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When phonons transport across a material interface, they experience reflection, transmission, and mode
conversion, which results in a local temperature jump at the interface and thus dramatically changes the thermal
conductivity of nanostructured materials. Phonon transmission across lattice-matched interfaces has been studied
extensively in recent years with the atomistic Green’s function (AGF) approach, which usually uses one unit cell to
represent the cross section along the interface. However, modeling phonon transmission across realistic material
interfaces is much more challenging because realistic interfaces are usually lattice-mismatched ones with atomic
reconstruction, defects, and species mixing, which demands a larger cross-sectional area for the AGF simulation.
In this paper, an integrated molecular dynamics (MD) and AGF approach is developed to study the phonon
transmission across lattice-mismatched interfaces. MD simulation is used to simulate atomic reconstruction close
to the interface. The recursive AGF approach is then employed to calculate frequency-dependent phonon
transmission across lattice-mismatched interfaces with defects and species mixing, which addresses the numerical
challenge in calculating phonon transmission for a relatively large cross-sectional area with reduced computational
cost. The study of the relaxed interface formed from two semi-infinite bulk materials shows that lattice mismatch
increases the lattice disorder and decreases the adhesion energy, which in turn lowers phonon transmission and
reduces the interface thermal conductance across lattice-mismatched interfaces. Low-frequency phonons can be
significantly scattered by increasing the defect size across the interface, while high-frequency phonons can be
scattered almost completely (phonon transmission < 0.1) across an alloyed layer as thin as 2.27 nm. The effect
of lattice mismatch on phonon transmission becomes smaller for interfaces with defects and species mixing. The
effect of annealing temperature on the Si/Ge interface thermal conductance was studied. A significant reduction
of the Si/Ge interface thermal conductance was observed for a lattice-mismatched interface when annealed at
high temperature, which agrees well with the available experimental data in literature.
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I. INTRODUCTION

Interfaces play a critical role in phonon dynamics and
thermal conductivity of nanostructured materials.1–3 When
phonons transport across a material interface, they experience
reflection, transmission, and mode conversion, which results in
a local temperature jump at the interface.4 Such a temperature
jump is described by the interface thermal resistance, thermal
boundary resistance (TBR), or Kapitza resistance, owing to
Kapitza’s original work.1 With temperature T1 and T2 at the
two sides of the interface, and heat flux q (W/m2) flowing
across the interface, the thermal boundary resistance (R) can
be written as R = (T1 − T2)/q, and the interface thermal
conductance (K) is defined as the inverse of the thermal
boundary resistance, K = 1/R.

In the past two decades, molecular dynamics (MD) simula-
tions have been employed extensively to study the interface
thermal conductance across various material interfaces,5–13

such as Kr/Ar,7 Si/In,11 carbon nanotube/Si,12 Si/polymer,9

and PbTe/GeTe.13 A relatively good understanding of the re-
duced lattice thermal conductivity in nanostructured materials
due to the thermal boundary resistance has been obtained.
However, the interface thermal conductance alone from MD
simulations, which describes the collective motion of all
phonons across an interface and lacks details about how each
specific phonon is scattered at the interface, is not sufficient for
developing predictive modeling tools for novel nanostructured
materials with extraordinary thermal properties. For example,

large-scale nano-enabled bulk systems with multiple interfaces
such as integrated circuits (ICs)14 and nanocomposites15,16

call for a better set of variables and simulation tools to
describe such systems. An empirical approach is the Boltz-
mann transport equation-based (BTE-based) deterministic and
stochastic approaches, which could potentially bridge the
length scale from a few nanometers to the macroscale.3,17–21

The knowledge of how a phonon with any specific frequency
supported by a material is transmitted, reflected, and converted
across a realistic material interface which could have atomic
reconstruction, species diffusion, and vacancies is essential for
the understanding of the interface thermal conductance, which
can be easily calculated using the Landauer formalism,22 and
for developing frequency-dependent BTE-based multiscale
design and modeling tools.

Modeling frequency-dependent phonon transmission
across material interfaces has been challenging. The acoustic
mismatch model (AMM) and diffuse mismatch model (DMM)
are often used for the calculation of phonon transmission.1

AMM considers long-wavelength phonons and uses the
acoustic impedances of the materials for the calculation of
phonon transmission. The model is strictly valid only at
low temperatures. Phonon scattering at interfaces is assumed
to be completely diffusive in DMM,1 which better predicts
phonon transmission across rough interfaces. Although AMM
and DMM have been used exclusively as inputs for phonon
BTE-based thermal conductivity models of nanostructures and
for explaining experimental observation of reduced thermal
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conductivity in nanostructured materials, neither AMM nor
DMM can accurately capture the underlying physics of phonon
transport across material interfaces with detailed atomic
structures.

Significant progress has been made recently in the study
of phonon transmission using atomistic simulation meth-
ods, including the phonon wave-packet method23 based on
molecular dynamics simulations, linear lattice dynamics,24,25

and the atomistic Green’s function (AGF) approach, which
solves the phonon dynamic equation under harmonic ap-
proximation. In particular, the frequency-dependent phonon
transmission across a variety of material interfaces has been
studied using the AGF approach, such as the interface in
low-dimensional atomic chains,26 strained Si/Ge interfaces,27

metal/graphene nanoribbon (GNR) interfaces,28 the rough
interface between two face-centered cubic (fcc) crystals,29 and
more recently, across confined material interfaces.30 However,
all the past AGF-based studies on phonon transmission across
interfaces27–32 focused on lattice-matched material interfaces,
where the interatomic distance of one material is usually
adjusted to match that in the other material in the directions
parallel to the interface to simplify the calculations. For
example, Si (or Ge) is strained to have the same lattice
constant as Ge (or Si) along the interface plane to study phonon
transmission across the Si/Ge interface while the interatomic
distance in the direction perpendicular to the interface is
adjusted according to the Poisson’s ratio in Ref. 27. A similar
numerical technique has been applied to study the phonon
transmission across a TiC/GNR interface in Ref. 28 where the
GNR unit cell near the interface is strained to match half of the
face diagonal distance of the TiC unit cell. In Ref. 29, two fcc
crystals with mass ratio and force constant ratio inherited from
Si and Ge are used for the study of phonon transmission across
rough interfaces and the lattice constants of the two crystals are
adjusted to match each other. In the lattice-matched systems,
perfect atomic bonds similar to the ones in their constituent
materials are formed at the interface, with no bond breaking or
reconstruction, since the interatomic distance is the same for
both materials at the interface.

