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The manifestation of the spin-wave interaction in the low-temperature series of the partition function has
been investigated extensively over more than seven decades in the case of the three-dimensional ferromagnet.
Surprisingly, the same problem regarding ferromagnets in two spatial dimensions, to the best of our knowledge,
has not been addressed in a systematic way so far. In the present paper the low-temperature properties of
two-dimensional ideal ferromagnets are analyzed within the model-independent method of effective Lagrangians.
The low-temperature expansion of the partition function is evaluated up to two-loop order and the general
structure of this series is discussed, including the effect of a weak external magnetic field. Our results apply to
two-dimensional ideal ferromagnets which exhibit a spontaneously broken spin rotation symmetry O(3) → O(2)
and are defined on a square, honeycomb, triangular, or kagome lattice. Remarkably, the spin-wave interaction
only sets in at three-loop order. In particular, there is no interaction term of order T 3 in the low-temperature series
for the free energy density. This is the analog of the statement that, in the case of three-dimensional ferromagnets,
there is no interaction term of order T 4 in the free energy density. We also provide a careful discussion of
the implications of the Mermin-Wagner theorem in the present context and thereby put our low-temperature
expansions on safe grounds.
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I. INTRODUCTION

The question of how the spin-wave interaction in a
three-dimensional ideal ferromagnet manifests itself in the
low-temperature expansion of the partition function has a
very long history. Dyson rigorously answered this question,1

pointing out errors in some unsuccessful earlier attempts.2–5

After his monumental work, many researchers focused on how
to derive Dyson’s result—which is based on a fairly com-
plicated mathematical formalism—with alternative methods
in a simpler way. Out of the numerous articles we would
like to mention the reference by Zittarz,6 which solves the
problem in a simple and elegant manner, as Dyson put it.7

More recently, within the effective Lagrangian framework,
Dyson’s low-temperature series was rederived8 and extended
to higher orders.9 In particular, the general structure of the
low-temperature series of the partition function for a three-
dimensional ideal ferromagnet was discussed in the latter
reference in full detail.

Our motivation to write the present article is based on
the fact that, apart from some scarce papers distributed over
the years, no such systematic investigation appears to exist
in the case of two-dimensional ideal ferromagnets. Above all,
to the best of our knowledge, the effect of the spin-wave
interaction on the low-temperature series for the partition
function of two-dimensional ferromagnets has never been
addressed so far. The few available papers, all dealing with
noninteracting spin waves,10–19 imply that the free energy
density—for a square lattice and in the absence of a magnetic
field—obeys the series

z = −η̃0T
2 − η̃1T

3 + O(T 4). (I.1)

However, it has never been discussed whether the spin-wave
interaction already shows up at order T 3 or rather beyond.
In other words, it remains unclear whether the above series
referring to the ideal magnon gas is indeed complete up to
order T 3. Moreover, so far it has never been discussed in

a systematic manner how a weak external magnetic field
manifest itself in the above low-temperature series or how
the series looks for underlying geometries other than a square
lattice.

In the present work, using the model-independent and
universal method of effective Lagrangians, we systematically
evaluate the partition function of the two-dimensional ideal
ferromagnet without resorting to any approximations. We
fully take into account lattice anisotropies which will start
manifesting themselves at order T 3 in the above series
and thereby extend the existing results which strictly apply
to the square lattice by considering also the honeycomb, the
triangular, and the kagome lattice. We then show that, up to
the order considered in the above series for the free energy
density, we are dealing with noninteracting spin waves—the
interaction sets in only at order T 4 ln T .

Even in the simple case of noninteracting spin waves, the
range of validity of the above low-temperature series derived
within the framework of modified spin-wave theory13–16—
which resorts to an ad hoc assumption—has never been
critically examined. In fact, in Ref. 20 it is stated that to
systematically calculate the thermodynamic properties of a
two-dimensional quantum ferromagnet at low temperatures
remains an unsolved problem of the spin-wave theory. To the
best of our knowledge, a rigorous justification of the validity
of the results obtained within the framework of modified
spin-wave theory is indeed still lacking. In the present paper
not only will we derive the low-temperature properties of
two-dimensional ideal ferromagnets in a systematic manner
by using effective Lagrangians, but also we will put our
low-temperature series on a firm basis by discussing in detail
the implications of the Mermin-Wagner theorem.

It will also prove to be very instructive to compare the
present results for the two-dimensional ferromagnet with those
for the three-dimensional ferromagnet, adopting thereby a
unified perspective based on symmetry. In particular, we will
discuss the general structure of the low-temperature series
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for the free energy density, pointing out how the spin-wave
interaction manifests itself in either case.

The rest of the paper is organized as follows. In Sec. II we
provide a brief outline of the effective Lagrangian method—
much more detailed accounts can be found in the peda-
gogic references.21–25 The evaluation of the partition function
up to two-loop order in the low-temperature expansion is
presented in Sec. III and the thermodynamic properties of
two-dimensional ideal ferromagnets are discussed. The range
of validity of the low-temperature series obtained is critically
examined in Sec. IV. Differences and analogies between
two-dimensional and three-dimensional ideal ferromagnets are
discussed in Sec. V. Finally, Sec. VI contains our conclusions.

