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Segregation in bimetallic nanowires: Size and thermodynamic ensemble effects
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We investigate the thermodynamics of bimetallic nanowires via a rigid lattice approach. This allows us to
detail the behavior of edge and core sites of the chain in the case of an alloy that forms an ideal solution.
The influence of chain length on segregation (i.e., the composition difference between core and edge sites) is
analyzed in the semigrand canonical (sGC) and in the canonical ensembles. Segregation varies monotonically
with chain length in both ensembles, being enhanced at low concentrations and diminishing at large ones. For
intermediate concentrations, segregation increases with chain length in the sGC ensemble, whereas it decreases
in the canonical ensemble. This illustrates that the concentration profiles differ in both ensembles, the effect
being emphasized at smaller sizes.
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I. INTRODUCTION

Binary nanoparticles and nanowires are the subject of
much attention.1–6 Recent advances in the synthesis and
characterization of size-selected particles in the nanometer
range make it now possible to investigate their physical and
chemical properties. Such particles are characterized by a large
number of surface atoms with regard to the number of bulk (or
core) atoms. It is then obvious that the effects of the surface on
the cohesive properties of the particle cannot be neglected.
This is observed in various situations, such as the well-
known size-dependent melting point depression7 and alloy
phase transitions of nanoparticles.8 Because nanoparticles are
intermediate between bulk and surface, the phase diagram
might vary with their size.

Theoretical studies using a rigid lattice approach and a
simple energetic model are common useful tools to explore
the basic features of the bulk9 and surface10 phase diagrams
of alloys. These models are indeed particularly adapted
to study the thermodynamics of finite binary systems and
to determine how the size and segregation effects modify
the phase diagrams.1,11–14 They rely on the definition of
a total free energy functional where all segregation-related
quantities (chemical interactions, surface heterogeneities) are
incorporated within the mixing enthalpy, the entropic part
often simply described by a mixing entropy.12 For infinite
systems, the equilibrium state of the binary system is then
obtained by minimizing this free energy, no matter what
thermodynamic ensemble is chosen, since Van Hove’s theorem
guarantees that the different statistical ensembles converge to-
ward the same equilibrium state when the thermodynamic limit
applies.15

For finite systems, the different ensembles are not equiva-
lent. A study based on lattice gas models has shown that it is
possible to define phase transitions rigorously, even in finite
systems, with the prediction of intriguing phenomena such
as bimodalities and negative heat capacities according to the
statistical ensemble to be considered.16,17 This also affects the
behavior of the thermodynamic variables that quantify the seg-
regation. Recent atomistic studies have predicted, for instance,
interesting differences in the behavior of three-dimensional

clusters between canonical and semigrand canonical (sGC)
ensembles, in the case of alloys, with a tendency to phase
separate.18–21 Since the fine experimental quantification of
the composition profiles of binary nanoparticles is still a
challenging task, care must be taken in theoretical studies when
choosing the thermodynamic ensemble that will accurately
represent the experimental situation.

The aim of the present work is to investigate the evolution
of superficial segregation with cluster size and quantify the
differences in behavior when one switches from canonical to
sGC ensembles.

It is well beyond the scope of this paper to account for
all the parameters that may be involved in the segregation
process: elastic, alloy, and surface effects are indeed strongly
coupled to the surface structure of the system.22 To isolate the
origin of the difference of composition profiles with regard
to the ensemble under investigation, we consider finite linear
chains using a rigid lattice approach, for which the exact free
energy can be derived while considering surface effects. An
upsurge in studies based on this one-dimensional (1D) model
in the current literature23–27 has occurred because it provides
an exact quantification of domain walls in magnetism and
1D Ising-like antiferromagnets, in which long-range order is
neglected.25 Taking into account segregation within the wire
will allow the interpretation of experiments on bimetallic
atomic wires that can decorate the steps of a surface.27,28

Correspondingly we shall consider the canonical ensemble
in which the nominal concentration (i.e., the proportion of
the different atoms) is fixed, whereas in the sGC ensemble,
the nominal concentration is controlled by the value of the
difference of the chemical potentials between the two species.
We elucidate why the different ensembles are not equivalent
for small chains by relating it to the mixing entropy at the
expense of chemical interactions. We analyze the difference
of the equilibrium concentration profiles observed, even in
the case of an alloy forming an ideal solid solution, where
only surface effects are responsible for segregation, and we
provide guidelines to extend these results to particles of higher
dimensions.