However, realistic material interfaces are usually lattice
mismatched. For example, Si and Ge have a 4% mismatch
in lattice constants (Si: 5.43 Å and Ge: 5.65 Å). Such lattice
mismatch complicates the phonon transport processes across
the interface more than that being ideally simulated without
lattice mismatch. Pettersson and Mahan33 were probably the
first ones who realized the importance of lattice mismatch on
phonon transport across interfaces in the 1990s. By study-
ing phonon transport across unrelaxed lattice-mismatched
interfaces formed from model materials with cubic lattices
using the lattice dynamics method, they found that: (1) more
phonons can be generated when phonons are scattered at
the lattice-mismatched interfaces than across lattice-matched
ones because of the enhanced phonon mode conversion;
(2) the phonon transmission coefficient across lattice-
mismatched interfaces is smaller than that across lattice-
matched interfaces due to the weakening of bond strength.
However, the atomic model system they used was not relaxed.
In addition to lattice mismatch, vacancies, defects, and species
mixing could all happen in material interfaces due to man-
ufacturing/processing constraints, which could significantly

change the phonon scattering at interfaces. There is not much
work using either lattice dynamics25,34 or other methods to
study phonon transmission across realistic material interfaces
due to the physical and numerical complexity.

In this paper, we develop an integrated atomistic simulation
method to study frequency-dependent phonon transmission
across lattice-mismatched interfaces with and without defects
and species mixing. MD simulation is used first to simulate
the relaxed interfacial structure and then the AGF approach is
used to simulate the phonon transmission across these relaxed
interfaces. Although the AGF approach is relatively easier to
implement and is more efficient for the calculation of phonon
transmission compared to other methods (such as the lattice
dynamics and the wave-packet methods),30 the computational
challenge is still significant for realistic material interfaces. In
Sec. II, a recursive AGF method is applied and discussed in
detail to address the computational challenges for the phonon
transmission calculation across lattice-mismatched interfaces
with relatively large cross-sectional area. In Sec. III A, phonon
transmission across relaxed interfaces formed from two semi-
infinite bulk materials with different percentages of lattice
mismatch are studied. In Secs. III B and III C, we compare
the calculated phonon transmission across lattice-matched and
lattice-mismatched interfaces with defects and species mixing.
In Sec. III D, we compare the interface thermal conductance
of a Si/Ge interface from our AGF simulations with the ones
obtained from experiments and MD simulations. The effect of
annealing temperature on the interface thermal conductance
was elucidated. Section IV concludes this work.

II. SIMULATION METHODS

Modeling phonon transmission across lattice-mismatched
material interfaces with defects and species mixing is chal-
lenging because a relatively large cross-sectional area must
be used for the AGF simulations. The numerical challenges
are analyzed based on a brief introduction of the general AGF
approach in Sec. II A. In Sec. II B, the AGF approach with
recursive method is discussed in detail to address the numerical
challenges in calculating phonon transmission for a relatively
large cross-sectional area with reduced computational cost.

A. General AGF approach

Usually periodic boundary conditions need to be applied
in atomistic simulations for an infinitely large cross section if
there is translational symmetry along the interface directions.
Different from the real-space periodic boundary conditions
applied in MD simulations, in AGF simulations the periodic
boundary conditions can be realized using the wave-vector
representation27 in the momentum space. For a lattice-matched
system, the cross section along the interface direction can be
as small as one unit cell using the wave-vector representation
technique.27,30 However, a much larger cross section which
contains multiple unit cells needs to be used as the basic period
for a lattice-mismatched system. For example, 25 unit cells of
Si are needed as the basic period along the interface direction
for matching the cross-sectional area of the Si/Ge interface so
that an infinite-size Si/Ge interface can be formed, considering
that there is 4% lattice constant mismatch for Si and Ge. In
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FIG. 1. (Color online) Illustration of a general lattice-mismatched
system used in the AGF approach for phonon transmission calcula-
tion. With different lattice constants, the smallest period to represent
an infinite-size interface in the transverse direction is created by
using N + 1 unit cells in each transverse direction for the materials
with smaller lattice constant (a1) and N unit cells for the one with
larger lattice constant (a2). For a Si/Ge interface, 25 unit cells (N =
24) of Si is needed to match the cross section of 24 unit cells of Ge.

addition, the atoms reconstruct near the interfaces of the lattice-
mismatched systems. The reconstruction extends to several
unit cells away from the interface, which further complicates
the computation. In this work, MD simulation under NVE
ensemble (constant number of atoms, volume, and energy) is
applied to relax the lattice-mismatched interface with atomic
reconstruction. The AGF approach is then applied on the
reconstructed interface structures to simulate the frequency-
dependent phonon transmission across the interfaces.

Figure 1 illustrates a lattice-mismatched atomic system for
the calculation of phonon transmission across an interface
using the AGF approach. The system consists of three parts:
two reservoirs (1 and 2) and the interfacial region. The
two reservoirs are semi-infinite regions with bulk material
properties. The interfacial region is where phonons transmit,
convert, and reflect from reservoir 1 (material 1) to reservoir 2
(material 2).

