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Super-rough phase of the random-phase sine-Gordon model: Two-loop results
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We consider the two-dimensional random-phase sine-Gordon and study the vicinity of its glass transition
temperature Tc, in an expansion in small τ = (Tc − T )/Tc, where T denotes the temperature. We derive
renormalization group equations in cubic order in the anharmonicity, and show that they contain two universal
invariants. Using them we obtain that the correlation function in the super-rough phase for temperature T < Tc

behaves at large distances as 〈[θ (x) − θ (0)]2〉 = A ln2(|x|/a) + O[ln(|x|/a)], where the amplitude A is a
universal function of temperature A = 2τ 2 − 2τ 3 + O(τ 4). This result differs at two-loop order, i.e., O(τ 3),
from the prediction based on results from the “nearly conformal” field theory of a related fermion model. We
also obtain the correction-to-scaling exponent.
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I. INTRODUCTION

Although in two-dimensional (2D) systems with continuous
symmetry and short-range interactions thermal fluctuations
prevent the existence of long-range order,1 they do not
prevent phase transitions. The 2D XY model, much studied
in that context, describes a large class of physical systems
with continuous symmetry, which includes superfluid and
superconducting films, magnetic systems and one-dimensional
quantum liquids. It exhibits a topological phase transition be-
tween the low-temperature phase with quasi-long-range order
and a disordered phase at high temperatures. This Berezinskii-
Kosterlitz-Thouless transition is driven by unbinding of vor-
tices due to an increasing amount of thermal fluctuations.2,3

From the technical side, the XY model is conveniently studied
within the equivalent dual 2D sine-Gordon (SG) model, which
is amenable to powerful field-theoretical treatments.4 It ex-
hibits a high-temperature quasi-long-range ordered phase and
a low-temperature massive phase. When additional terms are
added to the SG model new universality classes can emerge.5

For a pure system, the simplest example is an additional field
gradient in one direction,6 which describes the commensurate-
incommensurate transition in 2D and realizes, for example,
when an atomic layer of noble gases is deposited on the
periodic substrate of graphite.7 Both models, with and without
the tilt, are exactly solvable8,9 and are by now well understood.

The random versions of the 2D SG model allow for
more scenarios and much less exact results are known. Via
bosonization they are related to fermions with disorder and
have also been much studied in that context.10 A well-known
example is the 2D SG model with a quenched random phase
that depends on only one coordinate in the cosine term.
Such a model describes a classical 2D model with correlated
disorder, and also a 1D quantum system with point disorder
(the second direction being imaginary time). In the latter
case, it is related to 1D disordered Luttinger liquids and
belongs to the Berezinskii-Kosterlitz-Thouless class.10 Seen
as a 2D classical model it exhibits quasi-long-range order
(i.e., an infinite correlation length) in its high-temperature
phase, which is described by a line of Gaussian fixed points
of the renormalization group (RG) where the cosine term is
irrelevant. Its low-temperature phase is glassy and described
by RG fixed points at large disorder strengths, see Fig. 1.

This scenario first found in one-loop order12 is not changed at
two-loop order.13

In this paper, we study the 2D random-phase sine-Gordon
(RPSG) model11,14,15 where the quenched random phase
depends on both coordinates. This model can also be under-
stood as the random field XY model provided one excludes
vortices by hand.16 The RPSG model describes 2D periodic
disordered elastic systems, such as a randomly pinned planar
array of vortex lines15 or surfaces of crystals with quenched
disorder.11 It also exhibits a phase transition at a critical
temperature Tc below which the random cosine term becomes
relevant. This transition was first studied in an expansion in
τ = (Tc − T )/T using a one-loop RG approach in Ref. 14.
The physics of the RPSG model is, however, quite different
from the previously mentioned disordered model. While the
high-temperature phase is described by a line of Gaussian
fixed points, similarly to the SG model, the low-temperature
phase is glassy and described by a line of non-Gaussian fixed
points where the renormalized disorder gradually increases
from zero when decreasing the temperature below Tc, see
Fig. 2. The glass phase for T < Tc is super-rough, i.e., the
variance of the fluctuations of the displacement field grows as
logarithm squared of the distance, in contrast to the standard
rough logarithmic form at high temperatures.11 Within the
RG approach this is due to an unbounded growth of the
off-diagonal disorder (in replica space) at low temperatures
that determines the correlation function. Further RG studies
predicted that the amplitude A of the logarithm-squared
correlations is a universal function of temperature,15 with
A = 2τ 2 + O(τ 3) to one-loop order accuracy.17,18

The existence of the super-rough phase has been confirmed
in several numerical studies at zero temperature19,20 and for
all temperatures 0 < T < Tc, see Refs. 21 and 22. These
studies consider discrete random height models, or discrete-
line models, believed to be in the same universality class as
the RPSG model. These are further mapped onto the dimer
covering problem with random weights.23–25 Powerful poly-
nomial algorithms then allow to generate all possible coverings
of the lattice by dimers.26 Using such algorithms, A(τ ) was
estimated in Ref. 21 where the quadratic behavior A(τ ) ∝ τ 2

at small τ was confirmed. Very recently more accurate data
have been obtained in Refs. 22 and 27 (see below).
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FIG. 1. (Color online) The renormalization group flow diagrams
of the sine-Gordon model. At small temperatures, T < Tc the tentative
fixed point is disconnected from the line of Gaussian fixed points that
exist for T > Tc when the strength of the anharmonic term g of the SG
model flows to zero. In the context of one-dimensional fermions with
disorder, the same flow diagram apply provided the temperature is
replaced by the strength of interaction and that g denotes the disorder
strength (see Ref. 10).

Some recent studies opened the hope that A could be
obtained nonperturbatively. Considering a model of disordered
noninteracting fermions in 2D, Guruswamy, LeClair, and
Ludwig28 used methods of “nearly conformal” field theory
to predict the exact form of the correlation functions as well
as the scaling equations for their fermionic model. Upon
bosonization, these results where interpreted as corresponding
to the RPSG model exactly on its fixed points at finite
disorder (see Fig. 2). In Ref. 29, this correspondence and
the translation to the parameters of the RPSG model was
performed in details, with the conclusion that if the exact
beta function of Ref. 28 is correct then one should have A =
ANCFT = 2τ 2(1 − τ )2 exactly in the whole super-rough phase
0 < τ < 1. As discussed in Ref. 29, this, however, raises some
puzzle: numerics exclude the amplitude vanishing at T = 0,
and the nonmonotonous behavior of ANCFT with temperature
is surprising. Hence the formula, correct to one-loop accuracy,
can hold exactly at best in a vicinity of Tc, i.e., for τ < τ ∗ with
some unknown τ ∗. Since the numerical values are larger by a
factor ≈4 than the maximum ANCFT(1/2), the true amplitude
should be larger than the predicted one. Possible scenarios
are discussed in Ref. 29 such as the mapping between free
fermion models and the RPSG model failing below some
temperature, or some new operators becoming relevant at τ ∗.
In addition, a functional RG study performed in Ref. 29 leads

* * * * *

*

*

TTc

g

FIG. 2. (Color online) The renormalization group flow diagram of
the random-phase sine-Gordon model (1). The line of fixed points (red
curve) in the low-temperature phase T < Tc occurs at finite disorder
strength and it is continuously connected with the line (blue curve)
of Gaussian fixed points at T > Tc. While the line of nonzero fixed
points is a linear function of temperature to the lowest one-loop order,
it gets quadratic correction beyond that. The correlation function at
T < Tc has a super-rough logarithm-squared form (see Ref. 11).

to a nonvanishing amplitude at T = 0 as a result of including
higher harmonics of the disorder that are relevant there.