We would like to mention that the systematic and model-
independent effective Lagrangian method has successfully
been applied to other condensed matter problems. These
include antiferromagnets and ferromagnets in two and three
spatial dimensions,26–38 as well as two-dimensional anti-
ferromagnets which are the precursors of high-temperature
superconductors.39–47

Also, the correctness of the effective Lagrangian approach
was demonstrated explicitly in a recent article on an analyti-
cally solvable microscopic model for a hole-doped ferromag-
net in 1 + 1 dimensions,48 by comparing the effective theory
predictions with the microscopic calculation. Furthermore,
in a series of high-accuracy numerical investigations of the
antiferromagnetic spin- 1

2 quantum Heisenberg model on a
square lattice using the loop-cluster algorithm,49–52 the Monte
Carlo data were confronted with the analytic predictions of
the effective Lagrangian theory and the low-energy constants
were extracted with permille accuracy. All these different
tests unambiguously confirm that the effective Lagrangian
technique provides a rigorous and systematic framework
to investigate condensed matter systems which exhibit a
spontaneously broken continuous symmetry.

II. EFFECTIVE LAGRANGIANS AT FINITE
TEMPERATURE

The thermodynamic properties of two-dimensional fer-
romagnets at low temperatures have been investigated be-
fore with microscopic methods, such as modified spin-wave
theory13 or Schwinger-boson mean-field theory.17 The corre-
sponding low-temperature series for the free energy density
amounts to a power expansion in the parameter T/J , where
J > 0 is the exchange integral of the ferromagnetic Heisenberg
model

H = −J
∑
n.n.

�Sm · �Sn − μ
∑

n

�Sn · �H, J = const., (II.1)

augmented by the Zeeman term which includes the magnetic
field �H = (0,0,H ). The above Hamiltonian, defined on a two-
dimensional lattice with purely isotropic exchange coupling
between nearest neighbors, represents what we call the ideal
ferromagnet.

In the present article, we will pursue quite a different
approach, based on a rigorous symmetry analysis, which
will allow us to derive the low-temperature properties of
two-dimensional ferromagnets. One of the virtues of the
effective Lagrangian method is that it is completely systematic

and model independent. In order not to be repetitive, here we
only provide a brief introduction to the effective Lagrangian
method and its extension to finite temperature; a rather detailed
account on finite-temperature effective Lagrangians can be
found in Appendix A of Ref. 9 and in the various references
given therein.

Whenever a global continuous symmetry breaks down
spontaneously, Goldstone bosons emerge as the relevant
degrees of freedom at low energies. The effective Lagrangian
formulates the dynamics of the system in terms of these
Goldstone bosons.53–55 In the present case of the two-
dimensional ferromagnet, the O(3) spin rotation symmetry of
the Heisenberg model is spontaneously broken by the ground
state of the ferromagnet which is invariant only under the group
O(2). According to the nonrelativistic Goldstone theorem,56–58

two real magnon fields—or one physical magnon particle—
then occur in the low-energy spectrum of the ferromagnet.

Having identified the basic degrees of freedom of the
effective theory, one systematically constructs the terms
appearing in the effective Lagrangian Leff , order by order in
a derivative expansion. The idea is rather simple: One writes
down in a systematic way all terms in the effective action,

Seff =
∫

d3x Leff, (II.2)

which are invariant under the symmetries that have been
identified in the underlying theory. In the present case of the
Heisenberg model these symmetries include the spontaneously
broken spin rotation symmetry O(3), parity, time reversal, as
well as the discrete symmetries of the square, honeycomb,
triangular, or kagome lattice.

The various pieces in the effective Lagrangian can be
organized according to the number of space and time
derivatives which act on the Goldstone boson fields. This
is what is meant by systematic: At low energies, terms in
the effective Lagrangian which contain only a few derivatives
are the dominant ones, while terms with more derivatives are
suppressed. The leading-order effective Lagrangian for the
ideal ferromagnet is of order p2 and takes the form29

L2
eff = �

εab∂0U
aUb

1 + U 3
+ �μHU 3 − 1

2
F 2∂rU

i∂rU
i. (II.3)

The two real components of the magnon field, Ua(a = 1,2),
are the first two components of the three-dimensional unit
vector Ui = (Ua,U 3). While the derivative structure of the
above terms is unambiguously determined by the symmetries
of the underlying theory, the two a priori unknown low-energy
constants—the spontaneous magnetization at zero temperature
� and the constant F—have to be determined by experiment,
numerical simulation, or comparison with the microscopic
theory.

The above Lagrangian leads to a quadratic dispersion
relation

ω(�k) = γ �k2 + O(|�k|4), γ ≡ F 2

�
, (II.4)

obeyed by ferromagnetic magnons. This relation dictates how
we have to count time and space derivatives in the systematic
effective expansion: One time derivative (∂0) is on the same
footing as two space derivatives (∂r∂r ); i.e., two powers of
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momentum count as only one power of energy or temperature:
k2 ∝ ω,T . Note that at this order, lattice anisotropies do not
yet manifest themselves—the leading order Lagrangian (II.3)
is invariant under continuous space rotations, although the
underlying square, honeycomb, triangular, or kagome lattices
are only invariant under discrete space rotations.

As derived in Ref. 8, the next-to-leading order Lagrangian
for the ideal ferromagnet is of order p4 and amounts to

L4
eff = l1(∂rU

i∂rU
i)

2 + l2(∂rU
i∂sU

i)
2 + l3�Ui�Ui, (II.5)

where � denotes the Laplace operator in two spatial dimen-
sions. The next-to-leading order effective Lagrangian involves
the three low-energy coupling constants l1,l2, and l3.