With force constants obtained under the harmonic approxi-
mation, the phonon waves in the lattice system shown in Fig. 1
can be described by the dynamic equation30

(ω2I − H)�(ω) = 0, (1)

where ω is the angular frequency of lattice vibration (phonons),
H is the harmonic matrix, �(ω) is the magnitude of the
vibrational modes, and I is the identity matrix. Here bold
letters are used to present matrices. In this paper, the harmonic
matrix is derived from the Tersoff empirical potential,35 which
predicts reasonably well the mechanical and thermal properties
for the Si and Ge materials.30,36,37

Instead of solving the dynamical equation directly for
the phonon waves as that in the linear lattice dynamics
simulations,24 the atomistic Green’s function method is used
for obtaining the dynamic response of the lattice system under
small perturbation, i.e., small displacement or small force acted
on the atoms:

(ω2I − H)G = I, (2)

where G is the Green’s function. The Green’s function of the
whole lattice system as shown in Fig. 1 can be written in its
component form as

G =

⎡
⎢⎣

G1,1 G1,d G1,2

Gd,1 Gd,d Gd,2

G2,1 G2,d G2,2

⎤
⎥⎦ , (3)

where the subscripts 1, 2, and d correspond to the reservoirs
1, 2, and the interfacial region, respectively. The key for
the calculation of phonon transmission across the interfacial
region is to find the Green’s function Gd,d for the response
of the lattice vibration in the interfacial region. Gd,d can be
calculated from Eq. (2) through the following matrix inversion
by expanding H and G in their component forms,30

Gd,d = [ω2I − Hd,d − �1 − �2]−1, (4)

where Hd,d represents the harmonic matrix of the whole
interfacial region, as shown in Fig. 1,30 and �1 and �2 are
the self-energy matrices which represent the energy change
to the interfacial region when the reservoirs are connected
with the interfacial region. The self-energy matrices �1 and
�2 can be calculated by27

�1 = Hd,1g1H1,d (5)

and

�2 = Hd,2g2H2,d , (6)

where Hd,1, H1,d , Hd,2, and H2,d represent the interactions
between the reservoirs and the interfacial region. g1 and g2

are the uncoupled Green’s functions of reservoirs 1 and 2,
respectively, when the reservoirs are disconnected from the
interfacial region, and can be written as

g1 = [(ω + δi)2I − H1,1]−1, (7)

g2 = [(ω + δi)2I − H2,2]−1, (8)

where H1,1 and H2,2 are the harmonic matrices of reservoir
1 and 2, respectively. Here a small imaginary number δi is
added in Eqs. (7) and (8), which physically represents the
broadening of the phonon energy. In practice, finite-sized
reservoirs are usually used in numerical simulations to save
the computation cost, which induces a discrete phonon density
of state (DOS) with finite energy spacing. If there is no phonon
energy broadening, the reservoir can behave poorly because
the DOS is sharply varying with phonon energy. It is important
to choose a value of the δ parameter which is greater than the
phonon energy spacing in the finite-sized reservoirs38 to make
the reservoirs well behaved. In calculations, the value of δ is
reduced until the converged g1 and g2 are obtained. δ is chosen
to be 6 orders of magnitude smaller than the phonon frequency
in our studies.

With the Green’s function Gd,d , the total phonon transmis-
sion across the interfacial region is then calculated as

�(ω) = Trace[�1Gd,d�2G+
d,d ], (9)

where �1 = i(�1 − �+
1 ), �2 = i(�2 − �+

2 ), and “ + ” de-
notes the conjugate transpose of the matrix. Considering that
there are multiple phonons at a specific frequency (mode), we
use transmission per phonon ξ (ω) to present our results in
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this paper, which is related to the total phonon transmission
through

�(ω) = ξ (ω)M(ω), (10)

where M(ω) is the total number of phonon modes at frequency
ω from material 1. M(ω) can be calculated from lattice
dynamics simulation by counting the number of phonon
branches at frequency ω in the phonon dispersion curves. M(ω)
can also be called total phonon transmission in a pure material
when the AGF simulation system is set up for the pure material
system, since ξ (ω) equals 1 in a pure material.

In the general AGF method described above, there
are two computationally challenging steps for the calcula-
tion of phonon transmission in lattice-mismatched systems:
(a) calculation of the uncoupled Green’s function for semi-
infinite reservoirs 1 and 2 with Eqs. (7) and (8), respectively,
and (b) solving of Eq. (4) for the Green’s function of the
interfacial region.

To make sure that the size of the reservoirs is large
enough to satisfy the semi-infinite assumption, the decimation
technique39 is usually used to solve Eqs. (7) and (8) instead
of direct solutions. However, the efficiency of the decimation
technique is still low for the large-size matrix operation in
the lattice-mismatched systems. For example, with a cross-
sectional area of 25 × 25 unit cells, which satisfies the mini-
mum size requirement for matching the cross-sectional area of
the 4% lattice-mismatched Si/Ge interface, a square matrix (A)
with a size twice (to keep the periodicity, A includes both the
dynamic matrices of the unit cell itself and the interactions
between the neighboring unit cells) of 25 × 25 × 8 × 3 =
15 000 (8 atoms per unit cell and 3 degrees of freedom) needs
to be constructed in the decimation technique. An iterative
procedure is used to solve the uncoupled Green’s function
(g1 and g2) by increasing the size of the reservoirs until the
converged g1 and g2 are obtained.39 In this solution procedure,
the inverse of A is used to solve the Green’s functions.
Although A is a sparse matrix, the inverse of A is a full matrix,
which demands a large amount of memory (∼6 GB). The
matrix operation is computationally prohibitive even if the
iterative solving procedure is applied in decimation technique.
In order to reduce the computational cost, we use the recursive
AGF method40 in this paper, which calculates the response of
the whole system from the responses of separated subsystems
and uses matrices only 1/4 size of the ones in decimation
technique for the calculations (the details will be discussed
shortly in Sec. II B). For example, for a simulated system with
cross-sectional area of 9 unit cells, our method is about 13
times faster than the decimation technique.

A relatively thick interfacial region needs to be considered
in the lattice-mismatched systems, which results in significant
challenges in solving Eq. (4). The atomic reconstruction
extends the interfacial region to be many layers of atoms rather
than a sharp interface with 1–2 atomic layers. For example, if
the interfacial region has a thickness of 5 unit cells, the square
matrix corresponding to the interfacial region used in solving
the Green’s function in Eq. (4) is a sparse matrix with a size of
about 75,000 and a bandwidth of about 15,000, which demands
a large amount of memory and high computational cost for
obtaining the inverse of the matrix. Instead of solving Eq. (4),

we can again use the recursive method based on matrices with
reduced size and bandwidth.

