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We study the real-time dynamics of a quantum Ising chain driven periodically by instantaneous quenches of
the transverse field between +�0 and �0 back and forth in equal intervals of time. Two interesting phenomena
are reported and analyzed. (i) We observe dynamical many-body freezing (DMF), i.e., strongly nonmonotonic
freezing of the response with respect to the driving parameters (pulse width and height) resulting from coherent
suppression of dynamics of all quasiparticle modes. For certain combinations of the pulse height and the period,
maximal freezing (DMF peaks) is observed, where a massive collapse of the entire Floquet spectrum occurs and
the many-body system remains frozen extremely close to the initial state for all time. (ii) Second, away from the
freezing peak, we observe the emergence of a distinct oscillation with a single nontrivial frequency, which can
be much lower than the driving frequency. This remarkable slow oscillation involving many high-energy modes
dominates the response in the limit of long observation time. We identify this slow oscillation as the unique
survivor of destructive quantum interference between the many-body modes. The oscillation tends to decay
algebraically with time to a constant value. All the key features are demonstrated analytically with numerical
evaluations for specific results.
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I. INTRODUCTION

Nonequilibrium dynamics of driven quantum many-body
systems is an emerging paradigm for studying and unveiling
new quantum phenomena. The last few years have witnessed a
surge of theoretical endeavors in understanding the dynamics
of quantum many-body systems under simple drivings. A
major part of these recent activities is concentrated around
quantum quenches, leading to several interesting and novel
issues including (but not limited to) universal quench dynam-
ics across quantum critical points—the associated quantum
Kibble-Zurek mechanism, the physics of nonequilibrium
excitations, and the physics of thermalization in quantum
systems (see for a review, Ref. 1; and C. de Grandi et al., S.
Mondal et al., and U. Divkaran et al., in Ref. 2 and references
therein). The main focuses of these studies, namely, the final
defect density following a quantum quench, or the effective
temperature in a thermalized system, however, are insensitive
to the details of the quantum coherence of the underlying
many-body dynamics. For example, the dynamical idea behind
the quantum Kibble-Zurek mechanism3 is a robust translation
of the classical Kibble-Zurek idea4 to quantum systems—of
course, the origins of the relevant length scales and time scales
are different.

Here we focus on another important class of driven quantum
nonequilibrium phenomena, where quantum coherence plays
the central role. Though nonadiabaticity is a common covering
for all interesting nonequilibrium phenomena, here coherent
quantum mechanical suppression of dynamics contributes cru-
cially to the nonadiabaticity of the dynamics which makes the

resulting response behavior difficult to explain using classical
intuitions. We discuss the dynamics of periodically driven
quantum many-body systems. Coherent periodic driving can
give rise to surprising phenomena in quantum many-body
systems, which counters our classical intuitions drastically.5

The role of quantum coherence in the important context of a
superfluid-insulator transition realized in a periodically driven
optical lattice has been demonstrated earlier.6,7 Owing to
the experimental breakthrough in attaining long coherence
time in quantum many-body systems in the last decade,
for example, within the framework of atoms/ions in optical
lattices and traps, this coherent regime is becoming more
and more accessible experimentally (see, e.g., Refs. 8–12).
Here we study the coherent dynamics (Schrödinger dynamics
at zero temperature) of a simple paradigmatic system—the
transverse Ising chain13 subjected to a train of rectangular
pulses of the transverse field. Two interesting phenomena
are reported—both of which are purely quantum mechan-
ical in origin and are the result of coherent many-body
dynamics.

It has been observed recently that a class of integrable quan-
tum many-body systems exhibits the phenomena of dynami-
cal many-body freezing (DMF), i.e. nonmonotonic freezing
behavior of all the many-body modes when driven externally
by varying a parameter in the Hamiltonian continuously,5 The
said freezing behavior is counterintuitive to the “classical”
picture of a driven system falling out of equilibrium. The
classical behavior arises from competition of two time scales:
the driving period and the characteristic relaxation time of
the system (see, however, Ref. 14). Contrary to the expected
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monotonically increasing freezing behavior of the system
with respect to the driving frequency according to that
picture, we observe strongly nonmonotonic freezing behavior,
with maximal freezing for certain combinations of driving
amplitude and frequency. A related phenomena, observed in
the context of a single particle localized in a periodically
driven potential—known as dynamical localization or, syn-
onymously, coherent destruction of tunneling (CDT), is well
studied.15–19 In Ref. 19, interestingly, it has been shown in
the context of periodically driven BEC, that the driving can
lead to steady BEC-like states which are different from the
equilibrium ground state of the undriven Hamiltonian. The
above findings motivate us to investigate such phenomena in a
pulse driven many-body system, where, instead of a smoothly
varying driving rate, we have sequences of instantaneous
quenches and subsequent waiting times. Here we observe
DMF, confirming the generality of the phenomena beyond
sinusoidal driving. We deduce the exact condition for the
maximal freezing analytically and explore other characteristics
of the freezing phenomena.