In the present paper, we revisit the model using perturbative
renormalization group methods to the next two-loop order and
compute the amplitude of correlations in the super-rough phase
including O(τ 3) terms. A short summary of the present work
has been presented in Ref. 27. Here we give all the details. We
perform a systematic calculation in terms of the strength of the
anharmonic term g, see Eq. (8). The problem is studied within
a bosonic formulation using field theory methods. We use two
complementary methods, which are explained in a pedagogical
way. The first one is based on the calculation of the effective
action and the second on the operator product expansion. We
study both the theory regularized by a small distance cutoff a

and, for T < Tc, directly in the continuum limit, and obtain
the precise dependence of the results on the cutoff functions.
Our main findings are the scaling equations (76) and (77),
the correlation function (85) and the correction-to-scaling
exponent (80). The equations beyond lowest order contain
nonuniversal coefficients that are connected by relation (78).
For the amplitude of correlations in the glass phase T < Tc,
we find A = 2τ 2 − 2τ 3 + O(τ 4). Hence it confirms the con-
clusion of Ref. 29 that the translation of the results of Ref. 28
into an exact result to all orders for the RPSG model cannot
be correct. Since the discrepancy arises already at two-loop
order (i.e., τ ∗ = 0), it also casts some doubts on the fermion
calculation done in Ref. 28 or on its consequences for the
bosonic model as given in Refs. 28 and 29. Note that our result
for the amplitude is indeed larger than ANCFT (for small τ )
hence it goes in the right direction. Interestingly, it also appears
to better fit the most recent numerical results of22 up to τ ≈ 0.5,
although it is a perturbative calculation around Tc, i.e., around
τ = 0.

To be complete let us mention that many other studies
have addressed the RPSG model, its thermodynamics,25,30 its
stability to RSB and links to fermions,31 its dynamics near
Tc,32–35 its equilibrium dynamics at all T 36,37 and its aging
dynamics.18,38,39 It would be interesting to push such methods
to two-loop accuracy, as done here for the statics.

The outline of this paper is as follows. In Sec. II, we
introduce the model. Using the replica method, we derive
the replicated Hamiltonian, which is our starting point for
the systematic field-theoretic renormalization group proce-
dure. We also define several correlation functions of interest.
In Sec. III, we calculate the effective action of the model order
by order in the disorder strength and from it we derive the beta
functions. Further we examine the universality of coefficients
in the beta functions. In Sec. IV, we evaluate the coefficients in
the beta functions using two different methods and find three
universal coefficients, one of them from one-loop and two of
them from two loop. In Sec. V, we give the final form of the
scaling equations, find the correction-to-scaling exponent, and
obtain the correlation function (that measures the fluctuations
due to the disorder) in the super-rough low-temperature phase.
In Sec. VI, we present a first-principles derivation of the
correlation function. In Sec. VII, we use the operator product
expansion method which is found in agreement with the
results of the effective action method. Section VIII contains
conclusions. Numerous technical details are relegated to
Appendices.
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II. MODEL, REPLICATED HAMILTONIAN, AND
CORRELATION FUNCTIONS

A. Model

We consider the 2D random-phase sine-Gordon model.
In terms of a real displacement field θ (x) ∈ (−∞,∞), its
Hamiltonian reads

H =
∫

d2x

[
κ

2
(∇xθ )2 − h · ∇xθ − 1

a
(ξeiθ + H.c.)

]
, (1)

where κ is the elastic constant, a is the short-length-scale
cutoff, and h(x) and ξ (x) are quenched Gaussian random
fields, the first one real and the other complex. Their nonzero
correlations are given by

hi(x)hj (y) = �hδ
ij δ(x − y), (2)

ξ (x)ξ ∗(y) = �ξδ(x − y), (3)

where i,j ∈ {1,2} denote the components of h. For future
convenience, we define the disorder strengths �h,ξ in terms of
the dimensionless parameters σ and g as follows:

�h = T 2 σ

2π
, �ξ = T 2 g

2π
, (4)

where T is the temperature. Note that the disorder h(x) must
be introduced as it is generated by the symmetry-breaking field
under coarse graining. We denote disorder averages by . . ..
Depending on context x and y will be used either to denote 2D
coordinates (as in previous equations) or as their norms, i.e.,
x stands either for x or |x|.

B. Replicated Hamiltonian

We use the replica method to treat the disorder.10 The parti-
tion function for the model (1) is given by Z = ∫ Dθe−H/T . In
order to perform the disorder average, we use the replica trick,
and the free energy of the system F = −T ln Z is written as

F = lim
n→0

(Zn − 1)/n. (5)

The average with respect to disorder can now be done since one
can write Zn = ∫ (∏n

α=1 Dθα

)
e−H rep/T , where θα,α = 1 . . . n

are the replicated fields. In the following, by greek indices
α,β, . . . we denote replicated fields and we do not write
explicitly the boundaries in the sums.

The replicated Hamiltonian reads

H rep = H
rep
0 + H

rep
1 , (6)

where the harmonic part is

H
rep
0

T
=
∑
αβ

∫
d2x

{
κ

2T
δαβ[(∇xθα)2 + m2(θα)2]

− σ

4π
∇xθα · ∇xθβ

}
. (7)

The mass m is introduced in the model as an infrared cutoff.
We will perform calculations with finite m and study the limit
m → 0 at the end. The system size is infinite throughout the
paper. The anharmonic part reads

H
rep
1

T
= − g

2πa2

∑
αβ

′
∫

d2x cos(θα − θβ). (8)

We introduced the symbol
∑ ′

, which denotes a summation
where all replica indices are different. While after replicating
the model (1) one formally obtains a sum over all uncon-
strained replica indices, for convenience, we use Eq. (8).

C. Correlation functions

Our aim is to compute the two correlation functions:

G(x) = 〈θ (x)θ (0)〉 − 〈θ (x)〉〈θ (0)〉, (9)

G0(x) = 〈θ (x)〉〈θ (0)〉, (10)

where G(x) measures the (disorder averaged) thermal fluctua-
tion while G0(x) measures the fluctuations due to disorder of
the (thermally averaged) displacement field.

These disorder averaged correlations can be obtained from
correlation functions of replicated fields. For instance,

G(x) = lim
n→0

1

n

∑
αβ

Gαβ(x), (11)

G0(x) = lim
n→0

(1 − δαβ)Gαβ(x), (12)

where

Gαβ (x) = 〈〈θα(x)θβ(0)〉〉. (13)

It can also be expressed as

Gαβ(x) = δαβG(x) + G0(x), (14)

which contains both correlations defined in Eq. (9).G(x) is also
called the connected part and G0(x) the off-diagonal part. To
this aim we will use the harmonic part H

rep
0 as the “free”

theory and treat H
rep
1 in perturbation theory, i.e., perform

a perturbation theory in g. Here and below, we denote by
〈〈· · · 〉〉 (exact) averages over the complete Hamiltonian H rep

and by 〈· · · 〉 averages over the free part H rep
0 (it also designates

thermal averages in the unreplicated theory, as no ambiguity
can arise).

We start by computing the correlation function for the
harmonic part, i.e., for g = 0. It is easily found in Fourier
space:

Gαβ(q) = 〈θα(q)θβ(−q)〉 =
[

κ

T
(q2 + m2)δαβ − σ

2π
q2

]−1

= T

κ

1

q2 + m2
δαβ + σ

2π

T 2

κ2

q2

(q2 + m2)2
+ O(n),

(15)

where in the last step we inverted a replica matrix keeping only
nonvanishing terms in the replica limit n → 0. Going to real
space, one obtains

Gαβ(x) = 〈θα(x)θβ(0)〉 = δαβG(x) + G0(x). (16)

The connected part reads

G(x) = 2(1 − τ )K0(m
√

x2 + a2), (17)

and everywhere in the paper the parameter τ denotes

τ = 1 − T/Tc. (18)

By K0 we denote the modified Bessel function of the second
kind.40 Our model (1) has a phase transition at temperature
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Tc = 4πκ (see Fig. 2), i.e., for τ = 0. In the following, we
will repeatedly use the expression for G(x), which has the
following behavior at small distances |x| � (cm)−1:

G(x) = −(1 − τ ) ln[c2m2(x2 + a2)], (19)

with the constant c = eγE /2 and γE is the Euler constant. In
Eq. (17), we have introduced the ultraviolet regularization by
the parameter a. Such choice of regularization is preferable
to some other choices in momentum space, since our RG
procedure is most easily done in coordinate space.41

The off-diagonal part of the correlation function for g = 0
reads

G0(x) = σT 2

(2π )2κ2

[
K0(m|x|) − m|x|

2
K1(m|x|)

]
+ O(n),

(20)

which at small distances |x| � (cm)−1 becomes

G0(x) = −2σ (1 − τ )2{1 + ln[c2m2(x2 + a2)]} + O(n).