B. AGF approach with recursive method

One great advantage of using the AGF approach to calculate
phonon transmission is that the response of the whole system
can be calculated from the responses of separated subsystems.
Assuming that separated subsystems have an uncoupled
Green’s function G0, the response G of the whole system
can be calculated by treating the interactions V between
the subsystems as small perturbations41 using the Dyson
equation,40

G = G0 + G0VG. (11)

As mentioned in Sec. II A, the challenges in the calcu-
lation of the phonon transmission across lattice-mismatched
interfaces are due to the computation-costly, large-size matrix
operation. Application of the Dyson equation by obtaining
the Green’s function of a whole system based on divided
subsystems with reduced size using the recursive method can
greatly reduce the size of the matrix and thus reduce the
computational cost.

Figure 2(a) illustrates the detailed procedure of recursive
method for calculation of the coupled Green’s function. For
the systems studied in this paper, we can divide the system
into layered structures as subsystems, as shown in step 1 in
Fig. 2(a). The separated layers can then be connected together
one by one using the Dyson equation, if the division of layers
ensures that the interaction extends to the nearest-neighboring
layers only. For the lattice system studied, such a criterion
is essentially governed by the cutoff distance of the potential
function used. Since the cutoff distance of the Tersoff potential
for Si and Ge used in this study is about one unit cell,35 the layer
thickness can be as small as half a unit cell along the Z direction
in the reservoirs. In the interfacial region, although the atomic
interactions are different from those in the reservoirs due to the
reconstruction, we can still divide the whole interfacial region
into separated layers for the calculations of Green’s functions
using the recursive method. The thickness of each layer is
determined by searching the atoms that have interactions with
the atoms at the other end across the layer, but with the largest
distance. In order to apply the recursive method, the uncoupled
Green’s function of each divided layer needs to be calculated
first, as shown in step 2 in Fig. 2(a). For the layers in the
reservoir, the uncoupled Green’s function is obtained using

[(ω + δi)2I − Hj,j ]G0
j,j = I, (12)

where Hj,j is the harmonic matrix for each divided layer and
a small imaginary number δi is added for the calculation of
the uncoupled Green’s function G0

j,j for the same reason as
discussed with regard to Eqs. (7) and (8). In each reservoir,
each unit cell is divided into two layers. Equation (12) only
needs to be solved twice for these two distinguishable layers.
In the interfacial region, the uncoupled Green’s function G0

k,k

is calculated from the harmonic matrix Hk,k for each divided
layer k,

(ω2I − Hk,k)G0
k,k = I, (13)

which needs to be solved for all the layers.
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FIG. 2. (Color online) (a) Illustration of the recursive method.
The interfacial region is first divided into separated layers. The
uncoupled Green’s function of each separated layer is calculated. The
separated layers are then connected in sequence for the calculation
of the coupled Green’s function. (b) Detailed calculation of the
coupled Green’s function after adding a layer in step 3 as shown
in (a). In general, assuming that layers a–p have already been
connected together, we add another layer q to the system through the
interaction Vp,q between layer p and q. Since Gd1,dn

are needed for the
phonon transmission calculation, only the Green’s functions related
to the first and last layer are recorded for the next step calculation.
(c) Verification of the recursive method through the calculation of
phonon transmission across the Si/Ge lattice-matched interface. The
same results are obtained from the direct method and the recursive
method with the thicknesses of the divided layers at 0.5 and 1 unit
cell.

The coupled Green’s function in the reservoirs and the
interfacial region can then be calculated using the Dyson
equation. Since only the nearest-neighboring layers have
interactions, any two neighboring layers can be connected
together first without involving a third layer based on Eq. (11)
for the calculation of the coupled Green’s functions. Using
this method, the divided layers can be connected together in
sequence, and only the Green’s functions corresponding to the
first and last layer are recorded for the next step calculations as
illustrated in step 3 in Fig. 2(a). Figure 2(b) shows the detailed
calculation of the coupled Green’s function after adding a
layer. Assuming that layers a–p have been already connected
together and the Green’s functions recorded for the next step
calculation are G0

a,a , G0
a,p, and G0

p,p, we can now add another
layer q to the system. With the uncoupled Green’s function
G0

q,q of layer q and the interaction Vp,q between layers p and
q, the coupled Green’s functions (Ga,a , Ga,q , and Gq,q ) for
the connected layer a–q can be solved through the following
equations, which are the component forms of Eq. (11):

Ga,a = G0
a,a + G0

a,pVp,qGq,a,

Ga,q = G0
a,pVp,qGq,q ,

(14)
Gq,q = G0

q,q + G0
q,qVq,pGp,q,

Gp,q = G0
p,pVp,qGq,q ,

where Vq,p = V+
p,q , Gq,a = G+

a,q . In the equations set (14)
above, the equation for Gp,q is added to make the set
of equations complete, but not recorded for the next step
calculation. The coupled Green’s functions (Ga,a , Ga,q , and
Gq,q) are then used for the next step calculation. The whole
system, including the reservoirs and the interfacial region, can
be connected in such a manner to calculate the coupled Green’s
function in the interfacial region for the phonon transmission.

The phonon transmission across the interfacial region can
then be calculated from the response (or the Green’s function)
between the first and last layer without knowing the Green’s
function of the whole interfacial region, which significantly
reduces the computational cost by using the recursive method.
Assuming the first and the last layer in the interfacial region
are layers d1 and dn, the total phonon transmission is then
calculated as

�(ω) = T r[�1(d1,d1)G(d1,dn)�2(dn,dn)G+
(d1,dn)], (15)

where G(d1,dn) is the Green’s function corresponding to the first
and last layer in the interfacial region, �1(d1,d1) = i(�1(d1,d1) −
�+

1(d1,d1)), and �2(dn,dn) = i(�2(dn,dn) − �+
2(dn,dn)). �1(d1,d1) and

�2(dn,dn) are the submatrices in the self-energy �1 and �2

corresponding to the layer d1 and dn (the first and last layer in
the interfacial region).

