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Magnetic structure of hexagonal YMnO3 and LuMnO3 from a microscopic point of view
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The aim of this work is to establish a basic microscopic picture, which stands behind complex magnetic
properties of hexagonal manganites. For these purposes, we consider two characteristic compounds: YMnO3

and LuMnO3, which form different magnetic structures in the ground state (P 63cm and P 63cm, respectively).
First, we construct an electronic low-energy model for the Mn 3d bands of YMnO3 and LuMnO3, and derive
parameters of this model from the first-principles calculations. From the solution of this model, we conclude that,
despite strong frustration effects in the hexagonal lattice, the relativistic spin-orbit interaction lifts the degeneracy
of the magnetic ground state. Furthermore, the experimentally observed magnetic structures are successfully
reproduced by the low-energy model. Then, we analyze this result in terms of interatomic magnetic interactions,
which were computed using different types of approximations (starting from the model Hamiltonian as well as
directly from the first-principles electronic structure calculations in the local-spin-density approximation). We
argue that the main reason why YMnO3 and LuMnO3 tend to form different magnetic structures is related to the
behavior of the single-ion anisotropy, which reflects the directional dependence of the lattice distortion: namely,
the expansion and contraction of the Mn-trimers, which take place in YMnO3 and LuMnO3, respectively. On
the other hand, the magnetic coupling between the planes is controlled by the next-nearest-neighbor interactions,
which are less sensitive to the direction of the trimerization. In the P 63cm structure of YMnO3, the Dzyaloshinskii-
Moriya interactions lead to the spin canting out of the hexagonal plane, which is additive to the effect of the
single-ion anisotropy. Finally, using the Berry-phase formalism, we evaluate the magnetic-state dependence
of the ferroelectric polarization, and discuss potential applications of the latter in magnetoelectric switching
phenomena.
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I. INTRODUCTION

Hexagonal manganites (the space group P 63cm) are
one of canonical examples of multiferroics, which have
attracted an enormous attention recently. The coexistence of
ferroelectricity and magnetism in these systems provides a
unique possibility for manipulating the charges by applying
a magnetic field and the spins by applying a voltage. Such
a dual nature is crucially important for the construction
of new forms of multifunctional devices.1 To this end, the
direct magnetic phase control by static electric field was
realized in HoMnO3.2 The interplay between the ferroelectric
activity and the magnetic order was also demonstrated in
YMnO3 and LuMnO3 with the measurements of the dielectric
constant and the loss tangent. These experiments revealed clear
anomalies around the Néel temperature (TN = 75 and 88 K in
YMnO3 and LuMnO3, respectively),3,4 even despite the fact
that the ferroelectric transition itself occurred at much higher
temperature (TC ∼ 880 K).5 Another spectacular example is
the coupling of magnetic and ferroelectric domains, which was
visualized in YMnO3 by using the optical second harmonic
generation technique.6 Furthermore, the magnetic transition
in YMnO3 and LuMnO3 is accompanied by a distinct change
of the atomic positions.7 Thus the experimental data clearly
demonstrates the existence of a strong coupling amongst
electric, magnetic, and lattice degrees of freedom in the
hexagonal manganites.

The magnetic frustration is one of the key concepts of mul-
tiferroic materials, which can assist the inversion symmetry

breaking and, in a number of cases, can be even responsible
for such a breaking.8 In this respect, the hexagonal lattice is
not an exception and is typically regarded as a playground
for studying the magnetic frustration effects. However, it
is also the main complication, hampering the theoretical
understanding of the multiferroic effect. In this respect, the
high-spin state (S = 2), realized in the hexagonal manganites,
is typically regarded as an “easy case” for the theoretical
analysis, where the classical spin fluctuations dominate over
the quantum ones. Nevertheless, even in this case, the ground
state is expected to be highly degenerate. Different signs of
spin fluctuations, apparently originating from this degeneracy,
have been observed in the neutron scattering experiments, even
below TN.9,10 Another evidence of spin fluctuations is the large
ratio of the Curie-Weiss temperature (θCW) to TN (the so-called
frustration parameter), which is about 7 in YMnO3.9

The degeneracy can be lifted by lattice distortions and,
in this context, plenty of attention is paid to the so-called
trimerization instability, inherent to the P 63cm structure (see
Fig. 1).7,11 However, the trimerization alone does not lift the
frustration of isotropic exchange interactions. In this sense, the
situation is fundamentally different from the exchange striction
effect, which accompanies the formation of the E-type anti-
ferromagnetic (AFM) ordering in the orthorhombic YMnO3

and which lifts the frustration of the nearest-neighbor (NN)
interactions.12 Nevertheless, the trimerization can interplay
with the relativistic spin-orbit (SO) coupling and, in this
way, give rise to new anisotropic interactions, which can
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FIG. 1. (Color online) Fragment of the crystal structure of
YMnO3. The Y atoms are indicated by the big (blue) spheres, the
Mn atoms are indicated by the medium (red) spheres, and the oxygen
atoms are indicated by the small (green) spheres. The vectors show
the directions of the hexagonal translations. The Mn atoms, forming
the trimers in the plane z = 0 and c/2 are numbered as 1-2-3 and
4-5-6, respectively.

lift the degeneracy and stabilize some individual magnetic
structure with the well-defined symmetry. Such structures were
detected in the experiments on the neutron diffraction (see
Refs. 11, 13, 14) and the optical second harmonic generation
(see Ref. 15). In a number of cases (e.g., in LuMnO3), there
can be several magnetic structures, coexisting in a narrow
temperature range.15 In short, despite difficulties, there is
an enormous experimental progress in the identification of
magnetic structures in the hexagonal manganites, resulting
from a delicate balance between the lattice distortion, SO
interaction, and the frustration effects.