(21)

The model studied here possesses an important symmetry,
the statistical tilt symmetry (STS), i.e., the nonlinear part H

rep
1

is invariant under the change θα(x) → θα(x) + φ(x) for an
arbitrary function φ(x). As discussed in many works,15,17,42,43

and recalled below, this implies two important properties:
(i) G0(x) does not appear to any order in perturbation theory
in g in the calculation of, e.g., the effective action (see the
following section), and (ii) the disorder averaged thermal
correlation is uncorrected to all orders:

G(x) = G(x), (22)

i.e., independent of g. This implies that τ or T/Tc can be
measured from the amplitude of the logarithm inG(x) ∼ 2(1 −
τ ) ln x at large x, hence they are uncorrected by disorder.44

Because of property (i), G0(x) only receives additive
corrections, e.g., corrections to σ , which in the present model,
change its logarithmic behavior (21) into a squared-logarithm
behavior for G0(x), as discussed below.

The perturbation theory thus depends only on the function
G(x). While the precise form of the correlation function for
the model (7) can be explicitly calculated and takes the form
(17), we will explicitly check below that the precise form of
G(x) is not important as long as it satisfies the two conditions:
(a) the limiting behavior of the correlation function (17) is
logarithmic as given in Eq. (19) and (b) the propagator tends
(exponentially) to zero at large distances. The crossover length
is given by the infrared cutoff, which is the inverse mass in our
case. The freedom of the propagator that satisfies conditions
(a) and (b) is manifested through the renormalization group
equations, which will contain several nonuniversal constants
that, when appropriately combined, produce some universal
numbers. These universal numbers determine in turn the
amplitude of the correlation function in the super-rough phase,
as well as the correction-to-scaling exponent.

III. EFFECTIVE ACTION OF THE MODEL

In this section, we calculate the effective action functional �
for the model (1). It will directly lead to the scaling equations of

the model (1) and critical properties of the system. It extends to
the next order in perturbation theory the calculation of � in Ref.
18. In the framework of diagrammatics, � can be expressed
as a sum over all one-particle irreducible graphs.45 Here, we
will not calculate � using a diagrammatic approach but via an
equivalent algebraic method. The definition and the derivation
of the final form of the effective action (A17), to the required
order in perturbation theory, is presented in Appendix A. The
difference with the standard Wilsonian procedure of Ref. 46 is
that one integrates out fields that live in the whole momentum
space and not only in the high-momentum degrees of freedom.
These fields that are integrated out are denoted by χ in
Eq. (A17). Translated to the replicated Hamiltonian, our aim
is to evaluate the following expression:

� = H
rep
0

T
+ �1 + �2 + �3 + O(g4), (23)

where �i is the corresponding term from Eq. (A17) propor-
tional to gi .

A. Derivation of �

To lowest order in g, we have

�1 = 〈H rep
1 (θ + χ )/T

〉χ
= − g

2πa2
e−G(0)

∑
αβ

′
∫

d2x cos(θα − θβ). (24)

In the previous and all forthcoming terms of similar form,
evaluation of averages of the type 〈· · · 〉χ is quite simply done
by making use of Wick’s theorem when one gets contractions
of χ fields with respect to the quadratic Hamiltonian (7). Due
to “charge neutrality” of Eq. (8), only the diagonal part (17) of
the correlation function Gαβ(x) survives in expressions of the
type 〈[H rep

1 (θ + χ )/T ]p〉χ , where p is a positive integer.
In order to obtain �2, we use the transformation of sum rule

(B1) when evaluating the corresponding term from Eq. (A17).
The final result reads

�2 =−1

2

(
− g

2πa2

)2

e−2G(0)
∑
s=±1

⎧⎨⎩∑
αβ

′∫
d2xd2yA(x − y,2s)

× cos [θα(x) − sθα(y) − θβ(x) + sθβ(y)]

+
∑
αβγ

′ ∫
d2xd2y2A(x − y,s)

× cos[θα(x) − sθα(y) − θβ(x) + sθγ (y)]

⎫⎬⎭, (25)

where

A(x,p) = epG(x) − 1 − pG(x). (26)

The second-order term �2 consists of two- and three-replica
contributions. It turns out that only terms with s = +1 give
contributions to the renormalization. The term multiplied by
A(x − y,1) is responsible for renormalization of the coupling
constant g, while the other term multiplied by A(x − y,2)
renormalizes the off-diagonal part of Eq. (7).
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One should notice that the second term of Eq. (A17) pro-
portional to g2 that contains the integral basically makes the
total contribution (proportional to g2) of Eq. (A17) to be one-
particle irreducible and produces terms −aG(x) in Eq. (26).

In order to obtain the next-order contribution, similarly as
we did for �2, we use the sum transformation (B2) when we
evaluate the term (A17) proportional to g3. The final result
reads �3 = �′

3 + �′′
3 with

�′
3 = 1

6

(
− g

2πa2

)3

e−3G(0)
∫

d2xd2yd2z

⎧⎨⎩3B(x − y,y − z,z − x, −2,2,2)

×
∑
αβ

′
cos[θα(x) + θα(y) − θα(z) − θβ(x) − θβ(y) + θβ(z)]

+ 12B(x − y,y − z,z − x,2,1, −1)
∑
αβγ

′
cos[θα(x) − θα(y) + θα(z) − θβ(x) + θβ(y) − θγ (z)]

+ 2B(x − y,y − z,z − x,1,1,1)
∑
αβγ

′
cos[θα(x) − θα(y) − θβ(x) + θβ(z) + θγ (y) − θγ (z)]

+ 6B(x − y,y − z,z − x,1,1,0)
∑
αβγ δ

′
cos[θα(x) − θα(y) + θβ(y) − θβ(z) + θγ (z) − θδ(x)]

⎫⎬⎭, (27)

while the other part �′′
3 is not important for critical properties of the model and is given in Eq. (C1). In the previous equation, the

common term B is defined as

B(x,y,z,a,b,c) = eaG(x)+bG(y)+cG(z) − eaG(x) − ebG(y) − ecG(z) + 2 − B1(x,y,z,a,b,c), (28)

where the part of B that makes it one-particle irreducible reads

B1(x,y,z,a,b,c) = eaG(x)[bG(y) + cG(z)] + ebG(y)[aG(x) + cG(z)] + ecG(z)[aG(x) + bG(y)]

− abG(x)G(y) − acG(x)G(z) − bcG(y)G(z) − 2aG(x) − 2bG(y) − 2cG(z). (29)

It arises from the last two terms in Eq. (A17).

The summands of �3 can be distinguished by the sum
a + b + c of the corresponding B-functions. For purposes
of renormalization of the model (1), the only relevant terms
are these for which a + b + c equals either two or three.
The former contribute to the renormalization of the cou-
pling constant g, see Eq. (8), while the latter renormalize
the off-diagonal part of Eq. (7). All other summands pro-
duce nondivergent contributions to the effective action and
hence can be neglected. For completeness of presentation,
they are given in Eq. (C1).

B. Expansion of �

Having obtained the effective action � in the preceding
part, we are now prepared to study its renormalization. The
perturbative expansion of � in the bare coupling constant
g contains divergencies when the cutoff a tends to zero. In
order to remove such divergencies from the theory, it turns
out that two renormalization constants suffice. They relate
the initial coupling constants σ and g and the “renormalized”
ones, σR and gR , respectively. Written in terms of renormalized
quantities, the effective action will be free of divergencies (up
to third order, which is the order we are working with). In the
following, we will calculate the divergencies of the effective
action (23) in a double expansion in two small parameters,
g and τ , meaning close to the critical temperature and for
weak anharmonic terms of the model (1).

