One sample (A) was prepared for initial study: dots with the
diameter 2R = 1000 nm and thickness L = 50 nm were
arranged into square array with the lattice period a of 2500 nm
to avoid dipolar interdot interactions. To check the reliability
and reproducibility of the FMR results, a set of square arrays of
circular dots with 2R varying from 500 to 4000 nm, L= 40 nm,
and a = 4R was prepared in one deposition run to keep the
same magnetization and in-plane anisotropy (the samples B).
As a result, all the samples B had the same saturation
magnetization Ms = 770 G and giromagnetic ratio γ /2π =
2.975 MHz/Oe. Again, the last two values were obtained from
fitting spin-wave spectra of the perpendicularly magnetized
samples. The dot dimensions were confirmed by atomic force
microscopy (AFM) and scanning electron microscopy (SEM).
The surface roughness of all the samples was found to be
around 3 nm by AFM. Scanning electron microscopy images
demonstrated almost perfect sharpness of the dot edges.

Room temperature FMR measurements were done at
9.85 GHz using a standard X band electron spin resonance
spectrometer Bruker ELEXYS 500. A computer-controlled
goniometer was used to measure the out-of-plane (the polar
angle θ changes from 0 (H ‖ z) to π/2 (H ⊥ z), z being the
normal vector to the patterned film plane) and in-plane (the
azimuthal angle ϕ changes from 0 to 2π at θ = π/2) angular
dependencies of the resonance field Hr .

The ferromagnetic resonance condition of the individual
element without in-plane anisotropy is given, as a function of
dc magnetic field orientation θ , by the well-known Kittel’s
equation for the uniform mode of an ellipsoid:

(
ω

γ

)2

= [Hr cos(θ0 − θ ) − H⊥ cos2 θ0][Hr cos(θ0 − θ )

−H⊥ cos 2θ0], (1)

where H⊥ represents the magnitude of the total anisotropy field
of uniaxial perpendicular symmetry, ω is the microwave field
frequency, and γ is the gyromagnetic ratio. For the given value
of applied external field H , the equilibrium magnetization
angle θ0 (see Fig. 1) can be derived from the equation:

H sin(θ0 − θ ) = H⊥ sin θ0 cos θ0. (2)

In the general case, the perpendicular anisotropy field can
be written as H⊥ = NMs − Ha , where N is the sample demag-
netizing factor, Ms is the saturation magnetization, and Ha is
a sum of all the possible perpendicular anisotropy fields—
magnetostrictive, magnetocrystalline, and surface anisotropy.
The solution of the system of Eqs. (1) and (2) yields a
dependence of the resonance field Hr on θ .

FIG. 1. Sketch of cylindrical dot and the system of coordinates
used.

The demagnetizing factor of the individual dot N = Nzz −
Nxx averaged over the dot volume can be calculated using
the simple formula Nxx = Nyy = 2b[ln(8/b) − 0.5]22 valid
for b � 1, where b = L/R is the dot aspect ratio. The averaged
demagnetizing tensor components Nαβ satisfy the general
condition Tr(Nαβ) = Nzz + Nxx + Nyy = 4π . Other contribu-
tions to H⊥ in our case are negligibly small as Permalloy has
zero magnetostriction. Small magnetocrystalline anisotropy
is completely suppressed by the polycrystalline structure of
the dots, and the surface anisotropy is only observable in the
objects with a thickness of few nanometers. Therefore, Ha was
considered equal to zero for all the studied samples.

In the case of the presence of the in-plane magnetic
anisotropy (as in Ref. 23), resonance condition (1) becomes
more complicated; therefore, it was very important to demon-
strate the negligibly small value of such anisotropy for the dot
array under study. Dependence of the main FMR peak on the
azimuthal angle ϕ was measured (for θ = π/2). Only a very
weak uniaxial anisotropy is present in this sample, fitted by
a simple formula Hr (ϕ) = Hr,av + Hu.a. cos 2ϕ, where Hr,av

is an average resonance peak position, and Hu.a. is an uniaxial
anisotropy field (Fig. 2). Here, Hr,av is found to be 1129 Oe
and Hu.a. = 4.9 Oe. This uniaxial anisotropy may be caused by
presence of the magnetic field in the chamber during deposition
of Permalloy or by small inclination of the dots from circular
shape.