The microscopic understanding of rich magnetic properties
of the hexagonal manganites is still rather limited. To begin
with, there is no clear microscopic model that would explain
the origin of basic magnetic structures in the hexagonal man-
ganites and why different manganites tend to form different
magnetic structures. Basically, it is only known how the
trimerization affects the isotropic NN exchange interactions.11

The presence of the single-ion anisotropy and Dzyaloshinskii-
Moriya (DM) interactions is, of course, anticipated. However,
it is absolutely not clear how all these effects come together
to form a rich variety of magnetic structures, realized in the
hexagonal manganites.

In this paper, we will try to answer some of these questions.
For these purposes, we consider two characteristic manganites:
YMnO3 and LuMnO3, which form different magnetic struc-
tures in the ground state: P 63cm and P 63cm, respectively
(in the International notations, where each underlined symbol
means that given symmetry operation is combined with the
time inversion). We will show that this difference can be
naturally related to different directions of the trimerization:
expansion and contraction of the Mn trimer that takes place

in YMnO3 and LuMnO3, respectively. In our study, we start
from the first-principles electronic structure calculations in
the local-density approximation (LDA). First, we construct a
low-energy electronic model, which captures details of the
magnetic structure and correctly reproduces the magnetic
ground state of YMnO3 and LuMnO3. Then, we analyze
these results by further transforming the electronic model into
the spin one and elucidating which magnetic interaction is
responsible for each detail of the magnetic structure. We will
also consider the ‘temperature effects’, associated with the
temperature change of the experimental crystal structure, and
show that above TN it gradually diminishes the anisotropic
interactions.

The rest of the paper is organized as follows. All method-
ological aspects, such as construction of the electronic model
and calculation of magnetic interactions, are discussed in
Sec. II. Results of solution of the electronic model in the
mean-field Hartree-Fock (HF) approximation are presented in
Sec. III A. In Sec. III B, we give a detailed analysis of the
obtained results in terms of the magnetic interactions, which
were computed using different starting points. In Sec. III C, we
discuss the magnetic part of the ferroelectric polarization and
propose how it can be controlled by switching the magnetic
state. Finally, a brief summary of the work is given in Sec. IV.

II. METHOD

Since our goal is the construction of microscopic theory
for the magnetic properties of YMnO3 and LuMnO3, we first
adopt the low-energy model, which would provide a realistic
description for the Mn 3d bands of these compounds:

Ĥ =
∑
ij

∑
αβ

t
αβ

ij ĉ
†
iαĉjβ + 1

2

∑
i

∑
αβγ δ

Uαβγ δĉ
†
iαĉ

†
iγ ĉiβ ĉiδ. (1)

The model is constructed in the basis of Wannier orbitals for
the Mn 3d bands, using the input from the first-principles
electronic structure calculations in LDA (see Fig. 2). The
corresponding procedure was explained in details in the review
article (see Ref. 16). Each Wannier orbital is denoted by the
Greek symbol, which itself is the combination of the spin (s =
↑ or ↓) and orbital (m = xy, yz, 3z2 − r2, zx, or x2 − y2)
variables.

All calculations have been performed using experimental
parameters of the crystal structure, measured at 10 and 300 K
(see Ref. 7, Supplementary Material), i.e., well below and
above the magnetic transition point. The experimental space
group P 63cm has 12 symmetry operations, which can be
generated by the mirror reflection x → −x, mx , and the
60◦-degree rotation around the z axis, combined with the half
of the hexagonal translation, {C6

z |c/2}.
Since the Mn 3d bands in hexagonal manganites are well

separated from the rest of the spectrum (see Fig. 2), the
Wannier basis is complete. In this case, there is one-by-one
correspondence between the original LDA band structure and
the one, obtained from the one-electron part (tαβ

ij ) of the model
Hamiltonian (1). In this sense, the construction is exact.

The crystal-field splitting, obtained from the diagonaliza-
tion of the site-diagonal part of t̂ij = ‖tαβ

ij ‖ (without spin-orbit
coupling), is very similar for YMnO3 and LuMnO3. For
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FIG. 2. (Color online) Total and partial LDA densities of states for YMnO3(a) and LuMnO3 (b). The shaded area shows the contributions
of the Mn 3d states. The positions of the main bands are indicated by symbols. The Fermi level is at zero energy (shown by dot-dashed line).

example, for the 10-K structure, we obtain the following
scheme of the atomic energy levels: −0.54, −0.43, −0.29,
−0.24, and 1.50 eV in the case of YMnO3, and −0.60, −0.49,
−0.25, −0.24, and 1.57 eV in the case of LuMnO3. The
300-K structure yields similar atomic energies. Clearly, the
crystal field tends to stabilize four atomic orbitals, which
are separated from the fifth one by the energy gap. Such
a scheme of the crystal-field splitting is consistent with the
formal d4 configuration of the Mn ions, which is subject to
the Jahn-Teller instability. The fifth (unoccupied) orbital is of
predominantly 3z2 − r2 symmetry. The off-diagonal elements
of t̂ij with respect to the site indices (i and j ) stand for the
transfer integrals. They are listed in Ref. 17.

The matrix of screened Coulomb interactions ‖Uαβγ δ‖ in
the Mn 3d band was computed in two steps,16 by applying
the constrained LDA and the random-phase approximation
(RPA) for the screening. Roughly speaking, the first technique
takes into account the screening of the atomic 3d orbitals,
while the second one—the self-screening by the same 3d

electrons, which participate in the formation of other bands
due to the hybridization.16 The value of the screened Coulomb
interaction U (defined as radial Slater’s integral F 0) is about
2.6 eV for all considered systems. The intraatomic exchange
(Hund’s) coupling JH is about 0.9 eV, which is close to
the atomic value. The full matrices of screened Coulomb
interactions can be also found in Ref. 17. The obtained value
of the screened Coulomb repulsion U is slightly larger than
for orthorhombic manganites (about 2.1–2.2 eV),18 due to
the wider energy gap between the O 2p and Mn 3d bands
(see Fig. 2) and, therefore, less efficient RPA screening.16

It is also important to mention that the parameter U can
be estimated by using the more accurate (and more com-
putationally heavy) constrained RPA technique, in the basis
of maximally localized Wannier functions.19 Very recently,
this method was applied to CaMnO3.20 The obtained value
of the parameter U = 2.13 eV is well consistent with our
finding for orthorhombic manganites.18 Thus we are confident
that our estimates for the screened Coulomb interactions are
reliable.