We now write � in the same form as the starting Hamilto-
nian with new coefficients, plus irrelevant terms. That allows us
to define gR and σR below. The first-order term (24) is already
in a proper form. The second-order term �2 [see Eq. (25)]
contains terms with two and three replica sums. The former
gives contribution to the off-diagonal part of H

rep
0 , while the

latter changes H
rep
1 , as we will see below. It is important to

stress here that even if we had started without the term ∼h

in Eq. (1) [i.e., without the term ∼σ in Eq. (7)], this term
would have been generated under the RG coarse graining
procedure, as first noted by Cardy and Ostlund.14 This term
is very important for the behavior of correlation function at
T < Tc and its super-rough ln2 form.11 We will come to that
point later when we investigate the correlation function of
the model. After expanding the two-replica part of �2 [see
Eq. (25)], one obtains

�2 = 1

2

(
− g

2πa2

)2
e−2G(0)

∑
αβ

′
[

8πa1

c2m2

∫
d2x cos(θα − θβ)

+ 2πa2

4c4m4

∫
d2x(∇xθα − ∇xθβ)2 + · · ·

]
, (30)

where · · · stands for many irrelevant operators and we define
the dimensionless integrals:

a1 = c2m2

2π

∫
d2yA(y,1), (31)
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a2 = c4m4

2π

∫
d2yy2A(y,2). (32)

Finally, the cubic term in g after expansion produces the
following terms:

�3 = 1

2

(
− g

2πa2

)3
e−3G(0)(2π )2

×
∑
αβ

′
{

b1 − 8b2 + 12a2
1

c4m4

∫
d2x cos(θα − θβ)

+ b3

2c6m6

∫
d2x(∇xθα − ∇xθβ)2 + · · ·

}
, (33)

where

b1 = c4m4

(2π )2

∫
d2xd2yB(x + y,x,y, −2,2,2), (34)

b2 = c4m4

(2π )2

∫
d2xd2yB(x,y,x + y,2,1, −1), (35)

b3 = c6m6

(2π )2

∫
d2xd2yx2B(x,x + y,y,1,1,1) (36)

are dimensionless integrals. We emphasize here that in the
above expressions (30) and (33), we already take into account
the replica limit n → 0. Had we kept n, we would have
obtained 2(2 − n)a1 instead of 4a1 in Eq. (30) and b1 +
4(n − 2)b2 + 2(n − 2)(n − 3)a2

1 instead of b1 − 8b2 + 12a2
1

in Eq. (33). We should also mention that the term a2
1 in Eq. (30)

is basically the second-order term
∫

d2xd2yB(x,y,0,1,1,0)
that could be written as repetition of Eq. (31) term.

The final expression for the effective action reads

� =
∑
αβ

∫
d2x

{
κ

2T
δαβ[(∇xθα)2 + m2(θα)2]

− σR

4π
∇xθα · ∇xθβ − gR

2π
c2m2 cos(θα − θβ)

}
, (37)

where

gR = g̃ − 2a1g̃
2 + 1

2

(
b1 − 8b2 + 12a2

1

)
g̃3, (38)

σR = σ + a2

2
g̃2 − b3g̃

3, (39)

with g̃ = ge−G(0)/(cma)2. In the following, it will be useful to
have the inverse expression of Eq. (38) that reads

g̃ = gR + 2a1g
2
R − 1

2

(
b1 − 8b2 − 4a2

1

)
g3

R. (40)

In Eq. (37), we have returned to the unrestricted replica sum,
since

∑′
αβ(∇xθα − ∇xθβ)2 =∑αβ(∇xθα − ∇xθβ)2, while the

cosine term (8) differs from the corresponding cosine in
Eq. (37) by O(n) that goes to zero.

C. Beta functions of the model

In this section, we obtain the general form of the beta
function of the model (1) in terms of the integrals ai,bi defined
in Eqs. (31), (32), and (34)–(36). We are generally interested in
the flow of the effective action when the cutoff is varied, and the
beta functions describe the flow of the terms (i.e., operators),
which become relevant at the transition. Here, they are thus
defined by computing derivatives of gR and σR with respect to

the cutoff for a fixed microscopic model, i.e., keeping g and σ

fixed, as a function of gR itself:

−m∂mgR = βg(gR), (41)

−m∂mσR = βσ (gR). (42)

We thus obtain from Eqs. (37)–(39):

βg(gR) = 2τgR − 2(2a1τ − m∂ma1)g2
R

+ 1
2

[
4τ
(
b1 − 8b2 + 4a2

1

)
−m∂m

(
b1 − 8b2 + 4a2

1

)]
g3

R + O
(
g4

R

)
, (43)

βσ (gR) = (2τa2 − 1
2m∂ma2

)
g2

R + [2τ (4a1a2 − 3b3)

− 2a1m∂ma2 + m∂mb3]g3
R + O

(
g4

R

)
. (44)

When deriving the last two expressions, we used that in the
limit ma → 0, one can replace47 g̃ = g(cma)−2τ , which gives
m∂mg̃ = −2τ g̃. We have also used the inverse relation (40).

Equations (43) and (44) should be understood as an
expansion of beta functions in powers of gR where the first
three powers are taken into account. Anticipating that the fixed
point is gR ∼ O(τ ) for τ > 0 we thus need to compute the
coefficients of g2

R to O(τ ) and the ones of g3
R to order O(τ 0) to

study this equation in the vicinity of the fixed point consistently
to the desired order in τ .

D. Universality and the beta function

From the above considerations we can thus surmise, and
will check below by explicit calculation, that our beta functions
have the form

βg(gR) = 2τgR − Ag2
R − Bτg2

R + Cg3
R, (45)

βσ (gR) = Dg2
R + Eτg2

R − Fg3
R, (46)

where the constants A,B,C,D,E, and F are for now unde-
termined, and computed below. We can already ask what is
the amount of universality in these coefficients. One way to
address it is to allow for a class of changes in definitions of
the renormalized parameters σR and gR such that the new
parameters σ ′

R and g′
R are expressed in terms of the old ones

as

g′
R = GgR + HτgR + Ig2

R + · · · , (47)

σ ′
R = σR + Kg2

R + · · · , (48)

where · · · stands for higher-order terms that do not interfere
with beta functions to third order that we are considering. Note
that a change of the scale of σR is not permitted since it occurs
in the quadratic part, hence is an observable. Although one can
always consider a broader class of changes, this one is broad
enough to account for changes in definitions of the small-
and large-scale cutoff and cutoff functions while keeping the
structure of Eq. (45) unchanged. In particular, the coefficients
in Eqs. (43) and (44) contain some dependence on the details
of the cutoff function, through the values of the integrals ai

and bi .
One easily finds that the beta functions for the new variables

is the same as for the old ones (45) with the change A → A/G,
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C → C/G2, D → D/G2, and

B → B

G
− AH + 2I

G2
, E → E

G2
− 2DH + 4KG

G3
,

(49)

F → F

G3
− 2DI − 2AGK

G4
.

Hence we find that there are the following three invariant
combinations, which we define as

D = 4D

A2
, C = 4C

A2
, I = 8

F + BD − 1
2AE

A3
. (50)

To see what they mean, we consider the value of the fixed point
βg(g∗

R) = 0 of Eq. (45),

g∗
R = 2

A
τ + 2(2C − AB)

A3
τ 2 + O(τ 3), (51)

a value which is not universal. Then we find that one invariant
combination is related to the correction-to-scaling exponent
ω, by definition48

−ω = β ′
g(g∗

R) = −2τ + Cτ 2 + O(τ 3). (52)

The other two invariant combinations enter into the expansion
of

βσ (g∗
R) = Dτ 2 + (CD − I)τ 3 + O(τ 4), (53)

which will turn out to be related to the amplitude of the squared
logarithm and are universal. We now turn to the explicit
calculation of the coefficients of the beta functions and of
their universal combinations.

IV. EVALUATION OF BETA FUNCTIONS

In this section, we calculate the coefficients in the beta
functions. The integrals defined in Eqs. (31)–(36) are dimen-
sionless numbers of the form

ai = ai(τ,ma), bi = bi(τ,ma), (54)

i.e., they depend only on τ and on the dimensionless ratio ma.
This is easy to see by the rescaling y → y/(mc), which means
they can be computed setting m = c = 1 and replacing a2 →
a2m2c2. Note that for these integrals, one has −m∂m = −a∂a .

Hence we will now consider two alternative approaches.
In the first one (finite ultraviolet-cutoff method), we keep
finite a in the propagator and evaluate the divergent parts of
the integrals in an expansion in powers of τ . In the second
approach, close in spirit to the dimensional regularization
method, we start at fixed τ > 0 in the glass phase. In that
case, we find that these integrals are ultraviolet convergent,
hence one can set a = 0 and compute these integrals directly
in the continuum limit for τ > 0:

ai = ai(τ ) = ai(τ,0), bi = bi(τ ) = bi(τ,0). (55)

The divergent nature of this integrals then implies that they
admit a Laurent series expansion, i.e., a pole expansion around
τ = 0.

The renormalizability of the theory manifests itself by the
fact that the coefficients of the above beta functions [e.g.
Eqs. (43) and (44)] will be found to be finite in the limit
ma → 0 and in the vicinity of the transition τ = 0, order by
order in an expansion in powers of τ .