The evaluation of the partition function in Refs. 8 and 9
was based on the assumption that the O(3) space rotation
symmetry, which is an accidental symmetry of the leading
order effective Lagrangian, persists at higher orders in the
derivative expansion. Here, we drop this idealization and hence
also consider terms in L4

eff which are invariant under the
discrete symmetries of the underlying lattice, but no longer
invariant under continuous space rotations. Indeed, in the case
of the square lattice, the extra term

l4

2∑
r=1

∂r∂rU
i∂r∂rU

i (II.6)

has to be included in L4
eff . Interestingly, in the case of

the honeycomb, triangular, and kagome lattice, the discrete
60 degrees rotation symmetries do not permit such a term;
here, it is perfectly legitimate to use the space rotation invariant
Lagrangian (II.5). Note that for the square lattice, there is an
additional contribution with four space derivatives:

2∑
r=1

∂rU
i∂rU

i∂rU
k∂rU

k. (II.7)

However, as we will show below, terms inL4
eff that contain four

or even more magnon fields are irrelevant for the evaluation of
the partition function presented in this work.

In finite-temperature field theory the partition function is
represented as a Euclidean functional integral

Tr [exp(−H/T )] =
∫

[dU ] exp

(
−

∫
T
d3x Leff

)
. (II.8)

The integration extends over all magnon field configurations
which are periodic in the Euclidean time direction U (�x,x4 +
β) = U (�x,x4), with β ≡ 1/T . The quantity Leff on the right-
hand side is the Euclidean form of the effective Lagrangian,
which consists of a string of terms

Leff = L2
eff + L4

eff + O(p6), (II.9)

involving an increasing number of space and time derivatives.
The virtue of the representation (II.8) lies in the fact

that it can be evaluated perturbatively. To a given order
in the low-temperature expansion only a finite number of
Feynman graphs and only a finite number of effective coupling
constants contribute. The low-temperature expansion of the
partition function is obtained by considering the fluctuations of
the spontaneous magnetization vector field �U = (U 1,U 2,U 3)

2 64 a 6b

4

8a 8b 8c

8d 8e

4 4

8f 8g

4 4 6

FIG. 1. Feynman graphs related to the low-temperature expansion
of the partition function for a two-dimensional ferromagnet up to
order p8. The numbers attached to the vertices refer to the piece of
the effective Lagrangian they come from. Vertices associated with the
leading term L2

eff are denoted by a dot. Note that ferromagnetic loops
are suppressed by two powers of momentum in ds = 2.

around the ground state �U0 = (0,0,1), i.e., by expanding U 3

in powers of the spin-wave fluctuations Ua ,

U 3 = √
1 − UaUa = 1 − 1

2UaUa − 1
8UaUaUbUb − . . . .

(II.10)

Inserting this expansion into formula (II.8) one then generates
the Feynman diagrams illustrated in Fig. 1. The leading
contribution in the exponential on the right-hand side of
Eq. (II.8) is of order p2 and originates from L2

eff . It contains a
term quadratic in the spin-wave field Ua—with the appropriate
derivatives and the magnetic field displayed in Eq. (II.3)—and
describes free magnons. The corresponding diagram for the
partition function is the one-loop diagram 4 of Fig. 1.

A crucial point underlying the perturbative evaluation of
the partition function of any system concerns the suppression
of loop diagrams in the effective field theory framework. In
three spatial dimensions—and in the case of the ferromagnet—
each loop in a Feynman diagram is suppressed by three
powers of momentum. In two dimensions, on the other hand,
ferromagnetic loops are only suppressed by two powers of
momentum: The one-loop diagram 4 is of order p4, as it
involves L2

eff (p2) and one loop (p2).
The reason why the loop suppression depends on the spatial

dimension ds of the system can easily be appreciated as
follows: Each loop involves an integral of the type∫

dω dds k
1

ω − γ �k2
∝ pds , (II.11)
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related to ferromagnetic magnons circling in the loop. On
dimensional grounds the integral is proportional to ds powers
of momentum; i.e., each loop in a Feynman diagram referring
to the two-dimensional ferromagnet is suppressed by p2.

The remainder of the effective Lagrangian in the path
integral formula for the partition function (II.8), i.e., L4

eff +
L6

eff + . . . , is treated as a perturbation. The Gaussian integrals
are evaluated in the standard manner (see Ref. 59, in particular
chapter 3) and one arrives at a set of Feynman rules which differ
from the zero-temperature rules of the effective Lagrangian
method only in one respect: The periodicity condition imposed
on the magnon fields modifies the propagator. At finite
temperature, the propagator is given by

G(x) =
∞∑

n= −∞
�(�x,x4 + nβ), (II.12)

where �(x) is the Euclidean propagator at zero temperature,

�(x) =
∫

dk4d
2k

(2π )3

ei�k�x−ik4x4

γ �k2 − ik4 + μH

= �(x4)
∫

d2k

(2π )2
ei�k�x−γ �k2x4−μHx4 . (II.13)

An explicit representation for the thermal propagator, dimen-
sionally regularized in the spatial dimension ds , is

G(x) = 1

(2π )ds

(π

γ

)ds/2 ∞∑
n= −∞

1

x
ds/2
n

e−�x2/4γ xn−μHxn �(xn),

(II.14)

with

xn ≡ x4 + nβ. (II.15)

We restrict ourselves to the infinite volume limit and evaluate
the free energy density z, defined by

z = − T lim
L→∞

L−2 ln [Tr exp(−H/T )]. (II.16)

Note again that in the case of a quadratic dispersion
relation—and in two space dimensions—each loop in a
Feynman diagram is suppressed by two powers of momentum.
This suppression rule lies at the heart of the organization
of the Feynman graphs of the partition function for the
two-dimensional ferromagnet depicted in Fig. 1. Now we also
understand why terms in L4

eff that contain four or even more
magnon fields are irrelevant for the explicit evaluation of the
partition function presented in this work which goes up to
order p6: The two-loop diagram 8d with an insertion fromL4

eff ,
containing four magnon fields, is of order p8, as it involves
L4

eff (p4) and two loops (p4).
In the next section we will evaluate the partition function

of the two-dimensional ideal ferromagnet in full generality up
to order p6. The evaluation of the partition function at order
p8 is much more involved. In particular, the renormalization
and numerical evaluation of the three-loop graph 8c turns out
to be rather elaborate; a detailed account of this calculation
will be presented elsewhere.60 Here, we rather focus on
the general structure of the low-temperature expansion and
answer the question of which contributions originate from
noninteracting spin waves and which ones are due to the

spin-wave interaction; this question has not been addressed
so far.