For an isolated dot without perpendicular anisotropy
Ha, the FMR resonance field for θ = θ0 = π/2 is Hr,av =√

(ω/γ )2 + (2π − 3Nxx/2)2M2
s − (2π − 3Nxx/2)Ms . For

the dot arrays with 2R = 1000 nm, a = 2500 nm, and
L = 50 nm (the sample A), we get a perfect agreement
between Kittel’s formula and experiment (Hr,av = 1137 Oe)
using Ms = 830 G and γ /2π = 2.96 MHz/Oe. We would
like to underline that these values were obtained from
fitting spin-wave spectra observed in the perpendicularly
magnetized sample (case θ = 0◦, Ref. 15). Then, we used
these values of Ms and γ for further analytical and numerical
calculations. Angular dependence of the main resonance peak
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FIG. 2. In-plane angular dependence of the main resonance peak
in the array of noninteracting circular dots. Squares are experimental
points; line is a fit taking into account the uniaxial in-plane (cos 2ϕ)
anisotropy.

was measured in the whole range 0◦ � θ � 90◦ (see Fig. 3).
As one can see, for the angles θ � 10◦, Kittel’s equation
almost perfectly describes the resonance field of the main
peak. The noticeable difference between the experimental
values of the resonance field and one predicted by Kittel’s
formula appears only in the vicinity of the normal to the
patterned film. The results for the samples B are presented in
Figs. 4 and 5 and can be summarized in the following way:

For the aspect ratio b < 0.1, Kittel’s equation (1) describes
the in-plane resonance field with a very good accuracy. The
relative error (Hres. exp. − Hres. Kit.)/Hres. exp . for θ = 90◦ is
below 1%. It increases gradually with decrease of θ and then
jumps up to 4% approaching θ = 0◦. With increase of the
parameter b, the accuracy of Kittel’s equation diminishes for
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FIG. 3. (Color online) Resonance fields of the main peak for the
different angles of the applied dc magnetic field with respect to the
normal to the dot plane for the sample with 2R = 1000 nm and L =
50 nm (sample A). Inset: the resonance fields at small angles θ �
8◦. The blue circles are experimental points; the red triangles are
micromagnetic simulations; the green dashed line represents analytic
calculation with the infinitely strong pinning; and the black solid line
represents analytical calculations using Kittel’s formula (no pinning).

θ

θ

FIG. 4. In-plane (θ = 90◦) and perpendicular (θ = 0◦) resonance
fields of the main peak as a function of the dot aspect ratio b

for the samples with the thickness L = 40 nm and a = 4R

(the samples B). Squares are the experimental values; solid lines
represent analytical calculations using Kittel’s formula Eq. (1); the
dashed line represents analytic calculations assuming infinitely strong
pinning (Ref. 15).

all the field angles; however, this effect is more significant
for in-plane orientation (Fig. 4). The highest error of 6% for
b = 0.16 is still small enough to use Kittel’s formula for
determination of the FMR frequencies of circular magnetic
dots in the most cases. Dependence of accuracy of Kittel’s
formula on the bias field angle (Fig. 5) may be attributed to
the similar dependence of the pinning parameter d.

It is important to note that in applying the analytical
model15 that accounts for infinitely strong pinning of
dynamical magnetization on the dot edges,7,8 much better
agreement with experiment for the perpendicular (θ = 0◦)
case was obtained (dashed line in the upper panel of Fig. 4).
The dynamical magnetization components mx,y(ρ) are
proportional to the zero-order Bessel function J0(α0ρ/R),
where α0 = 2.40 is the first root of the equation J0(x) = 0. The
relative error of this approach is below 1.5% in the whole range
of the dot aspect ratios. The similar results for the case θ = 0◦
were obtained recently by Castel et al.21 for the arrays of
circular dots with different diameters by using broadband FMR
and ferromagnetic resonance force microscopy techniques.
We would like to mention that Kittel’s model (infinitely weak
pinning) predicts lower values for the resonance fields of the
main mode, whereas the model with infinitely strong pinning15
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θ (degrees)

FIG. 5. (Color online) Difference between experimental (the sam-
ples B) and calculated (using Kittel’s formula) values of resonance
field of the main peak for different aspect ratios as a function of the
angle of applied dc magnetic field θ .

predicts a bit higher resonance field values comparing to
experimental values. Therefore, it is reasonable to assume that
the real pinning parameter of the dot is somewhere in between
the limiting cases of zero and infinitely strong pinning.