The division of the layers in the recursive method is not
unique as long as it meets the division rule: the interaction
extends to the nearest-neighboring layers only. Figure 2(c)
verified that the recursive method with different thicknesses
of divided layers gives exactly the same phonon transmission
results as those from the direct method, when this method is
applied for the calculation of phonon transmission across a
lattice-matched Si/Ge-like interface.

Using the Landauer formalism, the thermal conductance K

can then be easily calculated with the obtained total phonon
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transmission,22

K = J

�T
= 1

2πS

∫ ∞

0
dωh̄ω

∂f (ω,T )

∂T
�(ω), (16)

where S is the cross-sectional area perpendicular to the heat
flow direction, f (ω,T ) is the phonon occupation number,
and T is temperature. Within the linear response regime, the
calculation using Eq. (16) is performed in the limit of infinitely
small temperature difference.

We shall note that harmonic approximation is assumed in
the above description of the AGF approach for the calculation
of phonon transmission. In principle, the anharmonicity could
also be included in the AGF approach, as shown in the few re-
cent studies on low-dimensional systems, where the Feynman
diagram is used to consider the multiple-phonon scattering
process due to the anharmonic force constants at the interfacial
region.42,43 However, this method has not been applied for
more complex systems due to the computational challenges.
The recursive method described in this paper can potentially
be used to solve some of the computational challenges. Similar
to MD, another significant limitation of the AGF approach is
the availability of the empirical potential for materials and
the accuracy of the empirical potentials. Although there have
been significant efforts in developing empirical potentials
for materials of interest, the empirical potential for a large
number of materials and interfaces is not available. The recent
work on obtaining the force constants of crystals from the
first-principles calculations44,45 can significantly expand the
power of the AGF method, although there might be challenges
to obtaining force constants across material interfaces using
the first-principles calculations.

III. RESULTS AND DISCUSSION

The effects of lattice mismatch on frequency-dependent
phonon transmission across Si/Ge-like material interfaces are
presented in this section. We start with the relaxed interfaces
formed between two semi-infinite bulk materials with different
percentages of lattice mismatch in Sec. III A. Sections III B
and III C present the results for lattice-mismatched interfaces
with defects and species mixing. Finally, in Sec. III D we
compare the interface thermal conductance of a Si/Ge interface
predicted using AGF simulations with those from experiments
and MD simulations.

A. Relaxed interface formed between two
semi-infinite bulk materials

In this study, Ge with the Tersoff empirical potential is
modified to create new Ge-like materials with different lattice
constants so that the relaxed interfaces with different percent-
age of lattice mismatch can be formed between semi-infinite
bulk Si and Ge-like materials to systematically study the effect
of lattice mismatch on phonon transmission. Modification
of the Tersoff empirical potential for Ge-like materials is
shown in detail in the Appendix. Si is used as material 1 and
Ge-like material is used as material 2, as shown in Fig. 1.
The interface is formed by connecting the (1 0 0) plane
of the two materials together with the distance calculated

TABLE I. Lattice constant and the size of the cross-sectional area
(N unit cell in each transverse direction) of Ge or Ge-like materials
for the structure shown in Fig. 1 with different percentages of lattice
mismatch. The percentage of lattice mismatch of the Si/Ge system is
4.2%.

Percentage of Lattice constant
lattice mismatch N of Ge or Ge-like (Å)

4.2% 24 5.6729
5.6% 18 5.7486
8.3% 12 5.8998
16.7% 6 6.3537

from the average nearest-plane distance of the two materials.
The cross-sectional area for the basic period is determined by
the percentage of lattice mismatch with the detailed parameters
listed in Table I. Ten unit cells are used for the length in
the Z direction (heat-transport direction) for each material,
which is sufficiently long that the atomic reconstruction near
the interface is not affected by the choice of a larger length.
Initially, the constructed structure has a large strain at the
interface due to the lattice mismatch. MD simulations under a
constant pressure (0 Pa) and a constant temperature (300 K)
are performed to relax the structure until the potential energy
of the system reaches its minimum.

Figures 3(a) and 3(b) show part of the cross section
(perpendicular to the interface) of the interfacial structures
of the Si/Ge-like system with an 8% lattice mismatch before
and after the system is relaxed. In Fig. 3(a), the two materials
with their original bulk lattice structures are brought together
into contact. After relaxation, the atoms over several unit
cells across the interface are redistributed so that they slightly
deviate from their equilibrium position due to the lattice
mismatch, as shown in Fig. 3(b). Figure 3(c) shows the
reconstructed interface of the Ge-like material (the leftmost
atomic plane of the Ge-like material). The atoms with large
displacements concentrate mainly in areas around the dashed
lines, as shown in the figure. The dashed line appears to be
the longest path, which involves the largest number of atoms
in the structure for energy minimization due to the periodic
boundary condition used in the transverse directions.

Figure 4(a) shows the frequency-dependent phonon trans-
mission per phonon across the relaxed interfaces with different
percentages of lattice mismatch. The transmission of low-
frequency phonons from Si to Ge-like materials has a relatively
large value due to the larger DOS of low-frequency phonons
in Ge-like material than that in Si.30 It is interesting to note
that even though there are multiple phonons in the Ge-like
material side to closely match a similar frequency phonon
from the Si side, the transmission is still less than 1 (about
0.85). This is due to the mismatch of phonon spectra. After
all, the frequency and wave vector of phonons supported by
the two materials at different sides of the interface are always
different and can never find a perfect match for any specific
phonons.