III. THERMODYNAMICS OF TWO-DIMENSIONAL
IDEAL FERROMAGNETS

We now consider those Feynman graphs depicted in Fig. 1
that contribute to the partition function up to order p6 or,
equivalently, up to order T 3. Again, additional information
on finite-temperature effective Lagrangians and the evaluation
of the corresponding Feynman diagrams—going beyond the
outline given in the previous section—can be found in Ref. 9
(see Sec. III and Appendix A).

At leading order (order p2), we have the tree graph 2 in-
volving L2

eff which merely leads to a temperature-independent
contribution to the free energy density,

z2 = −�μH. (III.1)

The leading temperature-dependent contribution is of order
p4 and stems from the one-loop graph 4. It is associated
with a (ds + 1)-dimensional nonrelativistic free Bose gas and
amounts to

zT
4 = − 1

4πγ
T 2

∞∑
n=1

e−μHnβ

n2
. (III.2)

At order p6 the first two-loop graph shows up. This contri-
bution, related to graph 6a, is proportional to single space
derivatives of the propagator at the origin,

z6a ∝ [∂rG(x)]x=0 [∂rG(x)]x=0 = 0, (III.3)

and thus vanishes because the thermal propagator is invariant
under parity, much like the Heisenberg Hamiltonian. Remem-
ber that the effective Lagrangian—and therefore the thermal
propagator—inherits all the symmetries of the underlying
Heisenberg model.

At the same order p6, the next-to-leading order Lagrangian
L4

eff comes into play. The one-loop graph 6b, which involves
a two-magnon vertex, corresponds to

z6b = −2 l3

�
[�2G(x)]x=0 − 2 l4

�

[
2∑

r=1

∂4
r G(x)

]
x=0

(III.4)

and yields the temperature-dependent contribution

zT
6b = −4l3 + 3l4

4π�γ 3
T 3

∞∑
n=1

e−μHnβ

n3
. (III.5)

Collecting terms, the free energy density of the two-
dimensional ideal ferromagnet up to order p6 ∝ T 3 becomes

z = −�μH − 1

4πγ
T 2

∞∑
n=1

e−μHnβ

n2

−4l3 + 3l4

4π�γ 3
T 3

∞∑
n=1

e−μHnβ

n3
+ O(p8). (III.6)

The contributions of order T 2 and T 3 arise from one-loop
graphs and are related to the free energy density of nonin-
teracting spin waves. The former contribution is exclusively
determined by the leading-order effective constants � and F
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(γ = F 2/�); i.e., the effective expansion is the same for any
of the four types of lattices—square, honeycomb, triangular,
and kagome—considered here. The term of order T 3, on the
other hand, is not universal since it involves the next-to-leading
order effective constants l3 and l4 from L4

eff . In the case of the
honeycomb, triangular, and kagome lattice, the coefficient of
order T 3 exclusively contains the contribution from l3; the term
(II.6) in the effective Lagrangian involving l4, which accounts
for the lattice anisotropies, is excluded due to the discrete
60 degrees rotation symmetries of these lattices. Remarkably,
the spin-wave interaction does not yet manifest itself at this
order in the low-temperature expansion of the free energy
density. The only potential candidate, the two-loop diagram
6a of order T 3, turns out to be zero due to parity.

The ratio μHβ = μH/T in the above series can take
any value, as long as the temperature and the magnetic
field themselves are small compared to the intrinsic scale
of the underlying theory, which in the present case of the
two-dimensional ferromagnet is given by the exchange integral
J of the Heisenberg model. In the following we will be
interested in the limit T � μH which we implement by
holding T fixed and sending the magnetic field to zero. Since
we keep the fixed temperature small compared to the scale J ,
we never leave the domain of validity of the low-temperature
expansion.

In order to discuss the effect of a weak magnetic field we
thus expand the result (III.6) in the dimensionless parameter

σ = μHβ = μH

T
. (III.7)

Retaining all terms up to quadratic in σ , we obtain

z = −�μH − 1

4πγ
T 2

{
ζ (2) + σ ln σ − σ − σ 2

4
+ O(σ 3)

}

−4l3 + 3l4

4π�γ 3
T 3

{
ζ (3) − ζ (2) σ − 1

2
σ 2 ln σ + 3σ 2

4

+O(σ 3)

}
+ O(p8). (III.8)

In the absence of an external magnetic field, the sums in the
series (III.6) become temperature independent and reduce to
Riemann zeta functions,

z = − 1

4πγ
ζ (2) T 2 − 4l3 + 3l4

4π�γ 3
ζ (3) T 3 + O(p8). (III.9)

Since we are dealing with a two-dimensional system, we
have to be careful by taking the limit H →0 due to the
Mermin-Wagner theorem. A thorough discussion, confirming
the validity of the above series, will be given in Sec. IV.

We may now compare our results, derived within the
effective field theory framework, with the literature. The few
explicit results available all refer to the limit H →0 and to
the square lattice.10,13–17 For the free energy density of the
two-dimensional ideal ferromagnet these authors obtain

z = − 1

4πJSa2
ζ (2) T 2 − 1

32πJ 2S2a2
ζ (3) T 3 + O(T 4).