In addition to DMF, we observe another interesting phe-
nomena away from the freezing peaks. In the limit of long
observation time, we see spectacular dominance of a single
long-lived oscillation (with frequency much smaller than the
driving frequency) in the response dynamics. Surprisingly,
this happens even in the limit of strong and fast driving
(pulse amplitude and frequency much larger than the interspin
coupling). We discuss the origin and nature of this intriguing
quantum oscillation.

II. THE MODEL AND THE DYNAMICS

We quench the transverse field � from +�0 to −�0 and
back in successive time intervals of duration T in a transverse
Ising chain Hamiltonian:

H = −J

N∑
j=1

sx
j sx

j+1 − �(t)
N∑

j=1

sz
j , (1)

where the field �(t) varies like a square wave with period T at
t = 0:

�(t) =
{

�0 for nT < t < (n + 1
2 )T ,

−�0 for (n + 1
2 )T < t < (n + 1)T ,

(2)

with n = 0,1,2, . . . and �0 > 0. We set the energy scale
by taking J = 1. In order to investigate the dynamics in
this case, first we diagonalize Hamiltonian (1) for a given
value of � by the Jordan-Wigner transformation followed
by Fourier transform.20 This transforms the Hamiltonian (1)
into a direct sum of Hamiltonians of nonlocal free fermions
of momenta k. The Hamiltonian preserves the parity of the
fermion number (even/odd) and the ground state always lies
in the even-fermionic sector. We work with the projection of
the Hamiltonian in this sector, given by

H =
⊕
k>0

Hk,

Hk = (−2i sin k)[a†
ka

†
−k + aka−k]

− 2(� + cos k)[a†
kak + a

†
−ka−k − 1], (3)

where k = (2n + 1)π/N , n = 0,1, . . . ,N/2 − 1. The ground
state of Hk is a linear combination of the fermionic occu-
pation number basis states |0〉k = |0k,0−k〉 (both ±k levels
unoccupied) and |1〉k = |1k,1−k〉 (both ±k levels occupied),
and the Hamiltonian does not couple them with the two other
basis states |0k,1−k〉 and |1k,0−k〉. Hence starting with the
ground state, the dynamics always remains confined within a
manifold which is the direct product of the two-dimensional
subspaces spanned by |0〉k and |1〉k . We denote the eigenstates
of Hk within these subspaces as |(�,k)−〉 (ground state) and
|(�,k)+〉, with eigenvalues −λ(�,k) and λ(�,k), where

λ(�,k) = 2
√

�2 + 1 + 2� cos k, (4)

|(�,k)−〉 = i cos θ |1〉k − sin θ |0〉k, (5)

|(�,k)+〉 = i sin θ |1〉k + cos θ |0〉k, (6)

tan θ = − sin k

� + cos k + √
�2 + 1 + 2� cos k

. (7)

We now solve the Schrödinger equation

ih̄
∂|ψk〉

∂t
= Hk|ψk〉, (8)

where the wave function in the time-dependent energy eigen-
basis may be expressed as

|ψk〉 = x−(t)|(�,k)−(t)〉 + x+(t)|(�,k)+(t)〉. (9)

If �(t) is constant (say, �0) over a time interval t0 to t , then we
have

x±(t) = x±(t0) exp

{
∓ i

h̄
(t − t0)λ(�0,k)

}
. (10)

At time t = 0 let the system be in the state

|ψk〉 = α|(�0,k)−〉 + β|(�0,k)+〉, (11)

with |α|2 + |β|2 = 1. Then according to Eq. (10) at t = T
2 − ε

(where ε is a small positive number), the coefficients are given
by (

x−( T
2 − ε)

x+( T
2 − ε)

)
=

(
eiμ1 0

0 e−iμ1

)(
α

β

)
, (12)

where

μ1 = T

2h̄
λ(�0,k). (13)

Using the continuity of |ψk〉 at t = T
2 one obtains the wave

function at t = T
2 + ε in terms of |(−�0,k)−〉 and |(−�0,k)+〉.