To clarify this issue, the detailed analytical and numerical
study of d(θ ) dependence was performed below. As shown
in Ref. 8, the boundary conditions for magnetization on the
lateral surfaces of thin magnetic dots can be derived from the
Landau–Lifshits equation of motion and written in the form of
the surface torque equation

M ×
(

L2
e

∂M
∂n

+ HmL

)
= 0, (3)

where n is the external normal to the dot side surface ρ =
R, Hm is the magnetostatic field sharply changing near the
surface, Le = (2A/M2

s )1/2 is the exchange length, and A is
the exchange stiffness.

The dot is assumed to be thin enough, so magnetization
does not depend on the coordinate z along the dot thickness.
Substituting into Eq. (3) the magnetization M and magne-
tostatic field as a sum of static and small dynamic parts,
M = M0 + m, Hm = H0

m + hm, M0 = Ms(sin θ0, 0, cos θ0),
where can rewrite the boundary conditions for the dynamical
magnetization m in linear approximation x

M0 ×
(

L2
e

L

∂m
∂n

+ hm

)
+ m × H0

m = 0. (4)

We introduce the coordinate system x ′y ′z′, where the Oz′
axis coincides with the direction of the static magnetization
M0, in the xz plane, and Oy = Oy ′. In this coordinate system,
m = (mx ′ ,my ′ , 0), and we write the boundary conditions
immediately for the components m by projection Eq. (4) to
the coordinate axes Ox ′ and Oy ′. Let us consider the boundary
condition for the component my′ along Oy′, which does not
depend on the static magnetization angle θ0 in the xz plane.
It can be written as (L2

e/L)∂my/∂n + h
y
m − myH

0z′
m /Ms = 0.

Then, to write this equation in a closed form, we should account
for the surface parts of the magnetostatic fields. We express

the decomposition of the dynamic magnetostatic field as a
sum of the surface and volume contributions h

y
m(R − 0) =

−2πmy(R) + F (b)∂my/∂y, y = n, where the first term is due
to continuity of the magnetic induction at y = R, and the
second term can be calculated using the magnetostatic Green
functions.24,25 The magnetostatic field component giving a
contribution to the boundary conditions is H 0z′

m = H 0x
m sin θ0 +

H 0z
m cos θ0. The z component of H0

m is a smooth function of
the coordinate y near the dot side surface ρ = R and does not
contribute to the boundary equations, whereas the x component
strongly changes at the distance ∼L near the dot lateral
surface. Such speculations were confirmed by micromagnetic
simulations of the spatial distributions of the components
of H0

m. Here, H 0x
m (R) = −Nxx(R)Ms sin θ0, so the boundary

conditions at the dot surface can be written in the standard form
with an explicit angular dependence of the pinning parameter,
which has mainly the magnetostatic origin and depends on the
dot aspect ratio b = L/R of the cylindrical dot:

R
∂my

∂n
+ d(θ0)my |R = 0, d(θ0) = − (2π −Nxx(R) sin2 θ0)( L2

e

LR
+ F (b)

) .

(5)

The functions Nxx(R,b) and F (b) can be calculated
analytically via the magnetostatic Green functions for the
circular cylinder.24 The dependence θ0(θ ) can be found from
Eqs. (1) and (2). The inhomogeneous demagnetizing factors
are calculated as Nxx(ρ,b) = [4π − Nzz(ρ,b)]/2, Nzz(ρ,b) =
(4π/b)

∫ ∞
0 dtt−1[1 − exp(−bt)]J0(tρ/R)J1(t). The averaged

demagnetizing factors used in Eqs. (1) and (2) are de-
fined as Nαβ = (2/R2)