After the construction, the model is solved in the HF
approximation.16 This procedure appears to be extremely
useful, especially for the search of the magnetic ground state.

Typically, in frustrated magnetic systems, we are dealing
with the competition of several magnetic interactions of the
both relativistic and nonrelativistic origin. Therefore even HF
calculations for the relatively simple model (1) can be very
time consuming, because they may require tenths of thousands
of iterations. In such a situation, the full scale electronic
structure calculations are simply unaffordable. Since the
degeneracy of the ground state is lifted by the lattice distortion,
the HF approximation appears to be a good starting point for
the analysis of the equilibrium magnetic properties.16

Of course, the model (1) is not perfect, because it does
not explicitly include the oxygen band, which can be im-
portant for the quantitative analysis of magnetic properties
of manganites.18 Therefore, whenever possible, we check
results of our model analysis by comparing them with “all-
electron” calculations in the local-spin-density approximation
(LSDA). For these purposes, we use the tight-binding linear
muffin-tin-orbital method (in the following we will refer to
such calculations as “LMTO calculations”).21 Hopefully, in
both cases, we can employ the same strategy for calcula-
tions of magnetic interactions, which is based on the local
force theorem and the Green’s function technique. Namely,
the isotropic exchange interactions (Jij ) can be obtained
in the second-order perturbation-theory expansion for the
infinitesimal spin rotations,22 antisymmetric DM interactions
(dij )—by considering mixed type perturbation with respect
to the rotations and the relativistic SO coupling,23–25 and the
single-ion anisotropy tensors (τ̂i)—in the second order with
respect to the SO interaction.26

The LMTO calculations have been performed for the
AFM configuration ↑↓↑↓↑↓, where the arrows stand for the
directions of magnetic moments at the sites 1–6 (see Fig. 1
for the notations of atomic positions). The use of the AFM
configuration is essential in order to open the band gap in
LSDA (about 0.7 eV for YMnO3, which is comparable with
the experimental optical gap of 1.3 eV, reported in Ref. 27).
The LSDA density of states for the AFM configuration can
be found in Ref. 11. Certain inconvenience of working with
the AFM ↑↓↑↓↑↓ configuration is that it artificially lowers
the P 63cm symmetry: in this case, the local symmetry can be
preserved only around the sites 2 and 5, which will be selected
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as the reference points for the analysis of interatomic magnetic
interactions.

In our LMTO calculations, we decided to stick to the
regular LSDA functional and not to use any corrections for the
on-site Coulomb interactions (LSDA+U ). On the one hand,
such corrections can improve the description for interatomic
magnetic interactions (similar to the low-energy model). On
the other hand, the use of the LSDA+U functional is always
conjugated with some additional uncertainties in the calcula-
tions, related to the double-counting problem. Furthermore, the
example of orthorhombic LaMnO3 shows that LSDA is indeed
a reasonably good starting point for the analysis of interatomic
magnetic interactions.23 Nevertheless, when we compare the
LMTO results with the model calculations, we discuss possible
consequences of the Coulomb U on the magnetic interactions
in the former case.

Due to the hybridization with the oxygen states, which is
treated explicitly in the LMTO calculations, the value of spin
magnetic moment at the Mn sites is reduced till 3.5 μB. Thus
some deviation of the local magnetic moment from the ionic
value (4 μB), which is typically seen in the experiment,11,13 can
be attributed to the covalent mixing. In order to obtain the local
magnetic moment in the low-energy model, it is necessary to
perform the transformation from the Wannier basis to that of
atomic orbitals.16

Since for the analysis of the magnetic anisotropy and other
effects of the relativistic SO interaction, it is necessary to
deal with the total energy differences of the order of several
hundredths of microelectron volts, the numerical accuracy
of calculations is the very important issue. The key point
of our approach is that we deal directly with the total
energy differences, responsible for the magnetic properties,
and bypass the calculations of large total energies for the
whole electron system. This is very important, because the
total energy is typically subjected to many sources of error,
which are not necessarily related to the magnetism. Therefore
the idea is to calculate directly the total energy difference,
rather than the individual total energies themselves. It is widely

used in many applications of the local force theorem,22 which
allow us not only to calculate the total energy difference, but
to do it analytically, using the perturbation theory.22–26 As the
result, the numerical accuracy of calculations, based on the
local force theorem, is typically very high. The construction
of the low-energy model is based on the same idea: it picks up
only those electronic states, which are primarily responsible
for the magnetism, and abandons the states, which are ‘less
important’. By doing so, one can get rid of the possible
errors, related to the description of these ‘less important’
states. Of course, which states are important and which are
not is sometimes a tricky issue. That is why we should always
monitor our model and compare its basic results with all
electron calculations (in our case, the LMTO calculations).