Time evolution in the second half proceeds in the same way
as in the first half and the transformation over one full cycle is
given by (

x−(T + ε)

x+(T + ε)

)
= Uk

(
α

β

)
, (14)

where

Uk =
(

cos φ − sin φ

sin φ cos φ

) (
eiμ2 0

0 e−iμ2

)

×
(

cos φ sin φ

− sin φ cos φ

) (
eiμ1 0

0 e−iμ1

)
. (15)
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Here

μ2 = T

2h̄
λ(−�0,k) and φ = θ1 − θ2, (16)

where θ1 and θ2 are the values of θ [as defined in Eq. (7)] for
� = +�0 and −�0, respectively.

During the first half-cycle after n full cycles, at a time
t = nT + τ with 0 < τ < T

2 , the coefficients are given by(
x−(nT + τ )

x+(nT + τ )

)
=

(
eiμ3 0

0 e−iμ3

)
Un

k

(
α

β

)
, (17)

where μ3 = τ
h̄
λ(�0,k). Similarly, during the second half-cycle

after n full cycles, at a time t = nT + T
2 + τ , the coefficients

are given by(
x−(nT + T

2 + τ )

x+(nT + T
2 + τ )

)
=

(
eiμ4 0

0 e−iμ4

) (
cos φ sin φ

− sin φ cos φ

)

×
(

eiμ1 0

0 e−iμ1

)
Un

k

(
α

β

)
, (18)

where μ4 = τ
h̄
λ(−�0,k).

Transverse magnetization Mz (per spin) at any time is given
by

Mz = −1 + 4

N

π∑
k=0

Mk = −1 + 2

π

∫ π

0
Mkdk, (19)

where Mk = 1
2 〈ψk|(a∗

k ak + a∗
−ka−k)|ψk〉. From Eqs. (5) and

(6),

Mk = |(x− cos θj + x+ sin θj )|2, (20)

with j = 1 or 2 according to whether we are in the first or
second half-cycle, respectively.

In order to calculate Un
k , giving the time evolution after the

nth cycle, we note that, for any 2 × 2 matrix,

U2
k = −(Tr Uk)1 + (det Uk)Uk.

This shows that one can write

Un
k = an1 + bnUk. (21)

The recursion relations for an and bn can be easily solved to
get

an = −bn−1 and bn = sin(nωk)/ sin ωk. (22)

where cos ωk = cos(μ1 + μ2) cos2 φ + cos(μ1 − μ2) sin2 φ.
The expressions bn are the Chebyshev polynomials of the
second kind in cos ωk .

III. DYNAMICAL MANY-BODY FREEZING

The system is initially (t = 0) in the ground state of the
Hamiltonian with � = +�0, before it is driven by the pulses.
We have computed the magnetization numerically at any time
(within a cycle) by obtaining x− and x+ from Eqs. (17)
and (19), substituting them in Eq. (20) to get Mk , and then
integrating it using Eq. (19). The result is presented in Fig. 1.
Frames (a) and (b) show that the response, i.e., the transverse
magnetization Mz, remains localized somewhere close to its
initial value for all time. In other words, the response retains the
memory of the breaking of the Z2 symmetry in the transverse

direction by the polarized initial state through all later time,
though the symmetry is respected by the driving over each
complete cycle. The degree of symmetry breaking is given by
the long-time average of Mz:

Q = lim
Tf →∞

1

Tf

∫ Tf

0
Mz(t)dt. (23)

Q is also a measure of nonadiabatic freezing—if a driving were
adiabatic, the resulting response would always follow the field
(i.e., trace the instantaneous ground state value of the response)
and thus would preserve the symmetry of the Hamiltonian over
a period. The maximum amplitude of oscillation of Mz also
determines the degree of freezing.