∫
dρρNαβ (ρ). In the general rela-

tion of the magnetostatic field and magnetization h
α

m(ρ) =∫
d2ρGαβ(ρ,ρ ′)mβ(ρ ′), ρ = (ρ,φ), we put α = y, φ =

π/2 and assume that the dynamic magnetization for
the main, Kittel-like mode does not depend on the az-
imuthal angle φ′. This allows us to get the equa-
tion h

y
m(ρ) = ∫

dρ ′ρ ′g(ρ,ρ ′)my(ρ ′), where the kernel is
g(ρ,ρ ′) = −4π

∫ ∞
0 dkf (kL)J0(kρ ′)∂J1(kρ)/∂ρ and f (x) =

1 − (1 − exp(−x))/x. Then, the function F corresponding to
the volume magnetic charges in Eq. (5) can be expressed as
F (b) = ∫

dρ ′ρ ′g(R,ρ ′)(ρ ′ − R) and F (0.1) = 0.603. Here,
Nxx(R) ≈ π + b[ln(8/b) + 1/2]/2 is essentially larger than
the volume averaged factor Nxx and yields the ratio for the
pinning parameters d(0)/d(π/2) = 2.17, which is close to
the simulated ratio. In general, the dynamical magnetization
mα(ρ) components are functions of φ due to broken radial
symmetry at the finite field angles θ0, and this dependence can
be approximately described by a trial function mα(ρ,φ) =
mα(0)[J0(kρ) − aα sin θ0J2(kρ) cos(2φ)], where α = x ′, y ′
and ay > 0 is order of unit, but we neglect such asymmetry in
the equations used above because, in the main part of the dot
(ρ < R), giving contribution to the dynamic magnetostatic
field J2(kρ) ≈ (kρ)2/8 is small because of k ∼= 1/R for the
main mode. Accounting of the azimuthal asymmetry of mα(ρ)
is beyond the simplified approach developed here and will be
considered elsewhere.

In order to study numerically the radial profiles of the
dynamical magnetization of the fundamental resonance mode
and obtain the degree of pinning for different angles of applied
dc magnetic field, we performed micromagnetic simulations.
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We considered Permalloy dots in the array as uncoupled,26 so
simulations of one dot are sufficient. We used the parallelized
version of the Object Oriented MicroMagnetic Framework
(OOMMF).27 The dot dimensions and magnetic parameters
were similar to ones in the FMR experiments described
above. The anisotropy field was assumed to be zero. A cell
size in the dot plane (4 nm) was selected to be smaller
than the micromagnetic exchange length Le/(4π )1/2 for
Permalloy (5.5 nm). We used the approximation stating that the
magnetization does not vary along the out-of plane direction
(z), and only changing in the dot (xy) plane. So, the cell size
in the z direction was selected to be equal to the dot
thickness (4 × 4 × 50 nm3). No remarkable difference in the
magnetization profiles was obtain using the smaller cells of
2 × 2 × 50 nm3 (we checked that for θ = π/2).

For simulations, the same frequency of the microwave
field (9.85 GHz) had been used as in FMR experiments.
The field was oscillating with the amplitude of 2 Oe for
which excited dynamical magnetization is around 1% of the
saturation value and the dynamics can be considered as a
linear regime. The magnetization configurations were recorded
every 5 ps, in order to obtain a well-defined function for the
average dynamical magnetization vs time and to determine its
maximum value to use the magnetization configuration in that
point for finding the eigenmode radial profiles.

Our simulated sample was situated in the xy plane (Fig. 1).
Driving ac field is always applied along the y axis in the plane
of the sample. The bias dc field is applied in the xz plane,
varying its angle with respect to the z axis. In order to obtain
the magnetization profiles, we went through three steps for
every angle θ of the dc field: (1) bracketing of the resonant
dc field, (2) improving precision in determination of the field
and profile, and (3) obtaining the magnetization profiles at
equilibrium. In the first step, accounting experimental values of
the FMR resonance field (shown in Fig. 3), a range of dc fields
was chosen in which the resonance should appear. We find the
equilibrium magnetization for the highest field in the range and
start simulation, reducing the field every 5 ns in 100 Oe, while
rf field is applied during all the simulation time. From this
simulation, we obtain a graph of the average magnetization
in the direction of the rf field (my) vs continuous dc field.
Then, from this graph, the estimated value for the resonance
field was extracted (the field for which the oscillations in
the magnetization have the biggest amplitude). After these
simulations, we perform other ones in the same way, but only
for a reduced range of dc fields varying in 10 Oe at every step.
We enlarge the simulation time in each step as well to 10 ns in
order to provide more stable oscillations of the magnetization.