The paper is organized as follows. The theoretical ap-
proach and specificities of each ensemble are detailed in
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section II. In section III, we compare canonical and sGC
isotherms and develop a Taylor series expansion of the
canonical variables, called the Delta method, to analyze in
detail the differences between both ensembles. The size and
temperature effects on the equilibrium concentration profiles
and on the nonequivalency of the ensembles are presented in
section IV.

II. ENERGETIC AND STATISTICAL MODELS

A. Energetic model

We consider a linear chain of length n which contains nA A
atoms and nB B atoms, with n = nA + nB and whose nominal
concentration is c = nA/n. The AcB1−c system is described
via an Ising Hamiltonian,9

H (n) = 1

2

∑
I,J

n∑
i,j �=i

pI
i
pJ

j V
IJ
ij , (1)

whereV IJ
ij is the interaction energy between an atom of type I

at a site i and an atom of type J at a site j [(I , J ) = (A, B)], i and
j being in the nearest neighbor position. pI

i is the occupation
number that equals 1 (0) if the i site is (not) occupied by an
atom of type I . For a binary alloy, pA

i = 1 − pB
i and we set

pA
i = pi , which leads to

H (n) = H0 + V

n∑
i=1

∑
j �=i

pipj + (τ − V )
n∑

i=1

zipi, (2)

with H0 = (n − 1)V BB, V = (V AA + V BB − 2V AB)/2, τ =
(V AA − V BB)/2, and zi is the coordination number of the ith
site, equal to 1 (2) for an edge (core) site. H0 is a constant, V

is the energy of the alloy pair interaction, and τ is proportional
to the difference between cohesive energies of pure metals. As
we consider an alloy that forms an ideal solution, V = 0, the
Hamiltonian can be written (considering H0 as the reference
for the energy)

H (n) = τ (p1 + pn) + 2τ

n−1∑
i=2

pi. (3)

This relation emphasizes the edge (i = 1 and n) and core
(i = 2, . . . , n − 1) sites. Note that nA = ∑n

i=1 pi ; therefore,
we can rewrite H as

H (n,nA,nA,e) = 2

(
nA − nA,e

2

)
τ, (4)

with the number nA,e of A atoms on the edge sites that equals
0, 1, or 2. The number of A atoms on the core sites is then
nA,c = nA − nA,e.

We denote ci = 〈pi〉 the concentration of the ith site
starting from the left of the chain, ce = 〈nA,e〉/2 the
concentration of the edge sites, and cc = 〈nA,c〉/(n − 2)
the concentration of the core sites. The edge and core
concentrations are related to the nominal concentration of the
chain by the mass conservation law :

nc = 2ce + (n − 2) cc. (5)

Whatever the ensemble considered, an exact formula of the
equilibrium concentration profile requires the determination

of the partition function ZE, in which E represents either
the canonical or the sGC ensemble, and of ZE

pi=1, in which
the restricted partition function for each site i corresponds
to configurations in which site i is occupied by an A atom
(pi = 1):9,29

cE
i = ZE

pi=1/Z
E. (6)

B. Semigrand canonical ensemble

In the sGC ensemble, the n-chain is in equilibrium with
a reservoir. The composition of the chain is controlled by
the chemical potential difference between A and B: �μ =
μA − μB. The free energy in the sGC ensemble is given
by:

F (n,�μ) = H (n) − �μ

n∑
i=1

pi. (7)

Because V = 0, the two edge sites and the n − 2 core
sites are not correlated, and the partition function is the
product of partition functions for each site. From Eqs. (3) and
(7),23

ZsGC(n,�μ) = (1 + e−τ+�μ)2(1 + e−2τ+�μ)n−2, (8)

with x = x/kBT and x = τ,�μ. The restricted partition
function ZsGC

pi=1(n,�μ) takes two different values, one for the
edge sites (ZsGC

e (n,�μ) for i = 1 or n) and one for the core
sites (ZsGC

c (n,�μ) for i = 2, . . . , n − 1):

ZsGC
e (n,�μ) = e−τ+�μ

1 + e−τ+�μ
ZsGC(n,�μ),

(9)

ZsGC
c (n,�μ) = e−2τ+�μ

1 + e−2τ+�μ
ZsGC(n,�μ).

Equations (6)–(9) provide the concentration profile as a
function of �μ:

csGC
e (n,�μ) = 1

1 + eτ−�μ
,

(10)

csGC
c (n,�μ) = 1

1 + e2τ−�μ
.

Whereas for a given value of �μ the edge and core concen-
trations depend only on τ [Eq. (10)], the nominal concentration
csGC given by the mass conservation law [Eq. (5)] depends also
on the length of chain n. Analytical formulae of the edge and
core concentrations as functions of the nominal concentration
are given in Appendix A. These relations show that at a fixed
value of the nominal concentration, the concentration profile
depends on the chain length.