A. Finite-a method

For τ = 0 all the integrals (31)–(36) contain divergencies
when a → 0 due to Eq. (19). Our aim will be to calculate the
coefficients close to the transition temperature T = Tc (i.e.,
τ = 0) in the form of a τ expansion. Inspection of Eqs. (43)
and (44) shows that to obtain the beta functions up to cubic
terms we need the term a1 and a2 evaluated to O(τ ) accuracy,
while for the remaining terms it is sufficient to consider the
limit τ = 0. The detailed procedure for evaluation of integrals
is given in Appendix D. Here we only state the important
results. We mention that a similar method is used for the SG
model by Amit et al.4

The coefficient a1 reads

a1 = − 1
4 {2λ + τλ2 + c1[1 + O(τ )] + O(τ 2)}, (56)

where the constant c1 is defined in Eq. (D4) and depends on the
detailed form of the cutoff function. It is thus nonuniversal. It is
important to keep that constant only for RG equations beyond
g2

R . We thus keep it here for our two-loop calculation and will
check that it does not enter the final result. We introduced the
abbreviation

λ = ln(c2m2a2). (57)

The other coefficient a2 is

a2 = −λ

2
− τλ − τλ2

2
+ c2 [1 + O(τ )] + O(τ 2), (58)

where the other nonuniversal constant is c2 defined in
Eq. (D6).

The evaluation of two-loop integrals b1 and b2 is somewhat
complicated. The final results are given in Eqs. (D12) and
(D17). The important combination that appears in the beta
functions now reads

b1 − 8b2 + 4a2
1 = −λ − c3 + O(τ ). (59)

There are two important things to be mentioned. The first one is
that the λ2 divergence from all summands in Eq. (59) vanishes
when combined. That is important for the renormalizability of
the theory and leads to a finite beta function. The other point
is that the nonuniversal term c1λ that appears in b2 and a2

1 is
canceled in the combination, leaving the universal coefficient
in front of g3

R in the first beta function (43).
The last two-loop integral reads

b3 = 1
4 [λ2 − 2(2c2 + 1)λ + c4], (60)

with some constant c4. Using m∂mλ = 2, we finally obtain the
beta functions

βg(g) = 2τg − 2g2 + c1τg2 + g3, (61)

βσ (g) = 1
2g2 + (1 + 2c2)τg2 − 1

2 (c1 + 4c2 + 2)g3. (62)

The beta functions as obtained here are independent of the
details of the chosen function G(x) to lowest one-loop order
[the first two terms in Eq. (61) and the first one in Eq. (62)]
but not to the next two-loop order. The apparent one-loop
universality is only due to our fixed choice of the definition of
g in terms of the effective action, which is an observable. It is
spoiled by any change of scale in g [coefficient G in Eq. (47)],
or any other change in definition of g.
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One thus finds A = 2, C = 1, and D = 1/2 and the
universal combinations defined in Eq. (50) are

D = 1/2, C = 1, I = F + 1
2B − E = 0. (63)

B. Dimensional method

In this section, we calculate the integrals by the dimensional
method. As discussed above, λ divergencies obtained using
the finite-a method now become poles in τ . In addition, all
integrals in the present method become m independent, so
only the terms that do not involve m∂m in beta functions (43)
and (44) survive. Hence, from Eqs. (43) and (44), we see that
the constants in the coefficients of the beta functions (45) and
(46) are determined from the integrals ai and bi as follows.

The pole and finite part of the one-loop integrals determine
the four coefficients:

4a1 = A

τ
+ B + O(τ ), (64)

2a2 = D

τ
+ E + O(τ ). (65)

The details of the calculation are presented in Appendix F,
with the result

A = 2, B = −4c′
1, (66)

D = 1/2, E = −2c′
2, (67)

where c′
1 and c′

2 are again two nonuniversal constants defined
in Eqs. (F2) and (F3).

The two-loop integrals come in two combinations which
determine C and F as

b1 − 8b2 + 4a2
1 = 1

2

C

τ
+ O(τ 0), (68)

6b3 − 8a1a2 = F

τ
+ O(τ 0). (69)

From Appendix F, both 1/τ 2 poles and some nonuniversal 1/τ

terms cancel in the first combination, which is found to have
the form (68) with

C = 1. (70)

The third two-loop integral is

b3 = 1

6τ 2
− c′

2

τ
+ O(τ 0). (71)

Forming the second combination (69), one finds a cancellation
of the 1/τ 2 pole and

F = 2(c′
1 − c′

2). (72)

In summary, one finds the following beta functions:

βg(g) = 2τg − 2g2 + 4c′
1g

2τ + g3, (73)

βσ (g) = 1
2g2 − 2c′

2g
2τ + 2(c′

2 − c′
1)g3. (74)

Note that the coefficients A = 2 and D = 1/2 needed for the
lowest one-loop-order calculation are the same as obtained
above in Eq. (61) by a different scheme. Again, this is because
the definition of the coupling constant gR is the same in both
cases and fixed by the effective action. Although the other
coefficients, needed for the next-order calculation (two-loop)

are not the same, one can check that the universal invariants
D, C, and I yield the same values as in Eq. (63). The two
calculations are thus consistent.

For sake of completeness we have performed two addi-
tional calculations, both using dimensional regularization. In
Appendix H we have independently confirmed the calculation
of the present paragraph (and of Appendix F) for a specific
choice of the cutoff function G(x) which allows explicit
calculation of all coefficients. In section VII and Appendices I
and J we have done a different calculation using the operator
product expansion and a different cutoff scheme. The beta
functions obtained there lead again to A = 2, D = 1/2, and
C = 1 and now B = E = F = 0, which leads again to the
same values as in Eq. (63) for the three invariants. All four
calculations are thus consistent.

V. RENORMALIZATION GROUP EQUATIONS AND
CORRELATION FUNCTION: RESULTS

Let us summarize what has been achieved. First we have
established the following RG equations, in terms of the scale
� = − ln m:

dτ

d�
= 0, (75)

dgR

d�
= 2τgR − 2g2

R − Bτg2
R + g3

R, (76)

dσR

d�
= 1

2
g2

R + Eτg2
R − Fg3

R, (77)

where we recall that τ = 1 − T/Tc. Although the more general
expression are Eqs. (45) and (46), from now on, we use A = 2,
D = 1/2, which, as discussed above, has been obtained in
several schemes. Here, B,E, and F are nonuniversal constant
that we found satisfy

I = F + 1
2B − E = 0. (78)

These equations generalize to next order (two-loop) the one-
loop equations obtained in Refs. 11,14,15,17. We have also
clarified their universality to next order in Sec. III D. The first
equation (75) encodes the exact result (22) from STS. The
first two equations show that the model has a transition at
T = Tc. For T > Tc, the renormalized coupling gR(�) flows
to zero, while for T < Tc, it flows to a finite value g∗

R , which
continuously depends on τ :

g∗
R = τ + 1

2 (1 − B)τ 2 + O(τ 3), (79)

i.e., the line of nonzero fixed points, shown in Fig. 2, is
here computed to next order. Its precise value, however, is
nonuniversal. What is universal, however, is its attractive
character for T < Tc, together with the value of the leading
attractive eigenvalue −ω (in the effective-action functional
space), which defines the correction-to-scaling exponent (52):

ω = −2τ + τ 2 + O(τ 3) (80)

for τ > 0, while it is ω = 2τ in the high-temperature phase
for τ < 0 in the vicinity of Tc. As an example of application,
we can expect that the dimensionless susceptibility fluctuation
ratio computed to first order in τ in Ref. 15 will exhibit a L−ω

finite size correction as a function of system size L.
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We now consider the RG equation for σR . From it, we can
obtain the value of the universal amplitude A of the squared
logarithm, by a simple but nonrigorous argument, as was done
in Ref. 11. Indeed, the asymptotic solution of Eq. (77) is

σR(�) � σ0 + βσ (g∗
R)�, (81)

where σ0 depends on all details of the initial condition and
is unimportant as it leads only to a subdominant single
logarithmic growth. To estimate the off-diagonal correlation at
a given wave vector q, one may consider the limit of small mass
m � q and argue that q itself sets the scale �∗ = ln[1/(aq)] at
which one should stop the RG. At the same time, one replaces
σ by its effective value at that scale, i.e., σ → σR(�). Hence
from Eq. (15), one writes

G0(q) � 8π (1 − τ )2 σ (�∗)

q2

∣∣∣∣
�∗=ln[1/(qa)]

� q→08π (1 − τ )2βσ (g∗
R)

ln[1/(qa)]

q2
. (82)

We can now compute the variance of the phase fluctuations as

〈θ (x) − θ (0)〉2 = 2
∫

d2q

(2π )2
(1 − cos qx)G0(q). (83)

Using Eq. (82) and the following estimate of the momentum
integral, ∫

d2q

(2π )2
(1 − cos qx)

ln[1/(qa)]

q2

�
∫ 1/a

0

dq

2π
[1 − J0(qx)]

ln[1/(qa)]

q

= 1

4π
ln2(x/a) + O[ln(x/a)], (84)

we obtain the leading squared-logarithmic behavior

〈θ (x) − θ (0)〉2 = A ln2(x/a) + O[ln(x/a)]. (85)

The amplitude in the above equation is

A = 4(1 − τ )2βσ (g∗
R)

= 4(1 − τ )2τ 2[D + (CD − I)τ + O(τ 2)], (86)

and using the values of the invariants computed above Eq. (63),
we obtain our main result

A = 2τ 2 − 2τ 3 + O(τ 4). (87)

In the following section, we present a calculation of the
correlation function from first principles that confirms and
complements the above more qualitative argument.