(III.10)

The first term coincides with our series (III.9) provided that
we express the effective low-energy constant γ in terms of

microscopic constants as

γ = JSa2. (III.11)

By matching the coefficients of the second term, the combi-
nation of the low-energy constants l3 and l4 is identified as

l3 + 3

4
l4 = JS2a2

32
. (III.12)

The microscopic calculation is thus consistent with the
effective calculation for the square lattice in the limit H →0.

While the above three formulas strictly apply to the square
lattice, the effective expressions Eqs. (III.6), (III.8), and (III.9)
are valid for all four types of lattice geometries considered. So
where do the differences between these lattices become visible
in the microscopic perspective?

We may first identify some generic features of these
expressions which are common to all four lattices. Among
them is the dependence of the effective constants on the
spin quantum number S which is the same for the square,
honeycomb, triangular, and kagome lattice:

� ∝ S, γ ∝ S, l3,l4 ∝ S2. (III.13)

The power of S of the T 2 coefficient is thus leading in the
spin-wave expansion (1/S), while the coefficient of order T 3

is subleading (1/S2). Likewise, the dependence of the free
energy density on the magnetic field is the same for all four
lattices considered: polylogarithms which reduce to Riemann
zeta functions if the magnetic field is switched off.

The differences between the four types of lattices, however,
become visible through the effective constants γ,l3, and l4
which depend on the lattice geometry. The factor of 1/32 in
Eq. (III.12) or the factor of 1 in Eq. (III.11) is specific to the
square lattice and the analogous relations for the honeycomb,
triangular, and kagome lattices are expected to display other
geometrical factors.

In the effective field theory framework, these microscopic
or geometric details are hidden in the constants γ,l3, and l4.
Indeed, as discussed before, within the effective field theory
perspective, the honeycomb, triangular, and kagome lattice
are described by the same expression for the free energy
density up to order T 3. In the case of the square lattice, the
additional effective coupling l4 shows up at order T 3. While we
have illustrated similarities and differences between the four
types of lattices considering the free energy density, the same
observations apply to the other thermodynamic quantities we
are going to derive below.

To corroborate the structure of the low-temperature series,
let us consider an independent derivation, based on the
evaluation of the two-point function and the subsequent
extraction of the dispersion relation. The free energy density
of a two-dimensional gas of noninteracting bosons is then
obtained from the dispersion relation through

z = z0 + T

(2π )2

∫
d2k ln[1 − e−ω(�k)/T ], (III.14)

where z0 is the free energy density of the vacuum. The leading
term in the dispersion relation,

ω(�k) = γ �k2 + μH + O(|�k|4), γ ≡ F 2

�
, (III.15)
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yields the dominant one-loop contribution zT
4 ∝ T 2 in the free

energy density of the two-dimensional ferromagnet.
Subleading terms in the dispersion relation are obtained by

evaluating the two-point function to higher orders. The relevant
graphs are shown in Fig. 2. Depicted are all contributions up to
order p6. Instead of listing individual results for the two-point
function, we give the final expression for the dispersion relation
originating from these graphs:

ω(�k) = 1

�

{
�μH + F 2�k2 −

(
2l3 + 3

2
l4

)
�k4 + O(�k6)

}
.

(III.16)

Note that the one-loop graph 6a does not contribute to the
dispersion relation. There is thus only one additional diagram
contributing at the order we are considering: graph 6b which
leads to a higher-order term involving the effective constants
l3 and l4. Again, in the case of the honeycomb, triangular,
and kagome lattices, the contribution proportional to the low-
energy constant l4 is absent. Inserting the above expression
into the free Bose gas formula (III.14) one readily confirms
the low-temperature series for the free energy density.

4 6a 6b

4

FIG. 2. Feynman graphs occurring in the low-energy expansion
of the two-point function for a two-dimensional ferromagnet up to
order p6.

Let us also consider the low-temperature series for the
energy density u, for the entropy density s, and for the heat
capacity cV of the two-dimensional ideal ferromagnet. They
are readily worked out from the thermodynamic relations

s = ∂P

∂T
, u = T s − P, cV = ∂u

∂T
= T

∂s

∂T
. (III.17)

Because the system is homogeneous, the pressure can be
obtained from the temperature-dependent part of the free
energy density,

P = z0 − z, (III.18)

such that the other thermodynamic quantities amount to

u = 1

4πγ
T 2

{
σ

∞∑
n=1

e−σn

n
+

∞∑
n=1

e−σn

n2

}
+ 4l3 + 3l4

4π�γ 3
T 3

{
σ

∞∑
n=1

e−σn

n2
+ 2

∞∑
n=1

e−σn

n3

}
+ O(p8),

s = 1

4πγ
T

{
σ

∞∑
n=1

e−σn

n
+ 2

∞∑
n=1

e−σn

n2

}
+ 4l3 + 3l4

4π�γ 3
T 2

{
σ

∞∑
n=1

e−σn

n2
+ 3

∞∑
n=1

e−σn

n3

}
+ O(p6),

cV = 1

4πγ
T

{
σ 2

∞∑
n=1

e−σn + 2σ

∞∑
n=1

e−σn

n
+ 2

∞∑
n=1

e−σn

n2

}
+ 4l3 + 3l4

4π�γ 3
T 2

{
σ 2

∞∑
n=1

e−σn

n
+ 4σ

∞∑
n=1

e−σn

n2
+ 6

∞∑
n=1

e−σn

n3

}
+O(p6).