Simulated resonance fields are compared to the results of
FMR measurements in Fig. 3. Matching with the experiment
is quite good except the field angles of 8◦ and 10◦, in the
region with big slope of the Hr (θ ) dependence. Finally, we
perform energy minimization for the resonance dc field (with
no rf field applied) and extract the dynamical magnetization
profiles by subtracting the magnetization configuration M0

with only dc field applied from the magnetization configuration
M corresponding to the highest my value achieved in the
oscillations when rf field is applied. For the field H applied
in the xz plane (for different θ ), the maximum dynamic
magnetization M − M0 at the resonance field are plotted in

FIG. 6. (Color online) Dynamic magnetization M − M0 for the
cell size 4 × 4 × 50 nm3 for the different field orientations θ .
Maximum length of the arrows represents 83 G. Color stands for
magnetization component along the y axis. Deep red (dark gray) is
most positive, while negative values are represented by blue (medium
gray). White is 0. The values of the field angle θ are: (a) 0◦, (b) 4◦,
(c) 6◦, (d) 10◦, (e) 30◦, and (f) 90◦. The horizontal direction is the x

axis.

Fig. 6. Two main features can be observed from this figure.
First, there is an asymmetry along the y direction at the
edges of the dot. This was reversed by applying an rf field
of opposite sign. So, it is related to initial conditions of the
simulations. Second, there are waves along the x direction
of smaller wavelength also excited in this field. The profiles
of these waves resulted in varying when we introduced the
cells of 5 nm along the z direction (with cells 5 × 5 × 5 nm3).
We compared these magnetization profiles (for θ = π/2) by
averaging along the z direction with the ones obtained for cells
4 × 4 × 50 nm3 and the magnetization profile changed from
a twofold symmetry to a fourfold one. This magnetization
profile is similar to thatobtained for the fundamental mode by
the dynamical matrix method in Ref. 28. These changes could
be understood from the symmetries induced by the shape of
the discretization scheme. We checked that considering the
magnetization constant along z (cells 4 × 4 × 50 nm3) resulted
to be a good approximation for my ′ along Oy. Besides, this
approximation of constant magnetization along z is the one
used in the analytical calculations. In this approximation,
small oscillations of different wavelength are restricted to
the x axis, so to get the magnetization radial profiles of the
fundamental mode of oscillations, we use the y component of

054419-5



G. N. KAKAZEI et al. PHYSICAL REVIEW B 86, 054419 (2012)

FIG. 7. (Color online) Profiles of the magnetization component
of (M − M0)/Ms along the y axis for different dc field angles. The
cell size is 4 × 4 × 50 nm3. Symbols are a guide to the eye: black
squares ( ) correspond to θ = 0◦, red circles ( ) to θ = 4◦,
green triangles pointing up ( ) to θ = 6◦, blue triangles pointing
down ( ) correspond to θ = 8◦, pink diamonds ( ) to θ =
10◦, dark blue triangles pointing left ( ) to θ = 15◦, dark green
triangles pointing right ( ) to θ = 30◦, and gray stars ( )
correspond to θ = 90◦.

the magnetization along the y axis my . In order to study the
degree of pinning involved in the magnetization oscillations,
the profiles for different directions of the applied dc field
were plotted in Fig. 7. The pinning parameter of my was
numerically calculated from the profiles (Fig. 7) and presented
in Fig. 8 along with the results of analytic calculations using
Eq. (5).