Needless to say that, once the model is established, it can be
solved very accurately (e.g., using very fine mesh of k points,
rigid criteria of convergency for the magnetic structure, etc.).28

III. RESULTS AND DISCUSSIONS

A. Optimization of magnetic structure

We start with the central result of our work and argue that
the low-energy model (1), with the parameters derived from the
first-principles electronic structure calculations,17 successfully
reproduces the magnetic ground state of YMnO3 and LuMnO3.
The main candidates for the magnetic ground state of YMnO3

and LuMnO3 are shown in Fig. 3 (see also Refs. 13 and 14
for the notations). The unidimensional representations �1, �2,
�3, and �4 correspond to the magnetic space groups P 63cm,
P 63cm, P 63cm, and P 63cm, respectively. The directions of
the spin magnetic moment, obtained in the HF calculations
for the low-energy model, are listed in Table I. In the �1

and �4 configurations, all magnetic moments lie in the xy

planes, while in the �2 and �3 configurations, there is also
a small canting along the hexagonal z axis. Moreover, the
�2 configuration allows for the weak ferromagnetism along z,
while in the �3 configuration, the z components of the magnetic

FIG. 3. (Color online) Magnetic structures obtained from the solution of the low-energy model (in the notations of Ref. 13): �1 (a), �2 (b),
�3 (c), �4 (d), �5 with e1||[100] (e), �5 with e1||[120] (f), �6 with e1||[100] (g), and �6 with e1||[120] (h). The oxygen atoms are indicated by
the small green (grey) spheres. The manganese atoms are indicated by the big spheres: the ones located in the z = 0 plane are shown by the red
(dark) color and the ones in the z = c/2 plane are the light orange (grey) color.

054407-4



MAGNETIC STRUCTURE OF HEXAGONAL YMnO3 AND . . . PHYSICAL REVIEW B 86, 054407 (2012)

TABLE I. The angles α and β, representing the directions ei = (cos αi cos βi, cos αi sin βi, sin αi) of the spin magnetic
moments in the plane z = 0, for different magnetic configurations (results of calculations for the low-energy model, using
the experimental parameters of the crystal structure at 10 K). The atomic positions are explained in Fig. 1. For the magnetic
configurations �1, �2, and �6, the directions of the magnetic moments at the sites 4, 5, and 6 in the plane z = c/2 are obtained
by the 180◦ rotations of the vectors e1, e2, and e3 around the z axis. For the magnetic configurations �3, �4, and �5, these 180◦

rotations should be combined with the time inversion.

Configuration YMnO3 LuMnO3

�1 and �4

α1 = 0, β1 = 60◦

α2 = 0, β2 = 180◦

α3 = 0, β3 = 300◦

α1 = 0, β1 = 60◦

α2 = 0, β2 = 180◦

α3 = 0, β3 = 300◦

�2 and �3

α1 = −0.2◦, β1 = 150◦

α2 = −0.2◦, β2 = 270◦

α3 = −0.2◦, β3 = 30◦

α1 = −0.2◦, β1 = 150◦

α2 = −0.2◦, β2 = 270◦

α3 = −0.2◦, β3 = 30◦

�5 with e1||[100]
α1 = −9.6◦, β1 = 150◦

α2 = 4.8◦, β2 = 30.5◦

α3 = 4.8◦, β3 = 269.5◦

α1 = −8.8◦, β1 = 150◦

α2 = 4.4◦, β2 = 30.3◦

α3 = 4.4◦, β3 = 269.8◦

�5 with e1||[120]
α1 = 0, β1 = 60◦

α2 = −8.3◦, β2 = 299.5◦

α3 = 8.3◦, β3 = 180.5◦

α1 = 0, β1 = 60◦

α2 = −7.6◦, β2 = 299.8◦

α3 = 7.6◦, β3 = 180.3◦

�6 with e1||[100]
α1 = −13.4◦, β1 = 150◦

α2 = 6.6◦, β2 = 30.8◦

α3 = 6.6◦, β3 = 269.2◦

α1 = −23.3◦, β1 = 150◦

α2 = 11.4◦, β2 = 30.1◦

α3 = 11.4◦, β3 = 268.0◦

�6 with e1||[120]
α1 = 0, β1 = 60◦

α2 = −11.5◦, β2 = 299.2◦

α3 = 11.5◦, β3 = 180.8◦

α1 = 0, β1 = 60◦

α2 = −20.2◦, β2 = 297.8◦

α3 = 20.2◦, β3 = 182.2◦

moments in the planes z = 0 and c/2 cancel each other. More
generally, the configurations �1 (�2) and �4 (�3) differ by the
magnetic alignment in the adjacent planes. {C6

z |c/2} acts as the
normal symmetry operation in �1 and �2, which transforms
these states to themselves. In the case of the �3 and �4

configurations, {C6
z |c/2} enters the magnetic symmetry group

in the combination with the time-inversion operation T̂ . It
corresponds to the additional flip of the magnetic moments in
every second plane of �3 and �4. We have also considered
other magnetic configurations with the symmetries �5 and �6,
as explained in Ref. 13. However, as it will become clear below,
all of them have higher energies.

The total energies of different magnetic configurations are
summarized in Table II. Thus the ground state of YMnO3

is �3 (P 63cm), in agreement with the experiment.11,15 In
LuMnO3, the ground state changes to �4 (P 63cm), also in
agreement with the experiment.11,15 However, all the states are
located in a narrow energy range, which is expected for the
frustrated magnetic systems. The lower-symmetry magnetic
structure P 63, which is typically regarded as another possible
candidate for the magnetic ground state of these hexagonal
manganites,11,14,15 appears to be unstable and steadily con-
verges to either P 63cm (YMnO3) or P 63cm (LuMnO3).

The band gap, obtained for YMnO3 and LuMnO3, is
about 2 eV, which is larger than the experimental 1.3 eV.27

Nevertheless, such an overestimation is quite expectable for
the HF approximation: the mean-field HF approach may not
be a good starting point for the analysis of the excited-state
properties. However, one can expect much better agreement for
the ground-state properties: once the degeneracy of the ground
state is lifted by the lattice distortion (and/or the relativistic SO

interaction), the system can be described reasonably well by
the single Slater determinant.16

B. Analysis of magnetic interactions

In this section, we clarify results of the HF calculations for
the low-energy model and argue that such a good agreement
with the experimental data for the magnetic ground state is
not surprising and can be anticipated from the behavior of
magnetic interactions, which in turn depend on details of the
lattice distortions in YMnO3 and LuMnO3. Thus we consider

TABLE II. Total energies of different magnetic configurations
as obtained in the Hartree-Fock calculations for the low-energy
model. The energies are measured in mircoelectron volt per one
formula unit, relative to the most stable configuration. The magnetic
configurations are explained in Fig. 3. The calculations for YMnO3

and LuMnO3 have been performed using the experimental crystal
structure, measured at 10 and 300 K (indicated in parenthesis).