C. Canonical ensemble

Because the Hamiltonian of the bimetallic finite n-chain
[Eq. (4)] depends on the number of A atoms on the edge sites,
the partition function for an n-chain containing nA A atoms
can be written

ZCano (n,nA) =
2∑

nA,e=0

ZCano
nA,e

(n,nA), (11)
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where ZCano
nA,e

(n,nA) is the restricted partition function of
configurations containing nA,e A atoms on edge sites, and
the restricted partition function ZCano

pi=1 (n,nA) is the sum of
the more constrained partition function, ZCano

pi=1,nA,e
(n,nA), of

configurations with an A atom on site i and nA,e A atoms on
edge sites:

ZCano
pi=1 (n,nA) =

2∑
nA,e=0

ZCano
pi=1,nA,e

(n,nA). (12)

ZCano
nA,e

(n,nA) and ZCano
pi=1,nA,e

(n,nA) are detailed in
Appendix B. Using Eqs. (5) and (6), we can relate the edge
and core concentrations to n, c, and τ with c = nA/n, where
nA is an integer:

cCano
e (n,c) = ceτ n (ceτ + 1 − c) − eτ

n (ceτ + 1 − c)2 − (ce2τ + 1 − c)
,

cCano
c (n,c) = c

n−2

[
n − 2eτ n (ceτ + 1 − c) − eτ

n (ceτ + 1−c)2 − (ce2τ + 1−c)

]
.

(13)

Equation (13) verifies the mass conservation law.

In the sGC ensemble, the most natural representation is to
depict the concentrations of the different sites as a function
of �μ. However, experimental results are usually obtained by
controlling the nominal concentration. Because the nominal
concentration in the sGC ensemble is deduced from the
equilibrium profile using the mass conservation law, it is
possible to compare the edge and core concentrations for
both ensembles according to the nominal concentration. Con-
versely, comparing isotherms from both ensembles according
to the chemical potential difference requires the computation
of �μ when the nominal concentration is fixed (i.e., in the
canonical ensemble). �μ is the derivative of the normalized
free energy as a function of the nominal concentration,

�μCano = 1
n

∂F Cano

∂c
, with F Cano = − ln ZCano. Recall that in the

canonical ensemble the nominal concentration c only takes
discrete values, so to calculate the chemical potential, we have
to use a discrete derivative :

�μCano (n,nA) = [F Cano (n,nA + 1) − F Cano(n,nA − 1)]/2.

(14)

The application of this formula to the system leads to the
following expression:

�μCano (n,nA) = 2τ + 1

2
ln

[
nA (nA + 1)

nB (nB + 1)

]
+ 1

2
ln

{
nB (nB + 1) + eτ (nA − 1) [2 (nB + 1) + (nA − 2) eτ ]

(nB − 1) (nB − 2) + eτ (nA + 1)[2(nB − 1) + nAeτ ]

}
. (15)

III. CANONICAL AND SEMIGRAND CANONICAL
ISOTHERMS

Broken bonds at the chain edges yield a segregation
phenomenon (i.e., an enrichment in one of the two species
on the edge sites with regard to the core sites). Within this
study we consider positive values of τ > 0, which leads to
the segregation of the A species of lowest cohesive energy,
whatever the bulk concentration. Here, we determine whether
the chemical repartition of A and B atoms is identical in both
statistical ensembles when the value of either �μ or c is
set. We compare the isotherm c(�μ) and the edge and core
isotherms as a function of the difference of chemical potentials,
cp(�μ), and of the nominal concentration, cp (c), in both
ensembles.

Figure 1(a) shows that even for an alloy forming an
ideal solution, a small difference exists between isotherms
c(�μ) of both ensembles for a 10-atom wire. The canonical
isotherm is steeper than the sGC isotherm. Edge site and
core site isotherms are also steeper in the canonical ensemble
than in the sGC ensemble [Fig. 1(b)], which means that
|cCano

p − 0.5| > |csGC
p − 0.5|. Expressed as a function of the

nominal concentration, the core and edge isotherms also differ
in both ensembles, the edge concentration being systematically
greater and the core concentration lower in the canonical
ensemble relative to the sGC ensemble [Fig. 1(c)].