When a low-frequency phonon transmits from Si to Ge-like
materials, there can be multiple phonons in the Ge-like material
side with similar frequency to match the incoming phonons
from the Si side. In contrast, the phonon transmission at low
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FIG. 3. (Color online) Relaxed interfaces formed between Si and
Ge-like materials with an 8% lattice mismatch: (a) the initial structure,
(b) the structure after relaxation with MD simulation, and (c) the
reconstructed interface of the Ge-like material (the leftmost atomic
plane of the Ge-like material).

frequency from Ge-like to Si will be much smaller (about 0.45,
not shown here), due to the much fewer phonons at similar
frequencies available in the Si side to match those from the
Ge-like materials side.25,30

FIG. 4. (Color online) (a) Frequency-dependent phonon trans-
mission across the relaxed interfaces formed between Si and Ge-like
material with different percentages of lattice mismatch. (b) Adhesion
energy of the relaxed interface as a function of different percentages
of lattice mismatch. (c) The thermal conductance as a function of the
interface adhesion energy.
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Figure 4(a) clearly shows that phonon transmission de-
creases with the increasing percentage of lattice mismatch.
Phonon transmission across the relaxed lattice-mismatched
interfaces is affected by several factors. Phonon mode conver-
sion would probably increase with the inclusion of lattice mis-
match, which essentially increases the phonon transmission.33

However, the atomic disorder at the interface after relaxation
decreases the phonon transmission. The larger the lattice
mismatch, the higher the atomic disorder. Such a competition
results in reduced phonon transmission with the increase of
lattice mismatch.

When an interface is formed from two materials, energy
will be released due to the formation of atomic bonds, which
is defined as the adhesion energy, �E = E1 + E2 − E12 with
E1 and E2 as the energy of the bulk material 1 and 2 before
the formation of the interface and E12 as the energy of the
relaxed interface system. Figure 4(b) shows that the adhesion
energy decreases with the increasing percentage of lattice
mismatch. With the increase of lattice match, the atomic
disorder increases, which results in higher energy (E12) of
the system due to higher residual strains across the lattice-
mismatched interface. It is interesting to correlate the interface
thermal conductance as a function of the adhesion energy
as shown in Fig. 4(c). The interface thermal conductance
deceases linearly as the adhesion energy decreases across the
lattice-mismatched interface.

B. Interfaces with vacancy defects

Vacancies around an interface can greatly affect the phonon
transmission and interface thermal conductance. In this sec-
tion, we consider Si/Ge-like material interfaces with spherical
vacancy defects at fixed lattice mismatch of 8%. In this study,
the centers of the spherical vacancy defects are randomly
distributed in the two atomic layers near the interface (one layer
from Si and the other layer from the Ge-like material). We can
then characterize the vacancy defects at an interface with two
parameters: defect size (d) and defect density (f ). Initially, the
vacancy defects are formed by removing atoms within a radius
of d/2 around the spherical defect centers. The total number of
defects created is calculated from the defect density and the to-
tal number of atoms in the two atomic layers near the interface.
The structure is then relaxed by performing MD simulation
under NVE ensemble with average temperature at 300 K and
average pressure at 0 Pa. Figures 5(a) and 5(b) show the initial
and final structure of the defected interface (Ge-like material
side) with a defect size of 0.6 nm (about 40 atoms per vacancy)
and defect density of 3%. Atomic reconstruction occurs at the
interface due to both the formation of vacancy defects and the
lattice mismatch. However, the size of the defects remains the
same as the one before relaxation. In other words, no diffusion
of such large vacancy defects into smaller ones was observed,
as otherwise would be for real material interfaces. This is likely
due to the low-temperature MD relaxation process that cannot
capture the real physics, which is not the focus of this paper.
We also note that the large vacancy defects at the interfaces can
also be viewed as interface roughness. Nevertheless, this study
can be viewed as an idealized model to study the scattering of
phonons at the interface due to the characteristic size change
of scattering centers.

FIG. 5. (Color online) (a) Initial structure, and (b) final structure
after MD relaxation, of the interface with defect size of 0.6 nm and
defect density of 3%.

Figure 6(a) shows the frequency-dependent phonon trans-
mission as a function of defect density when the vacancy
defect size is kept at one-atom size. The phonon transmission
decreases only slightly with increasing defect density, espe-
cially when the defect density is low. The phonon-defect
scattering greatly depends on the phonon wavelength and
the defect size. With a very small one-atom defect size d

considered here, which is much smaller than the phonon
wavelength λ (the smallest phonon wavelength is twice that
of the nearest atomic plane distance), the phonons experience
Rayleigh scattering, where the scattering cross section can
be written as σ ∼ d6/λ4.46 At low defect density, such one-
atom-size defects do not scatter strongly and frequently with
phonons, which results in only slight decrease of the phonon
transmission. Earlier MD simulation work reported slightly
affected interface thermal conductance with point vacancies at
a density of 1%, which also indicates that phonon transmission
changes only slightly at low defect density when defect size is
small.8

Figure 6(b) shows that phonon transmission decreases when
the defect size is increased from one atom to 0.6 nm when the
defect density is fixed at 3%. The defect size changes the
transmission of low-frequency phonons remarkably compared
to the effect of defect density when the defects are in the size
of only one atom in Fig. 6(a). This is because the phonons
with longer wavelength (or lower frequency) comparable
to the defect size are strongly scattered when the defect
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FIG. 6. (Color online) Phonon transmission across 8% lattice-
mismatched interface with (a) different defect density when defect
size is kept at one atom and (b) different defect size when defect
density is kept at 3%. (c) Thermal conductance with different
defect size and fixed defect density at 3% for both lattice-matched
and 8% lattice-mismatched interface.

size increases. Figure 6(c) compares the interface thermal
conductance across the lattice-matched and lattice-

FIG. 7. (Color online) The alloyed Si/Ge-like interface structure
with thickness L of 1.13 nm. The percentage of lattice mismatch
between Si and Ge-like material is 8%. The alloyed interface is formed
by locally melting the region at 4000 K and quenched at 300 K using
MD simulation.

mismatched interfaces (8% lattice mismatch to Si) with
varying defect size at a fixed defect density of 3%. The
difference in the interface thermal conductance decreases
between the lattice-matched and lattice-mismatch interfaces
when the defect size increases. With the increasing defect
size, the phonon transmission is more affected by the defect
than the lattice mismatch.

C. Alloyed interface

Species can diffuse into each other at material interfaces,
especially under high temperature and after extended time.
In this section, phonon transmission across alloyed interfaces
with an 8% lattice mismatch is studied. MD simulations
are conducted to form the alloyed interfaces. The lattice-
mismatched interface is constructed first by connecting the
semi-infinite Si and Ge-like materials. The section with a
thickness L near the interface (half from each material) is
then melted locally at 4000 K and quenched at 300 K to
form the alloyed interface using MD simulation under an NVE
ensemble for each process. Figure 7 shows one of the alloyed
Si/Ge-like interface structures with L = 1.13 nm. Si and Ge-
like atoms at the interface within the 1.13-nm region are fully
mixed and form an amorphous layer. The calculation results
for the frequency-dependent phonon transmission presented
below are for the interface section that includes both the L =
1.13 nm, totally mixed region and the distorted lattice nearby.