YMnO3 YMnO3 LuMnO3 LuMnO3

Configuration (10 K) (300 K) (10 K) (300 K)

�1 0.37 0.20 0.48 0.23
�2 0.16 0.19 0.61 0.32
�3 0 0 0.13 0.10
�4 0.21 0.01 0 0
�5 with e1||[100] 0.90 0.76 1.09 1.06
�5 with e1||[120] 0.90 0.76 1.09 1.06
�6 with e1||[100] 1.06 0.94 1.53 1.27
�6 with e1||[120] 1.06 0.94 1.53 1.27
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TABLE III. Parameters of isotropic exchange interactions (in
meV), calculated in the ferromagnetic state of YMnO3 and LuMnO3.
The atomic positions are explained in Fig. 4. Calculations have been
performed using the experimental parameters of the crystal structure,
measured at 10 K and 300 K (indicated in parenthesis).

YMnO3 LuMnO3 YMnO3 LuMnO3

Bond (10 K) (10 K) (300 K) (300 K)

2-1 −21.28 −31.81 −23.26 −30.16
2-1′ −26.35 −27.57 −22.67 −27.92
2-4 −0.12 −0.20 −0.13 −0.20
2-5′ −0.19 −0.11 −0.08 −0.10
2-4′ −0.24 −0.31 −0.21 −0.24
2-5 −0.07 −0.16 −0.16 −0.23

the spin model:

ĤS = −
∑
〈ij〉

Jij eiej +
∑
〈ij〉

dij [ei × ej ] +
∑

i

ei τ̂iei , (2)

which can be obtained by eliminating the electronic degrees
of freedom form the more general Hubbard model (1),
or directly from the LMTO calculations.16,22–26 In these
notations, {Jij } are the isotropic exchange interactions, {dij }
are the antisymmetric DM interactions, {τ̂i} are the single-ion
anisotropy tensors, ei stands the direction of the spin magnetic
moment at the site i, and the summation runs over all pairs of
atoms 〈ij 〉.

The parameters of isotropic magnetic interactions are listed
in Table III, and the atomic positions are explained in Figs. 1
and 4. All NN interactions in the plane xy are AFM. This
is reasonable, because the ferromagnetic (FM) coupling in
the hexagonal geometry can be stabilized only by virtual
hoppings onto the unoccupied 3z2 − r2 orbital, which are
relatively small (see Ref. 17). Moreover, the number of orbital
paths, available for the virtual hoppings via this particular
3z2 − r2 orbital, is also small. For example, from the orbital
decomposition of Jij in our LMTO calculations, we have
found that such contributions, involving the 3z2 − r2 orbital,

FIG. 4. (Color online) Relative positions of Mn-sites in the
hexagonal P 63cm structure: the atoms located in the plane z = 0
are indicated by the red (dark) spheres and the atoms located in the
plane z = c/2 are indicated by the light orange (grey) spheres. The
Mn trimers, which transform to each other by the symmetry operation
{C6

z |c/2}, are shaded.

compensates about 30 % of the AFM contributions, involving
all other orbitals, except 3z2 − r2.

The symmetry of the P 63cm lattice is such that there are
two types of the NN interactions. The first type takes place in
the triangles of atoms 1-2-3 (4-5-6), which are either expanded
(the case of YMnO3) or contracted (the case of LuMnO3). The
second type takes place in the bonds 2-1′, 2-3′, 2-1′′, 2-3′′,
which are all equivalent. Then, due to the mirror reflection
x → −x, the NN bonds 2-4 and 2-6, between adjacent xy

planes, are also equivalent and differ from the bond 2-5′. The
same situation holds for the next-NN interactions between the
planes: there are two equivalent bonds 2-4′ and 2-6′, which
differ from the bond 2-5. For the NN interactions, both in
and between the planes, there is a clear correlation between
the bondlength and the strength of the exchange coupling.
For example, in the low-temperature structure of YMnO3,
the triangle of atoms 1-2-3 (4-5-6) is expanded (for two
inequivalent NN bonds 2-1 and 2-1′ in the xy plane, the ratio
of the bondlengths is l21′/l21 = 0.961). Therefore the AFM
interaction J21′ is stronger than J21.11 The same tendency holds
for the interplane interactions: for two inequivalent NN bonds
2-5′ and 2-4 (l25′/l24 = 0.991), the AFM interaction J25′ is
stronger than J24. In LuMnO3, where the triangle of atoms
1-2-3 (4-5-6) is compressed, the situation is the opposite:
l21′/l21 = 1.016 and l25′/l24 = 1.003. Therefore the exchange
couplings in the bonds 2-1 and 2-4 are stronger than in the
bonds 2-1′ and 2-5′.

The behavior of next-NN interactions between the planes
obeys quite different rules. Since the direct transfer integrals
are small (see Ref. 17 for details), these interactions are
realized by means of the “supersuperexchange” processes
via intermediate sites in the pathes 2 → 6 → 5, 2 → 1 →
5, etc., which always include one compressed and one
expanded bond. Therefore the simple analysis in terms
of the bondlengths is no longer applicable. Instead, we
have found that for all considered compounds (and for all
considered structures), the AFM interaction in the bond
2-5 appears to be weaker than in the bonds 2-4′ (and in
the equivalent to it bond 2-6′). Such a behavior has very
important consequences: in a noncollinear structure, it is
more favorable energetically to form the FM coupling in the
‘weak’ bond 2-5 in order to minimize the energy of the AFM
interactions in two ‘strong’ bonds 2-4′ and 2-6′. Particularly,
it explains why the magnetic ground state of YMnO3 and
LuMnO3 should be �3, �4, or �5, which are characterized by
the FM coupling in the bond 2-5, and not �1, �2 or �6, where
this coupling is AFM (see Fig. 3). In LuMnO3, this effect
is additionally enhanced by the NN interactions between the
planes: since AFM interaction in the bond 2-5′ is weaker than
in two equivalent bonds 2-4 and 2-6, it is more favorable
energetically to form the FM coupling between the sites 2, 5
and 5′ (note that the latter two are connected by the translation).
However, in YMnO3, the situation is the opposite and there is a
strong competition between the NN and next-NN interactions
between the planes. Particularly, it explains a small energy
difference between magnetic configurations �3 and �2 (see
Table II).