Figure 2(a) shows that for low [respectively (resp.) high]
values of �μ, the nominal concentration is lower (resp. higher)
in the canonical ensemble than in the sGC ensemble. The
�μ value for which the concentrations in both ensembles are

equal corresponds to a nominal concentration close to 0.5.
The deviation between the edge and core concentrations, ce −
cc, that quantifies the segregation, is larger in the canonical
ensemble than in the sGC ensemble [Fig. 2(b)].

ce − cc displays a maximum in both ensembles. At low
nominal concentration, edge site concentrations increase with
c faster than the core site concentrations because of the broken
bonds. When there are enough A atoms to almost fill both
edge sites, at c ≈ 0.2 for n = 10, the increase of c essentially
contributes to increasing the core concentration, and thus ce −
cc decreases.

To prepare for the forthcoming discussion on the influence
of the thermodynamic ensemble on segregation for a finite
chain, we first recall that in the sGC ensemble, the number
of atoms of each species (which is driven by the difference
in chemical potentials of the constituents) fluctuates around a
mean value. An efficient way to highlight these fluctuations
is to consider the configurational density of states (CDOS)
n (c) for each nominal concentration c.30 Thus n (c) dc is the
number of states for which the concentration is between c and
c + dc. CDOS is determined from the sGC partition function
given by Eq. (8) or, equivalently, by

ZsGC(n,�μ) =
n∑

nA=0

ZsGC(n,�μ,nA), (16)

where ZsGC(n,�μ,nA) is the partition function of the system
constrained by the composition, which can be written accord-
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FIG. 1. (a) Evolution of the nominal concentration as a function of the chemical potential difference �μ. Edge and core isotherms as a
function of (b) the chemical potential difference �μ and (c) the nominal concentration. Lines, sGC isotherms; symbols, canonical isotherms
[(a) nominal concentration, diamond; (b, c) edge concentration, square; (b, c) core concentration, circle]. The length of the chain is n = 10,
τ = 2.

ing to the corresponding canonical partition function:

ZsGC(n,�μ,nA) = enA�μZCano(n,nA). (17)

These relationships show that the sGC ensemble, for a
given value of �μ, is a weighted combination of canonical
subensembles of different compositions. The total number of
configurations in the sGC ensemble is then much larger than
the one derived in the canonical ensemble. The composition
distribution P sGC

nA
(n,�μ) gives the probability that the n-chain

contains nA atoms for a given �μ:

P sGC
nA

(n,�μ) = ZsGC(n,�μ,nA)

ZsGC(n,�μ)
. (18)

The nominal concentration distribution for a 10-atom chain,
when csGC = 0.5 (or �μ ≈ 3.7), is presented in Fig. 3. The

sGC nominal concentration csGC is the weighted average of
the nominal concentrations of all possible subensembles.

The sGC concentration profile is therefore related to
the concentration profile of the canonical ensemble via the
nominal composition distribution

csGC
p (n,�μ) =

n∑
nA=0

P sGC
nA

(n,�μ) × cCano
p (n,nA). (19)

For a 1D system, the sGC partition function and the nominal
concentration distribution are easily and exactly determined;
however, it is not as tractable for higher dimensions.31

Therefore, it is useful to develop an approximated method
that may be generalized to the 2D and 3D cases.

First, recall that a distribution as seen in Fig. 3 can be
approximated by a Gaussian distribution.14,15,20,21 The very
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FIG. 2. Evolution in both ensembles of (a) the difference between the nominal concentration in canonical and sGC ensembles, csGC − cCano,
as a function of the chemical potential difference �μ and (b) of ce − cc as a function of the nominal concentration. Line, sGC ensemble;
diamond, canonical ensemble. n = 10 and τ = 2.
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FIG. 3. Configurational densities of states for the sGC ensemble.
csGC = 0.5, n = 10, and τ = 2.

general validity of the Gaussian approximation is due to the
Laplace limit theorem.32,33 Thus, at a given �μ, the main
features of a Gaussian distribution are the mean nominal
concentration 〈c〉 = csGC and the variance defined by σ 2 =∑

c P sGC
c (c − 〈c〉)2. σ 2can also be estimated from the isotherm

using σ 2 = 1
n

∂c
∂�μ

.

In 1D, the analytical expression of σ 2 is

σ 2 = 1

n2

[
2eτ−�μ

(1 + eτ−�μ)2
+ (n − 2)e2τ−�μ

(1 + e2τ−�μ)2

]
. (20)

At the thermodynamic limit (n → ∞), σ 2 → 0; thus, the
distribution tends to a δ-function, implying that the properties
of the system are univocally defined by the value of �μ.
In other words, it means that canonical and sGC ensembles
become equivalent.