Before we do so, two comments are in order. The correlation
function 〈[θ (x) − θ (0)]2〉 in the leading order has the same
behavior as the one in Eq. (85). Their difference is the thermal
correlation function [c.f. Eq. (9)] that is a logarithm for the
present model due to STS. Another comment is about the
region above the critical temperature T > Tc. There σR(�)
saturates to a finite value at large scales. This leads to simple
logarithmic growth of the off-diagonal disorder averaged phase
fluctuations Eq. (83) with a nonuniversal prefactor.

VI. EXPLICIT CALCULATION OF THE TWO-POINT
FUNCTION

As is well known, the correlation function can be obtained
from the inverse of the quadratic part of the effective action,
i.e., in Fourier space

Gαβ(q) = �−1
αβ (q). (88)

The inversion is in replica space and �αβ(q) is defined by
expanding the effective action (23) into powers of the fields to
quadratic order, i.e.,

� = 1

2

∑
αβ

∫
d2q

(2π )2
�αβ(q)θα(q)θβ(−q) + O(θ4) (89)

up to a constant (which encodes for the fluctuations of the free
energy). It is convenient to decompose the replica matrix as

�αβ(q) = �c(q)δαβ + �(q). (90)

Because of the STS, we expect that

�c(q) = 1

G(q)
= 1

4π (1 − τ )
(q2 + m2), (91)

and one can indeed check explicitly on the expressions (24),
(25), and (27) that there are no corrections to any order in g

to �c(q). This leads to the exact formula (22) for the disorder
average of the thermal correlation.

We now turn to the off-diagonal part �(q), which gives the
second correlation defined in Eq. (9), in Fourier space,

G0(q) = −G(q)2�(q) = −(1 − τ )2 (4π )2

(q2 + m2)2
�(q), (92)

from replica matrix inversion of Eq. (90) in the replica limit
n → 0.49 We now examine its perturbative expansion with
respect to the anharmonic perturbation (8), i.e., as an expansion
in g, which can be written as a sum:

�(q) =
∞∑
i=0

�(i)(q), (93)

where �(i)(q) is coming from the corresponding term �i in
Eq. (23).

The lowest-order term in �(q) is the inverse propagator
(15):

�(0)(q) = − σ

2π
q2, (94)

while the next-order term is trivially obtained from Eq. (24)
and reads

�(1)(q) = −2
g

2πa2
e−G(0) (95)

and it is momentum independent. The first nontrivial term is
obtained from Eq. (25) and reads

�(2)(q) = −4
g2

(2π )2a4
e−2G(0)

∫
d2x{eiq·x[2 sinh G(x)

− sinh 2G(x)] + 3 − 4 cosh G(x) + cosh 2G(x)}.
(96)

Note that expanding this expression at small q one finds that
the coefficient of q2 does not yield exactly the renormalized
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−σR/(2π ) as defined for convenience in Eq. (37). The
difference, however, is related to corrections to irrelevant terms
in the effective action, and vanishes in the limit of zero mass.
Indeed, the expansion of the second-order term of the effective
action (25), which produces Eq. (30), is somewhat different
from the expansion (96). The reason for that is that the second
cosine term multiplied by A(x − y,1) from Eq. (25) produced
the cosine in Eq. (30), while the first cosine multiplied by
A(x − y,2) from Eq. (25) produced the gradient in Eq. (30).
On the other hand, all terms of Eq. (25) contribute to Eq. (96).
However, in the limit m → 0 only the term multiplied by
A(x − y,2) gives a finite contribution that is evaluated below
in Eq. (99), and in that sense the terms (99) and the gradient
term of Eq. (30) are similar. The finite mass effects are studied
in Appendix G.

The previous expressions can be evaluated in presence of a
small-scale cutoff a in the limit m → 0. Using that e−G(0) =
(mca)2(1−τ ), one finds from Eq. (95) that

�(1)(q) = 0. (97)

To evaluate Eq. (96) in the limit m → 0 (and τ small), we
note that there is a factor e−2G(0) ∼ m4(1−τ ) in front and the
integrand can be split in a sum of terms of the form epG − 1. For
p = −2, −1 one can rescale x → x/m and the corresponding
integrals are convergent in the limit m → 0, hence the original
integrals are bounded by O(1/m2). For p = 1 (and τ = 0),
the same holds up to a factor ln ma. Hence we find that all
terms, except e2G(x) − 1, vanish as m → 0. The limit can be
computed by using Eq. (19) equivalently written as

e2G(x) � e2G(0)(1 + x2/a2)−2(1−τ ). (98)

The powers of m (produced by of eG(0)) exactly match, hence
we are left with

�(2)(q) = 2
g2

(2π )2a4

∫
d2x

eiq·x − 1(
1 + x2/a2

)2(1−τ )

= − g2

2πa2

[
1

1 − 2τ
− 4τ (qa)1−2τK−1+2τ (qa)

�(2 − 2τ )

]
= − g2

2πa2
[1 − qaK1(qa)] − 2

g2τ

2πa2
{1 + K0(aq)

+ aq[ln(caq) − 1]K1(aq)} + O(g2τ 2). (99)

Expanding at small aq, we find

�(2)(q) = − g2

2π
q2 ln(aq)

{
−1

2
+ τ [2(ln c − 1) + ln(aq)]

}
+O(g2τ 2,g2q2). (100)

The cubic term of the two-point function is obtained
from Eq. (27). In the limit m → 0, the only term that
survives contains B(x − y,y − z,z − x,1,1,1). This is similar
to the simplification which occurs for �(2)(q) where only
relevant terms in the effective action need to be considered
in the limit m → 0. After transforming the sum over three
different replica indices into sums over unrestricted indices us-
ing

∑′
αβγ f (α,β,γ ) =∑αβγ f (α,β,γ ) − 2

∑
α f (α,α,α) −∑

αβ[f (α,α,β) + f (α,β,α) + f (α,β,β)], the only term that

survives in the replica limit is

�(3)(q) = 2
g3

(2π )3a6
e−3G(0)

∑
αβ

∫
d2xd2yd2z

×B(x − y,y − z,z − x,1,1,1)θα(x)

× [θβ(x) − θβ(y)] + · · · , (101)

where · · · stands for all other terms that vanish in the limits
m → 0,n → 0 and for terms that are more than quadratic in
the fields. After using Eq. (19) in the limit τ → 0, the previous
expression becomes

�(3)(q) = 2
g3

(2π )3

∑
αβ

∫
d2xd2yf (x − y)

× θα(x)[θβ(x) − θβ(y)], (102)

f (x − y) =
∫

d2z
[(x − y)2 + a2]−1

[(y − z)2 + a2][(z − x)2 + a2]
. (103)

Doing a Fourier transform, one finally obtains

�(3)(q) = 4g3

(2π )3

∫
d2x

1 − eiq·x

x2 + a2

1

a2
g

(
x

a

)
, (104)

g(x) = π ln
[
1 + x2 + x

2 (2 + x2)(x + √
x2 + 4)

]
x
√

x2 + 4
. (105)

After evaluation of the previous integral, we find

�(3)(q) = g3

2π
q2 ln(aq)[2(ln c − 1) + ln(aq)] + O(q2).