(III.19)

For a weak magnetic field H , the series may be expanded in the parameter σ = μH/T ,

u = 1

4πγ
T 2

{
ζ (2) − σ + σ 2

4
+ O(σ 3)

}
+ 4l3 + 3l4

4π�γ 3
T 3

{
2ζ (3) − ζ (2)σ + σ 2

2
+ O(σ 3)

}
+ O(p8),

s = 1

4πγ
T

{
2ζ (2) + σ ln σ − 2σ + O(σ 3)

}
+ 4l3 + 3l4

4π�γ 3
T 2

{
3ζ (3) − 2ζ (2)σ − σ 2

2
ln σ + 5σ 2

4
+ O(σ 4)

}
+ O(p6),

cV = 1

4πγ
T

{
2ζ (2) − σ + O(σ 3)

}
+ 4l3 + 3l4

4π�γ 3
T 2

{
6ζ (3) − 2ζ (2)σ + σ 2

2
+ O(σ 4)

}
+ O(p6), (III.20)

where we have retained terms up to quadratic in the magnetic
field. Formally, as was the case for the free energy density,
the limit H →0 poses no problems. Note again that all
contributions in the above series for u, s and cV originate
from one-loop graphs—the spin-wave interaction does not
yet manifest itself at this order of the low-temperature
expansion.

It is interesting to note that the author of Ref. 13, which
is considered as a standard reference on the low-temperature
properties of two-dimensional ferromagnets, was rather cau-
tious about the correctness or validity of his result: Regarding
the low-temperature series for the free energy density he

comments that it is possible that his series gives the correct
low-temperature expansion.

The reason for his caution may be readily identified. While
spin-wave theory works well for three-dimensional systems,
in two or one space dimensions the spin-wave expansion
is plagued with divergences. In order to cope with low-
dimensional systems, many approximations were invented.
One very popular method is modified spin-wave theory, ad-
vocated first for two-dimensional Heisenberg ferromagnets13

and then transferred to two-dimensional antiferromagnets.61–63

The essential idea is to impose an ad hoc condition on the
chemical potential. However, to the best of our knowledge,

054409-6



LOW-TEMPERATURE PROPERTIES OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 86, 054409 (2012)

the justification of such an ad hoc condition was never
rigorously examined, neither for the ferromagnet nor for the
antiferromagnet.

Within our effective field theory framework, we will
put the above low-temperature series for a two-dimensional
system on a firm basis—on the same footing as the low-
temperature series for ferro- and antiferromagnets in three
space dimensions. Indeed, as we will show in the next section,
the Mermin-Wagner theorem is perfectly consistent with the
low-temperature series derived in the present work. We also
like to emphasize that the effective field theory approach we
have pursued does not resort to any approximations or ad hoc
conditions as, e.g., in the case of modified spin-wave theory.
Moreover, our series go beyond the results of the literature, as
they explicitly include a weak external magnetic field and are
valid not only for the square lattice, but also for the honeycomb,
the triangular, and the kagome lattice with a spontaneously
broken spin symmetry O(3) → O(2).

Finally, we would like to mention that some investigators
have also considered two-dimensional ferromagnets which
exhibit a weak frustrating next-nearest-neighbor coupling J2.
Are these systems correctly described by the formulas derived
in the present paper? If the frustration is very weak and if the
ground state remains ferromagnetic,64 indeed, the formulas
derived in the present article describe this system correctly.
The only difference arises when one matches the effective
field theory formulas with the microscopic ones through
expressions like Eqs. (III.11) and (III.12): The effective
constants γ,l3,l4 then also depend on the additional frustrating
coupling J2, rather than just on the exchange integral J .

However, if the frustrating next-nearest-neighbor coupling
J2 reaches a critical value, the ferromagnetic ground state gives
way for a ground-state phase with zero magnetization.64 As a
consequence, the effective field theory description presented
here, which is based on the spontaneous symmetry breaking
pattern O(3) → O(2), no longer is applicable. Still, an effective
field theory for this new system could also be constructed.

IV. RANGE OF VALIDITY OF THE LOW-TEMPERATURE
SERIES

Whereas in three space dimensions the limit H →0 can
readily be taken, one has to be careful in two (or one)
dimensions due to the Mermin-Wagner theorem,65 which
states that no spontaneous symmetry breaking at any finite
temperature in the O(3)-invariant two-dimensional Heisenberg
model can occur. Accordingly, no massless magnons in the
low-energy spectrum at any finite temperature will be present.
In the context of ferromagnetic magnons this means that the
low-energy spectrum exhibits a nonperturbatively generated
energy gap and that the correlation length of the magnons no
longer is infinite. Still, the correlation length is exponentially
large, the argument of the exponential being proportional to
the inverse temperature,66

ξnp = CξaS−1/2

√
T

JS2
exp

[
2πJS2

T

]
. (IV.1)

Here a is the spacing between two neighboring sites on the
square lattice and the quantity Cξ ≈ 0.05 is a dimensionless
constant.

Strictly speaking, it is therefore not legitimate to switch off
the external magnetic field H completely, because our effective
calculation does not take into account the nonperturbative
effect. However, the corrections due to the nonperturbatively
generated energy gap are so tiny that they cannot manifest
themselves in the power series derived in this work. In what
follows, we will estimate the order of magnitude of these
corrections and thus verify this claim. While the above explicit
expression for the correlation length refers to the square lattice,
note that the conclusions to be presented in this section also
apply to the honeycomb, the triangular, and the kagome lattice.

Our low-temperature series are valid as long as the correla-
tion length ξ of the Goldstone bosons is much smaller than the
nonperturbatively generated correlation length ξnp. In order to
define the correlation length ξ for ferromagnetic magnons in
a natural way, let us consider the dispersion relation. In the
presence of a magnetic field it takes the form

ω(�k) = γ �k2 + μH + O(|�k|4), γ ≡ F 2

�
, (IV.2)

and we may define the correlation length as

ξ =
√

γ

μH
= F√

�μH
. (IV.3)

This quantity has dimension of length and tends to infinity
for zero magnetic field, as it should. It is the analog of the
corresponding relation for antiferromagnetic magnons, which
obey a linear (relativistic) dispersion law. In that case the
correlation length is given by the inverse mass Mπ ,36

ξAF = 1

Mπ

= FAF√
�sμHs

, (IV.4)

where �s and Hs are the staggered magnetization at zero
temperature and the staggered field, respectively.