To approximate sGC isotherms from canonical isotherms,
we apply the Delta method.34 For any variable in the sGC
ensemble f sGC(�μ) = f sGC(〈c〉), the Delta method consists
in using a second-order Taylor series expansion of the
canonical variable f Cano (c), centered in the mean value 〈c〉.
f sGC (〈c〉) is then given by

f sGC (〈c〉) ≈ f Cano (〈c〉) + σ 2

2

∂2f Cano (c)

∂c2

∣∣∣∣
〈c〉

. (21)

This relation underlines that for any variable, the difference
between the sGC and the canonical ensembles is related
to

(1) the fluctuations of the nominal concentration is the sGC
ensemble—the higher the variance, the higher the difference,
and

(2) the curvature of the canonical variable at the mean value
〈c〉—the difference between both ensembles increases with
this curvature.

We apply Eq. (21) to analyze the deviation between the sGC
and canonical profiles. Let us detail the two contributions with
the help of Fig. 4 for the edge and core sites. Figure 4(a)
shows the evolution of the variance versus the nominal
concentration. The curve displays a maximum for a nominal
concentration slightly greater than 0.5. The curvature of the
canonical isotherms ∂2cCano

p /∂c2 is negative for the edge sites
due to the segregation effect [Fig. 4(b)] and positive for the core
sites [Fig. 4(c)]. The variance being positive by definition, the
sign of the curvature gives the sign of the difference between

both ensembles. Because of the smoothness of the curve
σ 2 (c), the difference between both ensembles is driven by
∂2cCano

p /∂c2. The maximum of the deviation is around 0.06 for
edge sites and 0.015 for core sites. The nominal concentration
corresponding to this maximum is c ≈ 2/n. Finally, we can
see in Figs. 4(d) and 4(e) that the approximate and exact
deviations between the canonical and sGC profiles are in good
agreement.

So, the Delta method provides an effective link between
the canonical and sGC ensembles, allowing one to analyze the
differences between both.

IV. SIZE AND TEMPERATURE EFFECTS

A. Influence of the chain length

We analyze the influence of the chain length on the
isotherms via a first-order expansion in 1/n of the exact
Eqs. (10) and (13). In the canonical ensemble, the edge and
core concentrations are written

cCano
e = ceτ

1 − c + ceτ

(
1 − 1 − c

n

eτ − 1

(1 − c + ceτ )2

)
,

(22)

cCano
c = c

(
1 − 2

1 − c

n

eτ − 1

1 − c + ceτ

)
,

whereas their counterparts in the sGC are

csGC
e = ceτ

1 − c + ceτ

(
1 − 2

1 − c

n

eτ − 1

(1 − c + ceτ )2

)
,

(23)

csGC
c = c

(
1 − 2

1 − c

n

eτ − 1

1 − c + ceτ

)
.

These relations underline two features of the isotherms:
(1) In both ensembles, the asymptotic behaviors when

n → ∞ read cE
e → ceτ / (1 − c + ceτ ) and cE

c → c, which
corresponds to the classical isotherms in mean field approx-
imation of a long chain for an alloy forming an ideal solid
solution.

(2) When τ > 0, eτ − 1 > 0. Thus, for a fixed value of the
nominal concentration, cE

e and cE
c increase with chain length in

both ensembles. Recall that the edge and core concentrations
are related via the mass conservation law. Thus, at a given
nominal concentration, the increase in chain length diminishes
(increases) the proportion of the edge (core) sites, so that the
nominal concentration is held constant while both edge and
core concentrations increase.

Figure 5, which displays the behavior of the equilibrium
profile as a function of the length of the chain for two concen-
trations, illustrates the above-mentioned features. Although
not shown, the first-order expansion is in satisfying agreement
with the exact results.

We showed previously that cE
e − cE

c is a meaningful quantity
to evaluate the segregation. Using the formulae above, the
first-order expansion in 1/n can be written as

cE
e − cE

c = c (1 − c)
(eτ − 1)

1 − c + ceτ

[
1 + 1

n
× �E

(1 − c + ceτ )2

]
,

(24)
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FIG. 4. Evolution with nominal concentration of (a) variance of the nominal concentration in the sGC ensemble, (b, c) the canonical
isotherm curvature, and (d, e) the exact and approached difference between the sGC concentration and the canonical for the edge (b, d) and
core (c, e) sites. Edge sites, squares (b, d); core sites, circles (c, e). Exact calculation given by Eq. (10) and (13) (solid black symbols) and
approached calculations given by Eq. (21) (solid gray symbols) (d, e). Dotted lines are a visual help. n = 10 and τ = 2.

with

�Cano = 2 (1 − c + ceτ )2 − eτ ,
(25)

�sGC = 2 (1 − c + ceτ )2 − 2eτ .