It is clear from Fig. 1 that for a given value of �0, the
nonadiabatic freezing Q is a strongly nonmonotonic function
of T . When the condition

�0T

h̄
= π,2π,3π, . . . (24)

is satisfied the freezing attains a maximum (Q shows a peak),
as shown in Figs. 1(b) and 1(c). Naively speaking, for a given
�0, if T is made larger, there is more time for the system to
react to the successive flips made, and hence the response is
expected to be more adiabatic (smaller Q and bigger response
amplitude). This classical intuition clearly does not hold in this
case, as the freezing (Q and response amplitude) is strongly
nonmonotonic in T for a given �0 [Fig. 1(a)]. Strong maximal
freezing of the entire many-body system (Q peaks) observed
for isolated points in the parameter space is also a surprising
nonclassical feature of DMF, arising from coherent quantum
dynamics.5

In order to derive the extremal freezing condition (24), we
set τ = 0 and evaluate Mk(t = nT ) as a function of n. Thus,
we are basically looking at the start of every oscillation. Also,
we assume that initially (at t = 0) the system was in the ground
state for the transverse field at that moment. Thus, we set α = 1
and β = 0 in Eq. (17), use Eq. (21) there, and obtain x−(nT )
and x+(nT )which are then substituted in Eq. (20). The result
is

Mk = Ak + Rk cos(2nωk + δk), (25)

where

Ak = cos2 θ1 + gkfk,

R2
k = g2

k

[
f 2

k + sin2(2θ1) sin2 μ1 sin2 ωk

]
, (26)

tan δk = 1

fk

sin(2θ1) sin μ1 sin ωk,

with

fk = sin(2θ1) sin μ1 cos ωk + sin(2θ2) sin μ2, (27)

gk = sin(2φ) sin(μ2)/(2 sin2 ωk) = |U12|/(2 sin2 ωk),

and

ωk = cos−1[cos(μ1 + μ2) cos2 φ + cos(μ1 − μ2) sin2 φ].

(28)

From Eqs. (20) and (25) we see, the nonadiabatic freezing
parameter Q [Eq. (23)] is given by

Q = −1 + 2

π

∫ π

0
Akdk. (29)
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FIG. 1. (Color online) The DMF behavior of the resulting response. (a) Variation of Mz with t for different p(p = �0T

π
) for �0 = 20. (b)

Variation of Q with 2π/T for �0 = 20. (c) Variation of Q with p for different �0. Maximal freezing is seen for integer p. (d) Magnetization
after the 100th and the 1000th cycle at different �0 for T = 0.1 (h̄ = 1).

Now, for large �0, from Eqs. (13) and (16) we get

φ = −π

2
+ sin k

�0
+ O

(
1

�3
0

)
, and

(30)

μ2 = �0T

h̄

[
1 − cos k

�0
+ O

(
1

�2
0

)]
.

The off-diagonal elements of the transfer matrix Uk become
then

U12 = ie−iμ1 sin μ2 sin 2φ

= −ie−iμ1

[
sin

(
�0T

h̄

)
2 sin k

�0
+ O

(
1/�2

0

)] = −U ∗
21.

(31)

Hence, according to Eq. (16) if �0T

h̄
is an integral multiple of

π , Uk becomes an identity matrix up to terms 1/�0 (since
μ1 ≈ −�0T/h̄ for �0 
 1), and the system is found at the
initial state (approximately) after each cycle. Note that the
freezing occurs for any initial state, irrespective of whether
it is an eigenstate of the initial Hamiltonian or not. It is also
consistent with the Floquet picture of quasienergy degeneracy
(see, e.g., Refs. 21 and 22) employed in explaining dynamical
localization. According to the Floquet theory, the above time
evolution operator Uk , which induces evolution from t = 0
to t = T , should have the general form Uk = eiMkt , where
Mk is a time-independent Hermitian matrix (sharing the same
dimension and space as Uk),21 with eigenvectors denoted by

|μ1k〉 and |μ2k〉 corresponding to eigenvalues μ1k and μ2k ,
which are the Floquet quasienergies. Now as we have shown,
in our case Uk tends to the Identity matrix up to term 1/�0

in large �0 limit, which means both its eigenvalues eiμ1k and
eiμ1k tend to unity for every k within the said approximation,
resulting in a massive quasienergetic degeneracy all over the
many-body spectrum—the crux of DMF. Recently, another
interesting manifestation of DMF is observed in periodically
driven bosons in optical lattice with low frequency sinusoidal
driving across the tip of the Mott lobe.23

The mechanism of strong DMF with rectangular driving
can be visualized by appealing to the simplicity of the
driving—it consists of dynamics driven by two piecewise
time-independent Hamiltonians Hk(±�0). From Eq. (32) one
can see the dynamics [in the eigenbasis {|(+�0,k)±〉} of
the initial Hamiltonian Hk(+�0)] can be broken up into
steps consisting of successive rotation of the basis by φ