The reliability of the obtained parameters can be checked by
calculating θCW. In the classical Heisenberg model, the latter is
given by the formula θCW ≈ ∑

i J2i/3kB, which yields −562
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and −650 K for the 10-K structure of YMnO3 and LuMnO3,
respectively. In the quantum case, these values should be
additionally multiplied by (1 + 1/S). The structural changes
have some effect mainly on YMnO3: if one uses the parameters
derived for the 300-K structure, |θCW| decreases by 7% (for
comparison, similar change of θCW for LuMnO3 is about 1%).
In any case, the obtained values are in a good agreement
with experimental data.4,7,11 The calculations of TN are not
straightforward: due to the quasi-two-dimensional character
of isotropic interactions, TN will be strongly suppressed
by thermal fluctuations, as one of the consequences of the
Mermin-Wagner theorem.29 Of course, the molecular-field ap-
proximation will overestimate TN (by factor 4, in comparison
with the experiment).

The LMTO calculations yield the following values
of the NN interactions in the plane xy (in meV):
(J21,J21′ ) = (−12.8,−19.6), (−18.0,−17.0), (−15.8,−16.6),
and (−17.0,−17.0) for YMnO3 (10 K), LuMnO3 (10 K),
YMnO3 (300 K), and LuMnO3 (300 K), respectively. Thus
all interactions are weaker than in the low-energy model.
Nevertheless, this seems reasonable. First, the NN interactions
are generally weaker in the AFM ↑↓↑↓↑↓ configuration.
This effect was also found in the model calculations, as
will become clear below. Second, according to the theory of
superexchange interactions in manganites,30 the ratio of AFM
to FM contributions in the NN exchange coupling scales with
the value of U as (U − JH)/(U + 3JH). Thus U > JH, which
was employed in the model analysis, will make this coupling
more AFM. Similar tendency was found for interlayer interac-
tions; although LSDA, supplementing the LMTO calculations,
somewhat overestimates the FM contributions to the exchange
interactions, the modulation of these interactions, caused by
the lattice distortion, again favors the formation of the magnetic
configurations �3 or �4. For example, in YMnO3 (10 K),
the LMTO calculations yield J24 = 0.20 meV, J25′ = 0.04
meV, J24′ = −0.14 meV, and J25 = 0.08 meV. Therefore these
calculations confirm our finding that the experimental coupling
between the hexagonal planes is stabilized by the next-NN
interactions J25 > J24′ . The NN interactions act in the opposite
direction: J25′ < J24. However, their effect is relatively small
(i.e., again, similar to the model).

Let us discuss the behavior of the single-ion anisotropy
tensor. Due to the mirror reflection x → −x, the tensor τ̂2 at
the site 2 (see Fig. 4) has the following form:

τ̂2 =

⎛
⎜⎝

τ xx 0 0

0 τ yy τ yz

0 τ zy τ zz

⎞
⎟⎠ ,

where τ zy = τ yz and τ xx + τ yy + τ zz = 0. Thus the magnetic
moments can either lie along the x axis or be perpendicular
to it. In the latter case (and if τ yz �= 0), they are canted out
of the hexagonal plane. The anisotropy tensors at other Mn
sites can be generated by applying the symmetry operations
of the space group P 63cm. The matrix elements of τ̂2

can be evaluated in the second order of the perturbation
theory with respect to the SO interactions.26 Then, by
performing such calculations near the FM state, we obtain
the following sets of independent parameters (in meV):
(τ yy,τ yz,τ zz) = (−0.34,−0.12,0.58), (−0.29,−0.11,0.58),

(−0.25,−0.12,0.57), and (−0.26,−0.12,0.57) for YMnO3

(10 K), YMnO3 (300 K), LuMnO3 (10 K), and LuMnO3

(300 K), respectively. Since τ zz > τyy , all structures that have
large z projections of the magnetic moments are energetically
unfavorable. Then, by diagonalizing τ̂2, one can find that the
lowest-energy configuration in LuMnO3 is the one where the
magnetic moment at the site 2 is parallel to the x axis. The
next, canted magnetic configuration, is higher in energy by
about 0.05 meV (for the 10-K structure). This situation is
reversed in YMnO3, where the lowest energy corresponds to
the canted magnetic configuration. The angle α, formed by
the magnetic moment and the y axis, is about 7◦. In the next
configuration, which is higher in energy by about 0.10 meV
(for the 10-K structure), the magnetic moment is parallel to the
x axis. This energy difference is reduced till 0.01 meV for the
300-K structure. The same behavior was found in the LMTO
calculations: for YMnO3, the lowest energy corresponds to the
canted magnetic configuration (the canting from the y axis is
about 6◦). The next configuration, where the magnetic moment
is parallel to the x axis, is higher in energy by 0.09 eV for the
10-K structure, and this energy difference further decreases
for the 300-K structure.

Thus the change of the ground state from �3 to �4 between
YMnO3 and LuMnO3 is related to the behavior of the single-
ion anisotropy, which in turns correlates with the distortion of
the 1-2-3 triangles (expansion and contraction, respectively).
Moreover, due to the 180◦ rotation around the z axis, which
is required in order to transform the site 2 to the site 5 (see
Fig. 4), the matrix element τ yz will change sign. Therefore the
canting of spins in the planes z = 0 and c/2 of the �3 structure
will act in the opposite directions, and the magnetic moments
along the z axis will cancel each other.