Figure 8(a) shows the frequency-dependent phonon trans-
mission across the alloyed interface with varying thickness
L. Phonon transmission decreases only slightly across a
0.28-nm alloyed layer. Similar to the scattering of phonons
across interfaces with point vacancy defects presented in
Sec. III B, 0.28 nm of the alloyed layer is far too thin to
scatter phonons with longer wavelength than the alloyed layer
thickness. With the increase of the alloyed layer thickness,
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FIG. 8. (Color online) (a) Phonon transmission across an alloyed
Si/Ge-like lattice-mismatched interface with different alloyed layer
thickness. (b) Interface thermal conductance across alloyed Si/Ge-
like lattice-mismatched and lattice-matched interfaces with different
alloyed layer thickness. The result without melting is the one across
the relaxed interface formed from two semi-infinite bulk materials.

the transmission of high-frequency phonons can be reduced
to a very low value. For example, the phonon transmission
across a 2.27-nm alloyed interface layer is below 0.1 for the
phonon frequency ranging from around 0.3 × 1014 to 0.6 ×
1014 rad/s. With the same alloyed interface layer thickness,
the low-frequency phonons have a relatively large phonon
transmission value (>0.5 for phonon frequencies lower than
0.15 × 1014 rad/s), which is due to the low scattering rate for
the long-wavelength phonons at the small scattering centers in
the alloyed layer. As the layer thickness increases, the peaks
in the phonon transmission disappear, due to the loss of the
original momentum and random traveling directions of the
phonons after scattering within a thick alloyed layer, i.e., strong
mode conversion of the phonons across the alloyed layer.

Figure 8(b) compares the interface thermal conductance
across both the lattice-matched and lattice-mismatched inter-
face (8% lattice mismatch to Si) with species mixing. The ef-
fect of lattice mismatch on the change of phonon transmission

becomes small with increasing alloyed layer thickness due
to the random phonon scattering across the alloyed layer.
For the lattice-mismatched interface, the interface thermal
conductance is 0.1 GW/m2 K across a 2.27-nm alloyed
layer. The thermal conductivity of the Si-Ge alloy formed
in the interfacial region (Si0.54Ge0.46) is about 10 W/mK.47

The thermal conductance of the 2.27-nm alloy layer itself is
estimated to be ∼4.4 GW/m2 K, which is significantly larger
than the overall thermal conductance from our calculation.
This indicates that the interface thermal resistance across the
alloyed interface is mainly governed by the adjacent regions
between the bulk materials and the alloyed layer, where
atoms slightly deviate from their original position in a bulk
crystal. The reduction of interface thermal conductance due
to species mixing has also been reported experimentally.48,49

For example, the measured interface thermal conductance
across a C/TiN interface decreases from 0.2 GW/m2 K to
0.084 GW/m2 K after anealing at high temperature,49 which
can clearly be explained as the effect of species diffusion
at the interface after annealing. Reduced interface thermal
conductance across Cr/Si interfaces with species mixing was
reported in Ref. 48.

D. Interface thermal conductance of Si/Ge interface

Figure 9 shows the comparison of the interface thermal con-
ductance of the Si/Ge interface obtained from different simu-
lation methods and extracted from experiments. The interface
thermal conductance across a strained lattice-matched Si/Ge
interface is calculated using nonequilibrium MD (NEMD)
simulation following the direct method for the calculation of
interface thermal conductance in Ref. 10. The average lattice
constant of Si and Ge along the interface direction is used

FIG. 9. (Color online) Comparison of the interface thermal
conductance of the Si/Ge interface from our AGF simulation with the
results from experiments and MD simulations. The value from ex-
periments is extracted from measurement of thermal conductivity of
the superlattice described in Refs. 50 and 51. The NEMD simulation
is on the strained lattice-matched Si/Ge interface. AGF simulations
have been performed based on the structures annealed at different
temperatures for both lattice-matched and lattice-mismatched Si/Ge
interfaces.
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to form the interface and the average stress perpendicular
to the interface direction is relaxed to zero. Similar to other
reported studies, the calculated interface thermal conductance
greatly depends on the simulation domain length of Si and
Ge, and eventually it converges with a length greater than
100 unit cells. The converged value is plotted in Fig. 9 for
comparison. The interface thermal conductance calculated
using AGF agrees reasonably well with the NEMD results at
low temperature (100 K) and the discrepancy becomes evident
with increasing temperature. This could be due to the fact that
AGF simulations are based on the harmonic approximation
and do not consider the inelastic phonon scattering while the
MD simulation considers inelastic phonon scattering. This also
points to the importance of including anharmonic terms for the
future development of the AGF approach.

To best of our knowledge, direct measurement of the
interface thermal conductance of a single Si/Ge interface
is not available. However, we can extract the values from
superlattices by assuming that the measured thermal resistance
of superlattices50,51 is a series resistance of interface thermal
resistance and intrinsic layer resistance. With small superlat-
tice period thickness (3 ∼ 6.5 nm in Ref. 50 and 4.4 nm
in Ref. 51), the interface thermal conductance extracted from
experiments50,51 is about 4–8 times larger than the results from
NEMD and AGF simulations. With a larger period thickness
(27.5 nm in Ref. 50 and 14 nm in Ref. 51), the experimental
results are about 0.3–1.5 times the simulation results as plotted
in Fig. 9, which can be regarded as reasonable agreement since
our calculations are on interfaces formed from two perfect
bulk materials and should be compared with larger period
thickness. The larger experimental results of interface thermal
conductance with small period thickness could be attributed to
the coherent phonon transport in the superlattice and deserves
further study.52