The low-temperature series derived in the previous section
are certainly valid if ξnp is—let us say—a thousand times larger
than ξ ; i.e.,

1

1000
= ξ

ξnp

= S2

Cξ

J

T

√
T

μH
exp

[
− 2πJS2

T

]
. (IV.5)

Note that we have used Eq. (III.11) in order to express the
effective constant F in terms of the exchange integral J of the
underlying theory by

F =
√

�JSa. (IV.6)

Now the exchange integral defines a scale in the underlying
theory and for the effective expansion to be consistent,
the temperature has to be small with respect to this scale.
Assuming that

T

J
= 1

100
, (IV.7)

relation (IV.5) then yields the ratio

μH

T
≈ 10−125

(
S = 1

2

)
. (IV.8)

We thus see that, in principle, we cannot completely switch
off the magnetic field; rather, we start running into trouble as
soon as the ratio μH/T is of the order of the above value.
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However, the error introduced into the low-temperature series
considered in this work is indeed extremely small. Hence
we confirm that the corrections due to the nonperturbatively
generated energy gap are so tiny that they cannot manifest
themselves in the above low-temperature expansions for
the thermodynamic quantities; the subtleties raised by the
Mermin-Wagner theorem in ds = 2 are not relevant for our
calculation.

The effective calculation performed in this work is restricted
to the regime ξ 
 ξnp. This does not mean that the regime
ξ � ξnp is beyond the reach of the effective field theory.
Rather, one has to resort to a different type of perturbative
expansion. A similar situation arises when one considers finite-
size effects. In particular, when the Goldstone boson mass
is small compared to the inverse size of the box, a different
effective expansion scheme, the so-called ε expansion, applies.
Indeed, various problems within this framework have been
investigated in detail.67–72

We close this section with a conceptual remark. Our effec-
tive analysis refers to the two-dimensional ideal ferromagnet,
i.e., to a two-dimensional system which is governed by the
isotropic exchange interaction and the interaction with a weak
external magnetic field. This represents the system which
was analyzed before within a microscopic framework by
Takahashi and other authors.10–19 For this idealized situation
we have rigorously shown that taking the limit H →0 in the
low-temperature series derived in this work is consistent with
the Mermin-Wagner theorem.

In a more realistic approach to ferromagnetic films, how-
ever, one has to also consider the magnetic anisotropy and
dipolar interactions. Although they are much weaker than the
exchange interaction, these effects may play a decisive role
(see, e.g., Ref. 73). In particular, taking into account these
effects, the Mermin-Wagner theorem is evaded since two of
its basic assumptions are no longer fulfilled: The Hamiltonian
is no longer isotropic and the dipolar interaction is no longer
short ranged.

So the question regarding the implications of the Mermin-
Wagner theorem on the low-temperature properties of a two-
dimensional ideal ferromagnet is rather academic. Still, unlike
the various authors before,10–19 here we have put the low-
temperature series on a firm basis in this idealized framework.

V. IDEAL FERROMAGNETS IN TWO AND THREE
SPATIAL DIMENSIONS: A COMPARISON

It is very instructive to compare the thermodynamic
properties of two-dimensional ferromagnets with those of
three-dimensional ideal ferromagnets within the effective field
theory perspective, adopting thereby a unified point of view
based on the symmetries of the system. As we pointed out in
Sec. II, the suppression of loops in the perturbative expansion
of the partition function depends on the spatial dimension. For
two-dimensional ferromagnetic systems, loops are suppressed
by two powers of momentum, in three spatial dimensions, on
the other hand, loops are suppressed by three powers of mo-
mentum. Accordingly, the organization of Feynman diagrams
related to the three-dimensional ferromagnet, depicted in Fig. 3
(for details see Ref. 9), is quite different from the one referring
to the two-dimensional ferromagnet, Fig. 1. Still, as we now

2 5 7 8

4

9a 9b 10a 10b

6 4 4 4 4

11a 11b 11c

11d 11e

8 6 4

FIG. 3. Feynman graphs related to the low-temperature expansion
of the partition function for a three-dimensional ferromagnet up to
order p11. The numbers attached to the vertices refer to the piece of
the effective Lagrangian they come from. Vertices associated with the
leading term L2

eff are denoted by a dot. Note that ferromagnetic loops
are suppressed by three powers of momentum in ds = 3.

discuss, there are also various similarities between ds = 2 and
ds = 3.

In either case the leading temperature-dependent contribu-
tion to the free energy density is related to a one-loop graph.
For the three-dimensional ideal ferromagnet it is of order
p5 ∝ T 5/2; for the two-dimensional ideal ferromagnet we have
p4 ∝ T 2. The next-to-leading contribution again stems from
a one-loop graph, but this time with an insertion from L4

eff .
For the three-dimensional ferromagnet, this term—diagram 7
of Fig. 3—is of order p7 ∝ T 7/2. For the two-dimensional
ferromagnet, diagram 6b of Fig. 1 leads to a term of order
p6 ∝ T 3.