The single-ion anisotropy will tend to align the z projections
of the magnetic moments ferromagnetically in each of the xy

plane. However, this effect will compete with the NN AFM
interactions J21 and J21′ . The analytical expression for the spin
canting can be obtained by minimizing the energies of single-
ion anisotropy and isotropic exchange interactions. Then, by
assuming that all neighboring spins in the xy plane form the
120◦-structure (as in the case of the �2 and �3 configurations),
one can find that

tan 2α = − 2τ yz

τ yy − τ zz + 3J21 + 6J21′
. (3)

Here, the minus-sign corresponds to the situation that is
realized in our HF calculations and where e2 is antiparallel
to the y axis (see Fig. 3). Then, for the �3 configuration of
YMnO3 (10 K), the canting angle α can be estimated (using
both model and LMTO parameters of magnetic interactions)
as α ≈ −τ yz/(3J21 + 6J21′ ) = −0.03◦, which is about seven
times smaller than the values obtained in self-consistent HF
calculations (see Table I). Nevertheless, there is an additional
contribution to the spin canting, caused by the DM interactions.

Parameters of DM interactions between NN sites in the xy

plane are listed in Table IV. They were obtained by considering
the mixed type of the perturbation theory expansion with
respect to the SO interaction and the infinitesimal rotations
of the spin magnetic moments.23 In principle, the parameters
d21′ and d21′′ are not independent and can be transformed
to each other using symmetry operations of the space group
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TABLE IV. Parameters of Dzyaloshinskii-Moriya interactions (in meV), calculated in the ferromagnetic states of YMnO3 and LuMnO3.
The atomic positions are explained in Fig. 4. Calculations have been performed using the experimental parameters of the crystal structure,
measured at 10 and 300 K (indicated in parenthesis).

Bond YMnO3 (10 K) LuMnO3 (10 K) YMnO3 (300 K) LuMnO3 (300 K)

2-1 (0.01,0.01,0.20) (0.04,0.02,0.25) (0.04,0.02,0.17) (0.07,0.04,0.25)
2-1′ (0.03,−0.02,0.21) (0.03,−0.02,0.26) (0.03,−0.01,0.18) (0.02,−0.01,0.26)
2-1′′ (0,0.04,0.21) (−0.01,0.04,0.26) (0,0.03,0.18) (0,0.02,0.26)

P 63cm. However, it is more convenient to consider these
two contributions independently. Due to the mirror reflection
x → −x, the elements of two axial vectors d23 and d21 (see
Fig. 4) obey the following rules: dx

23 = dx
21, d

y

23 = −d
y

21, and
dz

23 = −dz
21 (similar situation holds for other NN interactions).

Thus they will produce a finite spin canting at the site 2 only
if the directions of two other magnetic moments e2 and e3

will have an AFM component along x and a FM component
along y, i.e., ex

3 = −ex
1 and e

y

3 = e
y

1 . Such a situation is
realized in the magnetic configurations �2 and �3 (but not
in �1 and �4). Then, the magnetic moment at the site 2 will
experience the additional rotational force from the sites 1,
1′, and 1′′: f1→2 = [d21 × e1] + [d21′ × e1] + [d21′′ × e1] (note
that e1 = e1′ = e1′′ ). For the magnetic configurations �2 and
�3, the sites of the type “3” will create the same rotational
force: f3→2 = f1→2. However, for the configurations �1 and �4,
we will have f3→2 = −f1→2. Therefore, these two contribution
will cancel each other and there will be no spin canting.

These rotational forces should be incorporated in the
expression (3) for the spin canting, which yields α ≈ −(τ yz +
f z

1→2)/(3J21 + 6J21′ ) = −0.04◦. This angle is still smaller
than α ∼ −0.21◦, obtained in the HF calculations for the
�3 configuration (see Table I). Nevertheless, it should be
noted that all the parameters of the spin Hamiltonian (2)
were evaluated using perturbation theory expansion near the
collinear FM state, which is very far from the ground-state
configuration �3. Thus it is interesting to check the effect
of the magnetic-state dependence of the parameters of the
spin Hamiltonian (2). Indeed, some parameters of the spin
Hamiltonian (2) appear to be sensitive to the state in which
they are calculated. This can be seen by considering the
collinear AFM ↑↓↑↓↑↓ state, where the arrows stand for
the directions of magnetic moments at the sites 1–6. In this
case, the DM interactions involving the site 2, which is
AFM coupled with all NN spins in the xy plane, become (in
meV): d21 = (0.01,0.03,0.01), d21′ = (0.04,0,0), and d21′′ =
(−0.01,0.05,0.01). Then, corresponding rotational force f z

1→2
will be about two times larger than in the FM state. Meanwhile,
the parameters of isotropic exchange interactions J21 and
J21′ decrease by about 15%. These factors will additionally
increase |α|, but not significantly.

Furthermore, the HF potential for the low-energy model (1)
is orbitally dependent. In this case, the local force theorem is no
longer valid.22 Therefore the total energy change due to the SO
interaction can be replaced only approximately by the change
of the single-particle energies of the HF method. For the single-
ion anisotropy, the situation was discussed in Appendix B of
Ref. 26. Presumably, this is the main reason, explaining the
quantitative difference between results of the electronic and

spin model. These are typical uncertainties, supplementing
the construction and analysis of the spin model (2).