(corresponding to successive flips of the transverse field) and
intermediate accumulation of phases μ1,2 (corresponding to
intermediate waitings of duration T/2). Clearly if one could
adjust the intermediate phases μ1,2 such that their effect is
nullified for all k, in each cycle, then the system would
return very closely to its initial state after every cycle taking
any of the eigenstates {|(+�0,k)±〉} as the initial state—the
eigenstates of the initial Hamiltonian become Floquet states
with degenerate quasienergies (albeit with a different sign,
which does not matter in this case). This happens, as explained
in the paragraph following Eq. (32), when �0 is large and
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the condition for maximal freezing [Eq. (24)] is satisfied. For
small �0, μ1,2 retain strong k dependence, and hence this
massive (k-independent) collapse of the Floquet spectrum will
not be possible [see Fig. 1(d)]. It is however worth noting
that this simple picture of DMF cannot be extended in cases
of continuously driven systems. For example, in the case of
sinusoidal driving, the eigenstates of the initial Hamiltonian
do not tend to return to themselves as one approaches the
DMF freezing peak—they retain a strongly k-dependent period
of oscillation which actually diverges in the thermodynamic
limit for certain modes as the DMF peak is approached.
Freezing in that case is visualized as vanishing of the amplitude
of oscillation of each k mode, rather than “each k-mode
coming back to itself.” It seems the massive collapse of the
entire Floquet spectrum at the maximal DMF is a result of
integrability of the model and the simplicity of the driving.

IV. LONG-LIVED SOLITARY OSCILLATION: THE
SURVIVOR OF DESTRUCTIVE MANY-BODY

INTERFERENCE

Analysis of Mz(t) shows that it is dominated by a distinct
solitary oscillation in the long-time limit. The analysis of the
response reveals sinusoidal oscillations of only two distinct
time scales—one (denoted by ω0) matches with the driving
period T (as expected), while the other, denoted by TQ

(corresponding to frequency ωQ = 2π/TQ), depends on all
the driving parameters. TQ can be much larger compared to
T . Despite the fact that the driving has a large amplitude and
high frequency, and the system has several excitable energy
levels, we observe only one distinct nontrivial frequency in the
response.

This can be understood as follows. The transverse mag-
netization Mz(t) [Eq. (19)] at time t is a superposition of
contributions Mk for all k’s [Eq. (25)]. For sufficiently large
n, the argument (2nωk + δk) in Eq. (25) will be large (so that
its cosine will fluctuate very rapidly with k) while Rk will
remain relatively slowly varying. Thus the contributions from
neighboring k’s will cancel out due to destructive interference
(adding up with almost the same amplitude but rapidly varying
phase) over any small intervals of k, except those around the
stationary points of ωk (with respect to k). In the neighborhood
of its stationary points, ωk is expected to vary slowly with k,
and hence the contributions from different k’s within such a
neighborhood are expected to add up constructively. Elsewhere
the contributions adds up destructively and can hence be
ignored. Thus we may write

∫ π

0
Rk cos(2nωk + δk)dk ≈ Rπ/2

∫ π
2 +ε

π
2 −ε

cos(2nωk + δπ/2)dk.

(32)

By Taylor expansion of ωk about the stationary point, we can
write

cos(2nωk + δπ/2)

= cos(2nωπ/2 + δπ/2) cos

(
nC

[
k − π

2

]2
)

, (33)

where C = (d2ωk/dk2)k=π/2. This finally gives

Mz(n) ≈ M0 + a√
n

cos(nωQ + δπ/2), (34)

where

ωQ = 2ωπ/2 = 2 cos−1{1 − cos2 φ[1 − cos(μ1 + μ2)]}
(35)

and

M0 = −1 + 2

π

∫ π

0
Ak dk, a = Rπ/2

√
π

2C
.

The above arguments are quite generic, and variants of them
can be found in other contexts (see, e.g., Ref. 24). The survival
of a few such distinct oscillations of very long (compared
to the driving period) time scales has also been observed in
an infinite-range transverse Ising model driven periodically in
time.25 The results described in this section are a manifestation
of more general results regarding periodically driven quantum
many-body systems (Ref. 26).