Beyond one-loop order the spin-wave interaction comes
into play. However, the corresponding two-loop graph (graph
6a for ds = 2; graph 8 for ds = 3) which would represent
the first candidate for the spin-wave interaction, turns out to
be zero due to parity. Regarding the three-dimensional ideal
ferromagnet there is thus no contribution of order p8 ∝ T 4 in
the series for the free energy density. Likewise, for the two-
dimensional ideal ferromagnet this means that the contribution
of order p6 ∝ T 3 in the free energy density is exclusively
related to noninteracting spin waves.

So at which order does the spin-wave interaction manifest
itself in either case? In three dimensions it shows up at
order p10 ∝ T 5 due to the two-loop diagrams which involve
insertions from the next-to-leading Lagrangian L4

eff , i.e.,
graphs 10a and 10b of Fig. 3. In the case of the two-dimensional
ideal ferromagnet the spin-wave interaction sets in at order
p8 ∝ T 4 through five different diagrams—two-loop as well
as three-loop diagrams (see Fig. 1). Note that for the three-
dimensional ferromagnet these three-loop diagrams are of
order p11 ∝ T 11/2, i.e., of higher order than the two-loop
diagrams 10a and 10b with insertions from L4

eff . In two spatial
dimensions, on the other hand, they are of the same order as
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the two-loop diagrams, all five graphs contributing at the same
order p8 ∝ T 4. The explicit evaluation of these contributions
is quite involved and will be presented elsewhere;60 here we
rather want to draw our attention to the general structure of the
low-temperature series.

Still, we have to mention that for the two-dimensional ideal
ferromagnet, unlike for the ideal ferromagnet in three spatial
dimensions, logarithmic contributions in the low-temperature
series will show up. This is related to the structure of the
ultraviolet divergences arising in higher-order loop-diagrams,
which in the case of the two-dimensional ferromagnet require a
logarithmic renormalization of next-to-leading order effective
coupling constants; again, details will be provided in Ref. 60.

Summarizing the above results, the low-temperature expan-
sion for the free energy density of the ideal ferromagnet in two
and three spatial dimensions—in the absence of an external
magnetic field—exhibits the following general structure:

zds=2 = −η̃0T
2 − η̃1T

3 + O(T4 lnT,T4),

zds=3 = −h̃0T
5
2 − h̃1T

7
2 − h̃2T

9
2 − h̃3T5

+O(T11/2), (V.1)

where we have highlighted all terms which are related to the
spin-wave interaction.

Note that in the series for the two-dimensional ideal
ferromagnet no half-integer powers of the temperature occur.
The first contribution is of order T 2 and any other corrections
necessarily involve integer powers of the temperature. This
is because each additional loop yields an additional power of
T . Likewise, higher-order vertices with insertions from the
effective Lagrangian,

Leff = L2
eff + L4

eff + L6
eff + O(p8), (V.2)

also increase the temperature power in steps of p2 ∝ T .
Now in three dimensions, the first contribution in the

free energy density is of order T 5/2. Also here, insertions
of higher-order contributions from the effective Lagrangian
yield additional integer powers of the temperature. Succes-
sive insertions of higher-order vertices in one-loop graphs,
e.g., lead to the pattern T 7/2,T 9/2,T 11/2, . . ., describing the
effect of noninteracting spin waves. However, since loops in
three spatial dimensions are suppressed by three powers of
momentum, or equivalently, lead to additional powers of T 3/2,
we will also have integer powers of the temperature in the
above series. In fact, any such integer power in the series for
the three-dimensional ferromagnet necessarily must have its
origin in the spin-wave interaction.

VI. CONCLUSIONS

The present study was devoted to the thermodynamic
properties of two-dimensional ideal ferromagnets at low

temperatures. Previous articles, based on modified spin-wave
theory or Schwinger-boson mean-field theory, have also
discussed the low-temperature behavior of two-dimensional
ferromagnets, but there the magnons were considered as ideal
Bose particles—the problem of the spin-wave interaction
was neglected and it thus remained unclear whether the
low-temperature series given in these articles are complete
or will receive additional corrections due to the interaction.
Furthermore, it has never been discussed in a systematic
manner how a weak external magnetic field manifest itself in
the low-temperature series for the thermodynamic quantities
or how these series look for underlying geometries other than
a square lattice.

Within the effective Lagrangian framework, we have
addressed all these questions in detail. We have derived the
low-temperature expansion of the partition function up to
two-loop order—i.e., order T 3—for two-dimensional ideal
ferromagnets on the square, honeycomb, triangular, and
kagome lattice, where the O(3) spin rotation symmetry is
spontaneously broken to O(2) by the ground state. Remarkably,
the spin-wave interaction does not yet manifest itself at order
T 3 in the free energy density—it will only enter at order
T 4 ln T . Analogously, in the case of the three-dimensional
ideal ferromagnet, the spin-wave interaction does not yet
manifest itself at order T 4; rather, as Dyson showed, it enters at
order T 5 in the free energy density. In both cases the spin-wave
interaction is thus very weak.

While the validity of the low-temperature series derived
within the framework of modified spin-wave theory—which
resorts to an ad hoc assumption—has never been critically
examined, here we have put these series on safe grounds.
Indeed, as discussed in detail, the Mermin-Wagner theorem is
perfectly consistent with our results and the low-temperature
series are valid as they stand.

In conclusion, the effective field theory method is a very
powerful tool to analyze the general structure of the low-
temperature expansion of the partition function for systems
exhibiting collective magnetic behavior. Not only have we
conclusively discussed the effect of the spin-wave interaction
and a weak magnetic field in a systematic manner, but also
have we put our results on a firm basis. In a more realistic
approach to ferromagnetic films, one should also include the
magnetic anisotropy and dipolar interactions. Here, much like
Dyson, Takahashi, and other authors, we have considered
the ideal ferromagnet and rigorously derived the low-
temperature properties for this “clean” system.
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