Nevertheless, the local force theorem is valid within LSDA.
Therefore it is interesting to estimate the spin canting in
the LMTO calculations, which are based on the LSDA
functional. In this case, all DM interactions become larger.
For example, for YMnO3 (10 K) we have obtained the
following parameters (in meV): d21 = (−0.01,0.14,−0.20),
d21′ = (−0.16,0.04,−0.12), and d21′′ = (0.06,0.18,−0.26).
Then, by combining them with corresponding parameters of
the single-ion anisotropy τ yz = −0.078 meV and isotropic
exchange interactions J21 and J21′ , which are listed above, we
obtain the canting angle α = −0.12◦. Thus it is interesting that
LSDA, despite its limitation, provides the best starting point
for the analysis of the spin canting via the perturbation-theory
expansion for the spin-orbit interaction, due to validity of
the local force theorem. Similar situation was found for the
orthorhombic LaMnO3.23

Thus although derivation of parameters of spin model (2)
may differ in details, this analysis provides a clear microscopic
basis for understanding the main difference between YMnO3

and LuMnO3: why the former tends to form the canted
noncollinear magnetic structure �3, while the latter forms the
planar structure �4.

C. Magnetic contribution to ferroelectric polarization

Finally, we would like to comment on the behavior of
the electronic polarization P||c. It was calculated within
the Berry-phase formalism,31 which was adopted for the
model calculations.8 In this analysis, we use the mesh of the
54 × 54 × 30 k points in the first Brillouin zone.

Of course, the ferroelectric activity in YMnO3 and LuMnO3

is primarily caused by structural effects. For example, in
YMnO3, the ferroelectric transition occurs at about TC =
880 K,5 which is much higher than TN = 75 K.7 This fact was
also confirmed by the first-principles calculations.32 Another
appealing evidence is that the ferroelectric domains in YMnO3

always coincide with the structural ones.5 Nevertheless, beside
this structural deformation, we have found that there is a
substantial magnetic contribution to P||c. More specifically,
all the magnetic configurations can be divided in two groups.
The first one includes �1, �2, and �6, where the magnetic
moments in the planes z = 0 and c/2 can be transformed to
each other by the simple rotations. The second group includes
�3, �4, and �5, where these rotations should be additionally
combined with the time inversion. According to our finding,
the states in each group are characterized by nearly equal
values of P||c. However, the transition from one group of
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states to another would cause a finite jump of the electronic
polarization. Thus, in principle, the value of the ferroelectric
polarization can be controlled by changing the magnetic state
(and vice versa). In this sense, the most promising candidate
is YMnO3, where the ground state (�3) and the first excited
state (�2) belong to different groups. The energy difference
	E between these two configurations is about 0.16 meV (see
Table II). Then, the change of the ferroelectric polarization,
associated with the change of the magnetic state �3 → �2,
can be estimated as 	P||c = −120 μC/m2. The practical
realization of such a switching phenomenon would be probably
interesting, although it is not immediately clear, which external
interaction could be used in order to switch the magnetic state.
Formally speaking, the magnetic configuration �2 could be
stabilized by the external electric field E||c, which couples
to 	P and results in the additional energy gain −	PE.
Alternatively, one could exploit the fact that �2 allows for
a weak ferromagnetism along z (while �3 does not) and,
therefore, could be also stabilized by the interaction with the
external magnetic field, −	MB, which couples to the net
magnetic moment 	M (∼ −0.01μB per Mn site). However,
in order to overcome the total energy difference 	E, this
would require unrealistically large values of E and B, which
cannot be realized in practice. Therefore one should explore
alternative possibilities. For example, from the viewpoint of
microscopic interactions, one could use the competition of
the NN and next-NN interactions between adjacent xy planes,
which in the case of YMnO3 act in the opposite direction
(see discussions above). The �3 configuration is stabilized
by the next-NN interactions. However, if one could find
such macroscopic conditions, which would shift this balance
in the favor of the NN interactions, one could switch the
magnetic structure �3 → �2 and, therefore, the ferroelectric
polarization. Another possibility is, of course, to exploit the
magnetism of the rare-earth ions, which can act similar to
the external B, but produces much stronger effect on the Mn
sublattice. Such a magnetic phase control was indeed realized
experimentally in the series of hexagonal manganites with the
magnetic rare-earth sublattices.2,33

IV. SUMMARY

Using results of first-principles electronic structure calcu-
lations, we have established the low-energy model, which is

able to deal with basic magnetic properties of the hexagonal
manganites. This Hubbard-type model describes the behavior
of the Mn 3d bands, being subjected to the lattice deformation
and the on-site electron-electron interactions. All the param-
eters of such model, obtained for YMnO3 and LuMnO3, are
summarized in Ref. 17.

Then, the model was solved in the mean-field HF approx-
imation, by considering all possible noncollinear magnetic
structures with different symmetries. Since the magnetic
frustration is lifted by the relativistic SO interaction, the HF
approach provides a good starting point for the analysis of the
ground-state properties of these compounds. It successfully
reproduces the experimental change of the magnetic structure
of YMnO3 and LuMnO3 from P 63cm to P 63cm.

In order to clarify the microscopic origin of this change,
we have further transformed the electronic model into the spin
one and discussed the same trend in terms of differences in the
behavior of isotropic and anisotropic magnetic interactions.
We have found that the main reason why YMnO3 and LuMnO3

tend to form different magnetic structure is related to the
behavior of the single-ion anisotropy. The latter is coupled
to the trimerization distortion in the hexagonal plane, which
has different directions in the case of YMnO3 and LuMnO3

(expansion and construction of the Mn trimers, respectively).
On the other hand, the interplane coupling is controlled by
the next-NN isotropic exchange interactions, which are less
sensitive to the direction of the trimerization. The spin canting
in the P 63cm structure of YMnO3 is a joint effect of the
single-ion anisotropy and Dzyaloshinskii-Moriya interactions,
which act in the same direction. As the trimerization distortion
decreases with the temperature, all anisotropic interactions
also decrease, thus reviving the magnetic frustration and the
degeneracy of the magnetic state.

Finally, using the Berry-phase formalism, we have esti-
mated the magnetic contribution to the ferroelectric polariza-
tion and discussed how it can be controlled by changing the
magnetic structure of YMnO3.
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