We see from Eq. (35), when the freezing condition (p =
integer) is satisfied, ωQ vanishes for large �0 up to terms linear
in 1/�0 and a → 0 and M0 → 1. The numerical calculation of
Mz [using Eqs. (17)–(20)] is presented in Fig. 2. The discrete
Fourier transform of Mz(t) also shows two peaks correspond-
ing to ω0 and ωQ. The value of ωQ obtained from there matches
pretty well with the analytical expression in Eq. (35).

Though our results are demonstrated for rectangular pulses,
a similar argument can be extended for other forms of periodic
drivings. The only requirements for the appearance of solitary
oscillations (if they exist) are certain analytical properties of
the response, continuity of the spectrum, and long driving
time. Hence such oscillations are expected to appear quite
generically in many periodically driven coherent many-body
quantum systems, but analytical results might not be easy to
extract in all cases. An extension of DMF for some other forms
of periodic drivings may be achieved following Ref. 27.

The phenomena we discuss above are the result of quantum
coherence. Further investigations in this direction are likely to
reveal many new phenomena (see, e.g. Ref. 28). A natural open
question is whether they are realizable in real experiments,
in the presence of the inevitable experimental imperfections
existing within the present-day setups. Such experimental
realizations would also allow for exploring these phenomena in
more generic nonintegrable systems where accurate theoretical
investigations could be difficult. Experimental observation of
the above phenomena might be possible within the framework
of coherent quantum simulation using trapped ions and atoms
in optical lattice. In particular, DMF will have a clear signature
even for very small systems consisting of few spins realized
in the experimental systems above, since at the freezing
peaks all the momentum modes freeze independent of system
size, whereas away from the peaks considerable dynamics
is expected for any system size. Coherent simulation of a
transverse Ising Hamiltonian with a time-dependent transverse
field, which can be varied adiabatically, has also been realized
experimentally. In layered linear Paul traps using 171Yb+
ions11 and 25Mg+ ions,12 they realized a transverse field Ising
model where they could tune both spin-spin interactions and
the transverse field with time.
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frequencies ωQ and ω0 are observed. The peak at ωQ = 1.822 in the figure matches quite well with the estimation (1.815) from Eq. (35), while
ω0 ≈ 2π/T , where T = 0.1 is the driving period. (c) Long-time behavior of Mz(t) obtained numerically (points) and that given by fitting Eq.
(34) (continuous curve) is shown. The envelop corresponding to the 1/

√
n decay (Eq. (34)) is visible. (d) Variation of TQ = 2π/ωQ with p

for T = 0.1 obtained by Fourier transform. TQ tends to blow up (i.e., ωQ vanishing up to order 1/�0) at integer values p—consistent with
the observed maximal freezing at integer p. The points correspond to the values obtained from Fourier transform and the continuous line is
obtained from Eq. (35) (h̄ = 1).

V. SUMMARY

We investigate the dynamics of the transverse Ising chain
under periodic instantaneous quenches of the transverse field.
We make two interesting observations.

(i) In the high amplitude (�0 
 J ) and fast quenching
(T � J ) limits we observe DMF—we see that the driven
system freezes close to its initial state and the degree of
freezing is a highly nonmonotonic function of the pulse
amplitude �0 and period T . The extremal freezing is observed
for �0T/h̄ = nπ (n = positive integers). At these freezing
“peaks,” the system remains frozen very strongly independent
of its initial state. This freezing drastically contrasts the
classical notion of monotonic (with respect to the driving
rate) freezing of a system under fast periodic driving—a faster
driving would give it less time to react and hence would leave it
more frozen. Quantum simulation of the transverse Ising chain
has already been realized experimentally—the phenomena
should be amenable to experimental verification within the
said setup and similar others for quantum simulation.

(ii) In the response dynamics, we observe the emergence of a
single, distinct time scale, TQ (in addition to the time scale of

the driving), in the long-time limit. This distinct oscillation
decays much slower than other oscillations, following a
1/

√
n (n = number of sweeps) envelop. Dominance of a

single nontrivial frequency in the response is surprising, since
the system is driven with pulses with high (compared to
the intrinsic energy scale given by the spin-spin interaction
J ) amplitude and frequency. We show that this surviving
time scale represents oscillations of the nonlocal momentum
modes lying within a neighborhood of a unique point in the
momentum space (k = π/2 here), where the contributions
from the neighboring modes add up constructively. For all
other parts of the momentum space such interferences are
destructive, leading to mutual cancellation of oscillations of
the neighboring modes.
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