So, when n → ∞, cE
e − cE

c → (eτ − 1) c(1−c)
1−c+ceτ in both

ensembles.

Figure 6(a) shows cE
e − cE

c as a function of n for c =
0.75 with τ = 2. In both ensembles, the difference between
the edge site and core site concentrations decreases when
the length of the chain increases. At a given value of c,
cE
e − cE

c is a monotonic function of n, strictly decreasing
(resp. increasing) when �E > 0 (resp. �E < 0). Segregation
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FIG. 5. Evolution of the exact edge (a) and core (b) concentrations in both ensembles as a function of the length of the chain for c = 0.25
and c = 0.75 (τ = 2). Line, sGC ensemble; symbols, canonical ensemble (squares, edge sites; circles, core sites). c = 0.25, empty symbols;
c = 0.75, filled symbols.
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FIG. 6. (a) Evolution of ce − cc with chain length in both ensembles at c = 0.75 (sGC, line; canonical, diamond). (b) Evolution of �E as a
function of the nominal concentration (Eq. (25)) in the sGC (thick dashed line) and canonical (thin dashed line) ensembles. τ = 2.

evolves with the length of the chain similarly in both ensembles
when �Cano and �sGC are either positive or negative, which
occurs for c � 0.27 and c � 0.15, as shown in Fig. 6(b).
For 0.15 � c � 0.27, �Cano > 0 and �sGC < 0, so cCano

e −
cCano
c diminishes, whereas csGC

e − csGC
c increases with chain

length.
For a better understanding of the difference in behaviors in

both ensembles and to have a link with the Delta method, we
use the following formulae, which are deduced from Eqs. (22)–
(25) using a first-order expansion in 1/n:

csGC
e − cCano

e = −c (1 − c)

n

eτ (eτ − 1)

(1 − c + ceτ )3 ,

(26)
csGC
c = cCano

c ,

(
csGC
e − csGC

c

) − (
cCano
e − cCano

c

) = −c (1 − c)

n

eτ (eτ − 1)

(1 − c + ceτ )3 .

(27)

Whatever the chain length, csGC
e < cCano

e [Fig. 5(a)], which
is in a good agreement with Eq. (26) since τ > 0 (eτ − 1 > 0).
Figure 5(b) also indicates that for core sites, csGC

c > cCano
c ,

contrary to what Eq. (26) predicts. This comes from the fact
that the edge and core site concentrations are related via the
mass conservation law Eq. (5) so that we have csGC

c − cCano
c =

−2
n−2 (csGC

e − cCano
e ). The difference in core concentration is an

order smaller (in 1/n) than the difference in edge concen-
tration. A second order expansion must be taken to see the
difference in concentration.

It is straightforward to relate it to the Delta method
formalism, which yields:

csGC
p − cCano

p = σ 2

2

∂2cCano
p

∂c2
, (28)

by noticing that the first-order term in 1/n is

σ 2 = c (1 − c) /n, (29)

and

∂2cCano
e

∂c2
= − 2eτ (eτ − 1)

(1 − c + ceτ )3 ,

(30)
∂2cCano

c

∂c2
= 4

n

eτ (eτ − 1)

(1 − c + ceτ )3 .

The deviation observed between both ensembles for cc

[Figs. 4(e) and 5(b)] is of lower order than that obtained
for ce and requires one to account for the first-order term
in the curvature of cCano

c (c) (i.e., a second-order term for
csGC
c − cCano

c ).
Equation (29) provides a very good approximation of

σ 2, represented in Fig. 7(a) for n = 30 and n = 5, as a
decreasing function of n, whatever the nominal concentration,
as expected. Figure 7(b) shows that the curvature of the
edge concentrations depends on the chain length for low
concentrations, contrary to what the simplified formula in
Eq. (30) predicted for larger chains. Nevertheless the simplified
formula of Eq. (28) is in satisfying agreement with both
exact computations and the Delta method formula without
approximation. Thus, the length dependence of the deviation
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FIG. 7. Evolution (a) of the nominal concentration variance in the sGC ensemble and (b) of the canonical edge isotherm curvature as a
function of the nominal concentration for n = 10 (lines and open squares) and n = 30(dashed lines and filled squares) at τ = 2.
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between both ensembles is mainly due to variance. For core
sites, accounting for the first-order term in the curvature of
Eq. (30) describes the curvature of small chains correctly and
achieves a good approximation of csGC

c − cCano
c .