(106)

To obtain this result, one method is to perform the angular
integral in Eq. (104), to differentiate twice with respect to q,
and then to use the following property:∫ ∞

x0

dxf (qx)
1

x + ..
ln(x + · · · )

= 1

2
f (0) ln2 q + ln q

∫ ∞

0
dzf ′(z) ln z + O(1), (107)

where the · · · means subdominant terms in the large x limit,
f (z) vanishes at infinity and x0 is arbitrary. This formula
is obtained by rescaling x → x/q followed by a partial
integration and an expansion at small q. It is then applied
to f (z) = d2

dz2 [1 − J0(z)] and gives Eq. (106).
We can now add formulas (94), (100), and (106) and obtain

�(q) = −σ (q)q2

2π
(108)

with

σ (q) = σ [1 + O(g2)] − g2

2
ln(aq) − (g3 − g2τ )[ln2(aq)

+2(ln c − 1) ln(aq)] + O(g3τ,g2τ 2). (109)

Having obtained Eq. (108), we should reexpress the bare
coupling g in terms of the renormalized one, gR . One has,
from Eq. (40),

g = g̃(cma)2τ = gR(1 + τλ + 2a1gR) + O
(
g3

R,τ 2gR,τg2
R

)
.

(110)
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Since we want �(q) to order τ 3, considering that gR = O(τ ),
we obtain

σ (q) = σ
[
1 + O

(
g2

R

)]− 1
2 ln(aq)g2

R(1 + 2τλ + 4a1gR)

− (g3
R − g2

Rτ
)
[ln2(aq) + 2(ln c − 1) ln(aq)]

+ O
(
g3

Rτ,g2
Rτ 2
)
, (111)

where to this order we can replace 4a1 → −2λ − c1 from
Eq. (56). We recall that λ = ln(c2m2a2). Now, the renormal-
ized coupling gR depends a priori on the product am and on
the bare value g. However, we know that it satisfies the flow
equation (61) as a function of m. Since here we work in the
limit m → 0, it has thus reached its fixed point g∗

R , hence we
must set in the above calculation,

gR = g∗
R = τ + 1 + c1

2
τ 2 + O(τ 3), (112)

obtained from Eq. (61). Remarkably, all nonuniversal con-
stants cancel and we are left with

σ (q) = σ [1 + O(τ 2)] + 1
2 [τ 2 + τ 3 + O(τ 4)] ln[1/(aq)].

(113)

Another remarkable fact is the cancellation of the contribution
from �(3)(q) with the O(τ ) part of the �(2)(q) contribution.
Taken together these cancelations are likely to be equivalent
to the vanishing of the invariant I = 0 found in the method
using σR . One can notice that Eq. (94) is the subdominant
contribution in the small-q limit. Stated differently, the
presence of the (bare) disorder h(x) in the starting model (1),
that is characterized by the bare disorder strength σ present in
Eq. (113), is not important for the leading low-energy behavior
of the effective action. However, the generated disorder h(x)
under the RG procedure [contained in terms ∝ ln(aq) in
Eq. (113)] determines the behavior of the correlation function.

We can now compute the amplitude A. From inserting

G0 = 8π (1 − τ )2 σ (q)q2

(q2 + m2)2
(114)

into Eq. (83), in the limit m → 0, we recover exactly the same
result as Eq. (87) for the amplitude.

VII. RG VIA OPERATOR PRODUCT EXPANSION

A. Operator product expansion as an efficient tool to extract the
renormalization constants

The operator product expansion (OPE) is a very efficient
tool to extract the RG functions for renormalizable field theo-
ries. The first to construct a general theory of renormalization
were Bogoliubov and Parasiuk,50 followed by Hepp.51 They
introduced what since then is called a R operation, which
subtracts the divergences from a given Feynman-diagram, and
renders all observables as, e.g., correlations functions finite.
This was done by considering each ordering of the distances in
the Feynman-integral, the since then so-called Hepp sectors,
separately. The R operation can be thought of as an OPE, or
Taylor expansion of a diagram for all possible ways to contract
the points from which are retained as counter terms only the
divergent contributions, restricted to the sector in which they
diverge. Further it could be shown that the R operation can
indeed be interpreted as a multiplicative renormalization, i.e.,

to introducing Z factors. This was most clearly demonstrated
by Zimmermann,52 who reformulated the R operation in
terms of forests, i.e., mutually disjoint or included sets. An
equivalent formulation, which in some respects is technically
more convenient uses nests. It is this formulation of the
proof of perturbative renormalizability, introduced by Bergère
and Lam,53 which finally has been generalized by David,
Duplantier, and Guitter54–57 and Wiese58 to polymerized
tethered membranes, and which we will use here. It is a very
generally applicable technique, which correctly treats distribu-
tions, and allows for local as well as multilocal divergences. We
state the general criterion for renormalizability (see Ref. 58): a
statistical field theory is perturbatively renormalizable, if (i) the
theory is renormalizable by power-counting, (ii) divergences
are short-ranged, i.e. no divergences appear at finite distances,
(iii) the dilation operators commute, (iv) there exist an operator
product expansion, which describes these divergences, and
(v) the divergences of the operator product expansion do not
have an accumulation point at dimension 0. Especially, after
subtracting them, the integrand has to be convergent when the
distances are contracted.

This leads us to the theorem of renormalizability. (i) The
renormalized integral∫

�x1,...,�xN

R I (�x1, . . . ,�xN )

is UV-finite at τ = 0. (ii) The renormalized integral, which
contributes to the connected expectation value of the observ-
able O at nth order,

O
(n)
R (�z1, . . . ,�zm) :=

∫
�x1,...,�xN

R I conn
O (�x1, . . . ,�xN ) ,

is UV finite and IR finite at τ = 0. (iii) In perturbation theory,
the renormalized expectation value of an observable is given
by

OR(�z1, . . . ,�zm) :=
∞∑

n=0

(−g)n

n!
O

(n)
R (�z1, . . . ,�zm) .

(iv) The subtraction operation R is equivalent to multiplicative
renormalization, i.e., to introducing Z factors in the standard
way.

In practice, what these two theorems mean for a theory like
the random-phase sine-Gordon model is summarized by the
following remarks. (i) The microscopic model can be defined
without a microscopic cutoff, as long as one is below the
upper critical dimension (τ > 0). It may or may not contain a
macroscopic cutoff, e.g., the system size. (ii) The macroscopic
(renormalized theory) is defined via perturbation theory. The
latter depends on a large-scale cutoff L. The choice which is
implemented in the above theorem, is to bound all distances
which appear in the space-integrals of the perturbative expan-
sion by L. If there are strong UV divergences, they are to
be treated via finite-part prescription. (iii) Knowledge of the
working of the proof of renormalizability, i.e., usage of the
operator product expansion, is a useful tool to identify and
subtract subdivergences. The latter can in general easily be
calculated analytically. Since the resulting (subtracted) integral
is absolutely convergent, it can be evaluated in an expansion
in τ , i.e., for the order we need at τ = 0. While the OPE is
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useful to analyze subdivergences, it is not necessary to know
its working to calculate the needed integrals. (iv) The theorem
then ensures that with this renormalization all expectation
values are finite, for any cutoff. (v) All critical exponents are
universal.

For the practical calculation, we rely on the techniques
developed in Refs. 58–61. The simplest and most pedagogical
example of a two-loop calculation in this scheme is given in
Ref. 62. An example at four-loop order can be found in Ref. 63.

B. Bare model and renormalization conventions

We consider the same bare model as in Sec. II. However, for
simplicity here and below, we make the choice κ = 1/(2π ),
hence Tc = 2 and

T = 2(1 − τ ). (115)

The bare action thus is S0 = H
rep
0 /T with

S0 = 1

2π

∑
α

∫
x

[∇θα(x)]2

2T
− g0

2π

∫
x

∑
αβ

′
: ei[θα (x)−θβ (x)] : ,

where we recall that
∑ ′

denotes sums where all replica indices
take different values. The notation : eiθα (x) : denotes normal
ordering; implicitly, a vertex operator depending on a single
point as eiθα (x) is considered normal ordered, i.e., 〈eiθα (x)〉 = 1.
The correspondence with Eq. (8) is that g0 ≡ g

a2 eG(0). The free
correlation function for g0 = 0 is

〈θα(x)θβ(y)〉 = −T δαβ ln |x|. (116)

Noting the partition function as Z := ∫ D[θ ] e−S0 , the effec-
tive energy is S = − ln Z, defined by expanding the partition
function to a given order in presence of a background field θ ,
taking the average over the fluctuations around this background
field, and re-exponentiating, keeping only the relevant terms
near Tc. It is parameterized as

S = 1

2π

∑
αβ

∫
x

Kαβ∇θα(x)∇θβ (x)

2T

−gRLT −2

2π

∫
x

∑
αβ

′
: ei[θα (x)−θβ (x)] : , (117)

Kαβ

T
= δαβ

T
[1 + O(g0)] − σR (118)

σR = O
(
g2

0

)
, gRL−2τ = g0 + O

(
g2

0

)
. (119)

We now compute the renormalized couplings gR and σR in
perturbation theory of the bare coupling g0. We are working
for τ > 0 and in the continuum limit, taking a → 0.