As one can conclude from Fig. 8, the analytic Eq. (5)
for the angular dependence of the pinning agrees reasonably
well with the results of the micromagnetic simulations. The
discrepancies can be attributed to the assumption of the static

FIG. 8. (Color online) Angular dependence of the pinning pa-
rameter d . The solid line corresponds to the analytical dependence
given by Eq. (5); the squares represent the values extracted from the
magnetization profiles simulated micromagnetically in Fig. 7. The
blue dashed line is the guide for the eyes only.

magnetization M0 uniformity in the analytic approach and
not exact reproducing of the circular dot side surface by
the rectangular simulation cells. The worst results for the
agreement between numerical and analytical calculations of
the pinning are found from θ = 6◦ to 10◦. In these cases,
according to Fig. 6, there could be influence of the spin
waves with a finite wave vector along the x axis, especially
pronounced for 10◦. These spin waves are degenerated in
frequency with the FMR eigenmode frequency (ωk = ω0)
given by Eq. (1) and have finite kx of the order of 105 cm−1.
The degeneracy is strongest for θ = 6◦–10◦. The amplitudes
of these excited spin waves are relatively small due to a weak
interaction with the uniform driving field, but these additional
spin waves result in considerable (up to four times) increase of
the FMR line width at θ = 6◦–10◦ due to energy transfer from
the FMR mode to high-k spin wave modes via four-magnon
relaxation process.12 Another consequence of the high-k spin
wave excitations is a deviation of the FMR mode profile from a
bell-shaped cylindrical wave profile J0(kρ) and increase of the
effective pinning d(θ ) of the dynamical magnetization at the
field angles θ = 6◦–10◦ due to additional modulation/decrease
of the volume magnetic charges. The simulated dynamic
magnetization component my(x,y) profiles along the Ox and
Oy (Fig. 7) directions extracted from Fig. 6 are quite different.
Changing of the profiles my(0,y) increasing the field angle
θ can be described by both calculation methods as gradual
decrease of the pinning parameter d(θ ), but the simulated
pinning of the component my(x,y) along the Ox direction
is strong (d > 10) for all the angles θ . Analytically, it can be
shown that the average over azimuthal angle pinning parameter
of my(x,y) d̄(θ ) also slightly increases (from d̄(0) = 11.65 to
d̄(90◦) = 13.77), but this difference is not important because
all the values of d larger than 10 can be considered as limits of
the strong pinning (the exact values of d > 10 do not influence
the resonance frequencies of the excited spin eigenmodes,
including the FMR mode).

The pinning of the dynamical magnetization my in the
direction perpendicular to the field rotation plane (Oy) is
strong when the external field is perpendicular to the dot
plane, and it gradually reduces with the increase of the angle
between the magnetic field and the dot normal. According
to this approach, Kittel’s equation for the main mode should
have more accuracy for the larger values of θ , while for the
field direction close to the dot normal, the standing radial
spin waves can be described in terms of the Bessel functions
of zero order. This is in good qualitative agreement with
the numerical simulations and FMR experimental results,
but the pinning of the calculated dynamical magnetization
my in the Ox direction and azimuthally averaged pinning do
not decrease with the theta increasing, whereas the accuracy
of Kittel’s equation increases with the angle θ increasing. This
equation has an error lower than 2% within the interval 7◦–90◦
for the dots having the aspect ratio b smaller than 0.1. This
error is essentially larger for the angles close to zero, even for
small b, and increases with b increasing. Within the model of
the pinning, such behavior can be qualitatively explained by
the angular dependence of the second dynamic magnetization
component mx ′ (x,y). Increasing of the field angle θ leads to
decreasing of both the side surface and volume charges related
to mx ′ . It can be shown that both the charges are proportional to
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cos2 θ0. This results in the decreasing of the pinning parameter
described by an equation similar to Eq. (5) with increasing θ0.
The pinning of mx ′ along the dot normal direction Oz (θ0 =
90◦) is always small unless we consider dot thickness L bigger
than 50 nm.

To summarize, a comprehensive experimental, micromag-
netic, and analytical investigation of magnetization dynamics
in circular soft ferromagnetic dots as a function of the
external magnetic field orientation was carried out. It has
been shown that the experimentally observed magnetization
dynamics of the main resonance mode can be qualitatively
interpreted in terms of varying dipolar boundary conditions
for the dynamic magnetization components at the dot lateral
edges. Regardless of nonelliptic dot shape, Kittel’s equation
has good accuracy for the description of the main excitation
mode in thin dots (b � 0.1) within a wide range of the external
field angles θ = 7◦–90◦, whereas for the dot aspect ratios
thickness/radius b > 0.1 and field orientations close to the dot
normal (θ = 0◦), a more detailed approach accounting for

inhomogeneous distribution of the dynamic magnetization is
necessary.
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