Note that approximate expressions of isotherms c(�μ)

�μCano = 2τ + ln
c

1 − c
+ 1

2n

1 − 2c

c (1 − c)
− 2

n

eτ − 1

1 − c + ceτ

(31)

and

csGC = 1

1 + e2τ−�μ

[
1 + 2

n

(eτ − 1) × eτ−�μ

1 + eτ−�μ

]
(32)

are also in a good agreement with exact computations.

B. Influence of temperature

To illustrate the influence of temperature, T , we present
isotherms c(�μ) obtained for τ = 4 [Fig. 8(a)] and τ = 8
[Fig. 8(b)] for n = 10. This means that the initial temperature
(for τ = 2) is divided by two and four, respectively. The
larger τ is, the more the isotherms are shifted toward higher
values of �μ. At very low temperatures (τ = 8), the isotherm
shows a plateau for c ≈ 0.2 = 2/n [Fig. 8(b)]. The lower the
temperature, the more disconnected the core and edge site
enrichments [Figs. 8(c) and 8(d)]. For very low temperatures
(τ = 8), Fig. 8(d) shows two distinct domains:

(1) For c < 2/n, the edge concentration goes up to 1,
whereas the core concentration remains nil; thus, at c ≈ 2/n,
only the edge sites are enriched by A atoms. Core sites being
pure in B atoms, the nanowire then presents a core shell
structure.

(2) For c > 2/n, the core concentration increases linearly
with c.

This complete decoupling of the isotherms of the different
sites has a strong effect on the shape of the curve σ 2 (c).
Compared with τ = 2, the evolution of variance with con-
centration for τ = 4, shown in Fig. 9(a), is less symmetrical,
and σ 2 is slightly lower for intermediate concentrations. At
τ = 8, two distinct domains of the curve σ 2 (c) [Fig. 9(b)]
appear. The variance being proportional with ∂c/∂�μ, the
extremum of σ 2 (c) corresponds to the extremum of the slope
of the isotherm c(�μ) [Figs. 8(a) and 8(b)]. So, the maximum
of the first domain, which corresponds to the increase in
edge concentration, occurs at ce ≈ 1/2 (c ≈ 1/n). When the
isotherm presents a plateau [Fig. 8(b)], c ≈ 2/n, with ce ≈ 1
and cc ≈ 0, and σ 2 is close to 0 [Fig. 9(b)]. The second
maximum occurs at cc ≈ 1/2 (ce ≈ 1).

At low temperature, the curvature of the canonical isotherm
is close to zero, except for concentrations around c ≈ 2/n

[Figs. 9(c) and 9(d)]. As before, the deviation between the
approximate and the exact concentration profiles is very weak,
even for c ≈ 2/n, as shown in Figs. 9(e) and 9(f).

Figure 10 shows that the temperature evolution of the de-
viation between both ensembles depends on the concentration
to be investigated.

The concentration range in which this deviation is not
nil diminishes when temperature diminishes. The maximal
deviation is obtained for c = 2/n and has a relatively complex
temperature dependency, as analyzed in Table I. The decrease
in temperature (i.e., the increase of τ ) leads to two opposite
effects: the decrease of the concentration fluctuations around
its average value in the sGC ensemble and the increase of
the absolute value of the curvature of the canonical isotherms.
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FIG. 8. Nominal concentration isotherm as a function of the chemical potential difference �μ for τ = 4 (a) and τ = 8 (b) in both ensembles
(sGC, line; canonical, diamond). Edge and core concentration isotherms as a function of the nominal concentration for τ = 4 (c) and τ = 8 (d)
in the sGC ensemble (line) and the canonical ensemble (squares for the edge sites and circles for the core sites). n = 10.
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FIG. 9. Evolution with nominal concentration of (a, b) the variance, (c, d) the canonical edge isotherm curvature, and (e, f) the difference
between the sGC and canonical edge concentrations for τ = 4 (a, c, e) and τ = 8 (b, d, f). σ 2(c) for τ = 2 is noted with a dashed line in panels
a and b. Dotted lines are visual aids in panels c–f. Solid black symbols denote exact solid gray symbols denote approached results given by
Eq. (21) in panels e and f. n = 10.

Table I indicates that this can lead to a nonmonotonic variation
of csGC

e − cCano
e with the temperature.