Si/Ge Superlattices are expitaxially grown at a relatively
high temperature, i.e., about 1000 K in Ref. 50, which can
induce atomic reconstruction in the lattice-mismatched Si/Ge
interfaces. We thus anneal the Si/Ge interface at a different
temperature and then bring the temperature back to 300 K for
the AGF calculation of phonon transmission and the interface
thermal conductance. In the annealing process, the temperature
of the whole system is elevated to the target value and
the system is kept at this high temperature and zero pressure
until the potential energy of the system becomes stable. The
system is then cooled to 300 K at a cooling rate of 1 K/ps by
rescaling the system temperature. As expected, the interface
thermal conductance for the lattice-matched interface is found
not to vary with the annealing temperature up to 1500 K,
because there is essentially no atomic reconstruction across
the lattice-matched interface with perfect bonding. For the
lattice-mismatched interface, there is about 6.8% reduction in
interface thermal conductance at 300 K if the system is relaxed
at 300 K compared with the results for the lattice-matched
interface. Another 3% reduction is observed if the annealing
temperature is increased to 1000 K. However, a much larger
decrease of interface thermal conductance is observed if the
annealing temperature is further increased to 1500 K, due to
the significant increase in the atomic disorder observed in the
interfacial structure. Such numerical results on the reduced
interface thermal conductance across the lattice-mismatched

interface under high-temperature annealing could possibly
explain the lower experimental value of interface thermal
conductance of the Si/Ge interface extracted from superlattice
experiments than that of the theoretical calculations. Literature
also suggests that an alloyed Si-Ge layer can form across the
Si/Ge interface during the epitaxial growth process at high
temperature because atoms with high velocity could knock
off the ones on the substrate.53 Our simulation in Sec. III C
shows that the thermal conductance of the Si/Ge interface can
be further lowered if an alloyed interface is formed, which
can be another important reason to explain the low thermal
conductance of the superlattice from experiments.

IV. CONCLUSION

In this paper, an integrated MD simulation and AGF
approach have been developed to study phonon transmission
across lattice-mismatched interfaces with atomic reconstruc-
tion. MD simulation was used to simulate the atomic re-
construction for lattice-mismatched interfaces. The recursive
AGF approach was employed to calculate phonon transmission
across lattice-mismatched interfaces with defects and species
mixing, which addresses the numerical challenge in calculat-
ing phonon transmission for a relatively large cross-sectional
area. Lattice mismatch increases the lattice disorder and
decreases the adhesion energy, which in turn lowers phonon
transmission and reduces the interface thermal conductance
across lattice-mismatched interfaces. Further studies show
that low-frequency phonons can be significantly scattered
by increasing the defect size across the interface, while
high-frequency phonons can be scattered almost completely
(phonon transmission < 0.1) across an alloyed layer as small
as 2.27 nm. The lattice-mismatch effects become smaller
for interfaces with defects and species mixing. The effect
of annealing temperature on the Si/Ge interface thermal
conductance was studied. A significant reduction of the Si/Ge
interface thermal conductance was observed for a lattice-
mismatched interface when annealed at high temperature,
which agrees well with the available experimental data in
literature.
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APPENDIX

The Tersoff empirical potential35 is used in this paper for
describing the atomic interaction in the Si/Ge and Si/Ge-like
material system. The potential between atoms i and j can be
expressed as

Vij = fc(rij )[Aij exp(−λij rij ) − bij Bij exp(−μij rij )],

(A1)
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FIG. 10. (a) Phonon dispersion and (b) Grüneisen parameter of
Ge with lattice constant of 5.67 Å and Ge-like material with lattice
constant of 5.9 Å. The results show the new Ge-like material has the
same phonon spectra as that in Ge.

where rij is the distance between atom i and j ; fc(rij ) is a
cutoff function; bij is a function related to the bond angle
formed between i, j and the other neighboring atoms of atom
i; and A, B, λ, and μ are parameters that can be found in
Ref. 35. In our calculation, the Ge potential is modified to form
Ge-like materials with different lattice constants so that we can
examine the effect of different lattice-mismatch percentage
on phonon transmission. The Ge-like materials with modified
potential have the same phonon spectra as Ge. Since the Ge-
like materials have the same crystal structure as Ge but with
different lattice constants, the bond angles between any pair
of atoms in the Ge-like materials are the same as those in Ge
and no modification of the function of bij is needed. The other
parameters for Ge-like materials can be derived from

FIG. 11. Thermal conductivity of Ge-like materials with different
lattice constants.

the following equations by comparing the second derivative of
function Vij over distance rij :

λij
′rij

′ = λij rij , μij
′rij

′ = μij rij , (A2)

Aij
′λij

′2 = Aijλij
2, Bij

′λij
′2 = Bijλij

2, (A3)

where Aij
′, Bij

′, λij
′, and μij

′ are the parameters for the
Ge-like materials. From Eq. (A2), the value of λij

′ and μij
′

can be determined with the value of rij and rij
′ taken from

the lattice constants of Ge and Ge-like, respectively. Then
from Eq. (A3), Aij

′ and Bij
′ can be determined. With the new

parameters for Ge-like materials, the phonon dispersion and
the Grüneisen parameter are calculated. For example, Fig. 10
shows the phonon dispersion and the Grüneisen parameter
of Ge-like material with a lattice constant of 5.9 Å. Both
phonon dispersion and the Grüneisen parameter of the Ge-like
materials agree well with those of Ge.

However, the anharmonic force constants (third order and
higher orders) could be different for the Ge and Ge-like
materials. In Fig. 11, the thermal conductivity of Ge-like
materials with different lattice constants is calculated using
the spectral analysis54 of the Green Kubo’s relation from
equilibrium molecular dynamics. Apparently, the thermal
conductivity of Ge-like material is different from that of Ge,
which indicates that the anharmonic force in the modified
potential is different, although the phonon spectra are the same.

We note that the AGF simulations presented here are based
on the harmonic approximation and only the harmonic force
constant is used in the simulation. The anharmonic terms
will not directly affect the phonon transmission results, but
there is an effect through the structure change due to the
difference in higher-order force constants. Considering this,
these anharmonic terms would affect the result in a minor way
compared with the harmonic terms.
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