V. CONCLUSIONS

We have shown that even for an AcB1c alloy forming an
ideal solid solution, different statistical ensembles are not
equivalent for small systems as the mixing entropy overes-
timates the configurational entropy in the canonical ensemble.
Consequently, the average of a thermodynamic variable taken
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FIG. 10. Difference between the sGC and canonical edge concen-
trations as a function of the nominal concentration for τ = 2 (point),
τ = 4 (square), and τ = 8 (diamond). Lines are visual aids. n = 10.

in a canonical ensemble is not equal to the average taken in the
sGC ensemble. Thus, to compare theoretical and experimental
results, the choice of the pertinent statistical ensemble is
crucial. A canonical ensemble should be employed to calculate
the properties of a chemically isolated cluster, whereas for
an alloyed cluster in equilibrium with a reservoir, or for a
collection of clusters in mutual equilibrium, the sGC ensemble
should be used.

The Delta relationship enables us to link both ensembles
and to analyze their difference. We have shown that the
canonical isotherms c(�μ) and cp(�μ) are steeper than
the sGC isotherms. The deviation between both ensembles
is proportional, on the one hand, to the amplitude of the
fluctuations of the nominal concentration in the sGC ensemble
and, on the other hand, to the curvature of the canonical
isotherm considered at the given nominal concentration. This
study emphasizes that the deviation between both ensembles:

TABLE I. Evolution of the variance, absolute value of the curva-
ture of the canonical edge isotherm, and value of csGC

e − cCano
e with τ

at c = 2/n for n = 10.

τ 100σ 2 |∂2cCano
e /∂c2| 100(csGC

e − cCano
e )

2 1.4 10 −5.7
4 0.8 35 −11
8 0.14 50 −3.3
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(1) decreases with an increase in chain length, mainly
because of the decrease in fluctuations for a given value of
the nominal concentration, and

(2) presents various behaviors in temperature for a given
chain length, depending on the value of the nominal concen-
tration to be considered. On one hand, the concentration range
for which there exists a discrepancy between both ensembles
increases with temperature. On the other hand, the maximum
of the deviation does not vary monotonically with temperature.

We have shown that segregation at the edge sites, charac-
terized by ce − cc, is greater in the canonical ensemble than
in the sGC ensemble, whatever the nominal concentration.
The segregation increases (resp. decreases) with the length
of the chain for low (resp. high) nominal concentration in
both ensembles. In an intermediate range of concentrations,
segregation decreases with length in the canonical ensemble,
whereas it increases in the sGC ensemble.

The connection between the canonical ensemble and the
sGC ensemble remains to be specified for alloys with a
tendency to phase separate. In that case, we previously showed
that the configurational state density displays two modes at
low temperature.21 Concentration profiles and isotherms then
differ strongly between both ensembles. One can wonder

whether the Delta formalism is still valid and efficient
for investigating differences between both ensembles. This
study will be extended to the study of submonolayer 1D
codeposition and to modeling of the kinetics of codeposition
using cluster dynamics. Finally, we hope this may help and
stimulate an experimental analysis of composition profiles
within bimetallic particles.
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APPENDIX A

In this Appendix, we express the exact sGC concentration
profiles as a function of the nominal concentration. With regard
to Eq. (10), one can write csGC

c directly as a function of csGC
e :

csGC
c = csGC

e

csGC
e + eτ (1 − csGC

e )
. (A1)

The mass conservation law Eq. (5) then becomes

2(1 − eτ )
(
csGC
e

)2 + [(n − 2) − ncsGC(1 − eτ ) + 2eτ ]csGC
e − ncsGCeτ = 0. (A2)

Thus, we obtain the following relations:

csGC
e = − (n − 2) + ncsGC (1 − eτ ) − 2eτ −

√
8eτ (n − 2) + [− (n − 2) + ncsGC (1 − eτ ) + 2eτ ]2

4 (1 − eτ )
,

(A3)

csGC
c = (n − 2) + ncsGC (1 − eτ ) + 2eτ −

√
8eτ (n − 2) + [− (n − 2) + ncsGC (1 − eτ ) + 2eτ ]2

2 (1 − eτ ) (n − 2)
.

APPENDIX B

The exact canonical concentration profiles can be obtained from the canonical partition function

ZCano =
2∑

nA,e=0

ZCano
nA,e

with ZCano
nA,e

= NCano
nA,e

exp[−H (n,nA,nA,e)], (B1)

where NCano
nA,e

represents the number of configurations when nA,e atoms are situated on edge sites.

ZCano
pi=1 =

2∑
nA,e=0

ZCano
pi=1,nA,e

, ZCano
pi=1,nA,e

= NCano
pi=1,nA,e

exp[−H (n,nA,nA,e)], (B2)

NCano
nA,e

=
(

2
nA,e

) (
n − 2

nA − nA,e

)
,

and

NCano
pi=1,nA,e

=
(

zi

nA,e − 2 + zi

)(
n − 1 − zi

nA + 1 − zi − nA,e

)
. (B3)
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