C. One-loop diagrams

1. First diagram (one loop)

We use the graphical notation

α β = ei[θα (x)−θβ (x)] . (120)

Further, an ellipse will enclose same-replica terms. Here and
below, we denote δSi ≡ ∫

x
δsi the contributions to the effective

energy at 1 loop (i = 1,2) and 2 loop (i = 3, . . . ,6).

The first contribution is

−δs1(x) =
x

y

= C1

2!

(
g0

2π

)2∑
αβ

′
∫

y

: ei[θα (x)−θβ (x)−θα (y)+θβ (y)] :

× e−2T ln |x−y|, (121)

where C1 = 1, and here and below, we use ellipse to show
which same-replica terms are contracted. The combinatorial
factor is as follows: a factor of 1/2 from the expansion of e−H ;
the factor C1 = 1 follows from the fact that the second pair of
replica sums has exactly one choice for this diagram.

This term contains a strongly divergent contribution to
the free energy (which we do not need) and the important
subdominant term

−δs1 ≈ −1

4

(
g0

2π

)2∑
αβ

′
∫

y

|x − y|−2T

× : [(x − y) · ∇θα(x) − (x − y) · ∇θβ(x)]2 :

= −1

4

(
g0

2π

)2∑
αβ

′
∫

y

|x − y|2−2T

× : [∇θα(x) − ∇θβ(x)]2 : . (122)

This corrects the quadratic term (in the the limit of n → 0) as

δKαβ

T
= −1

2
g2

0 × I1, (123)

I1 = 1

2π

∫
dy2|y|2−2T �(|y| < L) = L4τ

4τ
. (124)

Here and below, we are using the prescription that all distances
are bounded by L, see remark (ii) in Sec. VII A above. It thus
produces the contribution to σR:

δ(1)σR = 1
2g2

0 × I1. (125)

2. Second diagram (one loop)

The second contribution is

−δs2 =

= C2

2!

(
g0

2π

)2∑
αβγ

′
∫

y

ei[θα (x)−θγ (y)] : e−i[θβ (x)+θβ (y)] :

×e−T ln |x−y|. (126)

The combinatorial factor is C2 = 2 from the two choices to
contract the ends.

Projecting onto the interaction yields

− δs2 ≈
(

g0

2π

)2

× (n − 2)
∑
αγ

′
ei[θα (x)−θγ (x)] I2 , (127)

where the basic integral is

I2 = 1

2π

∫
d2y |y|−T �(|y| < L) = L2τ

2τ
. (128)
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Therefore

δ(2)g = (n − 2)g2
0 × I2 , (129)

where n → 0 has to be taken at the end.

D. Two-loop diagrams

Expanding the partition sum to next order one finds the
following four 2-loop diagrams.

1. Third diagram (two loops)

The first diagram at 2-loop order is

−δs3 =

x

z

y

= C3

3!
×
(

g0

2π

)3∑
αβ

′
∫

xyz

: ei[θα(x)−θα (y)+θα (z)] :

× :e−i[θβ (x)−θβ (y)+θβ (z)] :

× e−2T [ln |x−y|+ln |y−z|−ln |x−z|]. (130)

The combinatorial factor is C3 = 3 from the pattern with one
dot within an ellipse differently colored from the rest. This
yields

−δs3 = C3

3!
×
(

g0

2π

)3∑
αβ

′
I3, (131)

δ(3)g = C3

3!
g3

0I3. (132)

The nontrivial integral I3 is, setting y → 0:

I3 = 1

(2π )2

∫
x

∫
z

( |x − z|
|x||z|

)2T

�(|x − z|,|x|,|z| < L).

(133)

We remind that finite-part prescription is used to define this
integral. In Appendix I 1, we show that

I3 = (1 − τ )2

2

L4τ

τ 2
− 2(1 − τ )

L4τ

4τ
+ O(τ 0) . (134)

2. Fourth diagram (two loops)

The fourth diagram is

−δs4 = z

x

y

= C4

3!

g3
0

2π
I4

∑
αβ

′
cos(θα − θβ,) (135)

δ(4)g = C4

3!
g3

0I4. (136)

The combinatorial factor is C4 = 12(n − 2) = 3 × 2 × 2 ×
(n − 2) with a factor 3 for choosing the leftmost vertex; 2

for choosing which of its ends to put inside the left ellipse; 2
for choosing the second black dot within this same ellipse from
the two possible interactions; then all combinatorial factors are
fixed apart from a factor of n − 2 for the replica sum in the
second ellipse. Setting y → 0, we find

I4 = 1

(2π )2

∫
x

∫
z

( |x − z|
|x|2|z|

)T

�(|x − z|,|x|,|z| < L).

(137)
In Appendix I 2, we show that

I4 = (1 − τ )2L4τ

16τ 2
+ L4τ

8τ 2
− (1 − τ )L4τ

8τ
+ O(τ 0) . (138)

3. Fifth diagram (two loops)

The fifth diagram is

−δs5 =

= C5

3!

g3
0

2π
I5

∑
αβ

′
cos(θα − θβ), (139)

δ(5)g = C5

3!
g3

0I5. (140)

The combinatorial factor is C5 = 6(n − 2)(n − 3) = 3 × 2 ×
(n − 2) × (n − 3) with a factor 3 for choosing the middle
vertex; 2 for choosing the second white dot in the left
ellipse—then all vertices are placed; (n − 2) × (n − 3) for the
replica sums within the ellipses. The integral is

I5 = 1

(2π )2

∫
x

∫
z

�(|x|,|z|,|x − z| < L)

|x|T |z|T . (141)

In Appendix I 3, we show that

I5 = L4τ

4τ 2
+ O(τ 0). (142)

4. Sixth diagram (two loops)

C6 = 2 is the combinatorial factor of this diagram (corre-
sponding to the 2 choices for ordering the 3 vertices, up to
cyclic permutations). The sixth diagram is

−δs6 =
x

y

z

= g3
0

3!

C6

(2π )2

∑
αβγ

′
∫

x

∫
z

1

|x − y|T |y − z|T |z − x|T

× : ei[θα (x)−θα (z)]ei[θβ (z)−θβ (y)]ei[θγ (y)−θγ (x)] :

= g3
0

3!

C6

(2π )2

−1

2

∑
αβγ

′
∫

x

∫
z

1

|x − y|T |y − z|T |z − x|T

× : [(x − z)∇θα + (z − y)∇θβ + (y − x)∇θγ ]2 :

+ · · · . (143)
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In the analysis, let us distinguish between the resulting 1-
replica and 2-replica terms. We start with the 1-replica term:

x

y

z

∣∣∣∣∣∣∣∣∣
1rep

= g3
0

3!

C6

(2π )2

−3

2

∑
αβγ

′
∫

x

∫
z

1

|x − y|T |y − z|T |z − x|T

× : [(x − z)∇θα]2 : + · · ·
= g3

0

3!

C6

(2π )2

−3

2

∑
αβγ

′
∫

x

∫
z

(x − z)2

|x − y|T |y − z|T |z − x|T

× :
1

2
[∇θα]2 : + · · · .

In the last step, we did the angular integral (average). We need
to calculate the following integral:

I6a = 1

(2π )2

∫
x

∫
z

(x − z)2

|x − y|T |y − z|T |z − x|T . (144)

The calculation in Appendix I 4 gives

I6a = L6τ

6τ 2
+ O(τ 0) . (145)

This yields the correction to Kαβ :

− δK
(6a)
αβ

T
= C6(n − 1)(n − 2)

3!

−3

2
g3

0I6aδαβ . (146)

We now consider the term off-diagonal in replica-space:

x

y

z

∣∣∣∣∣∣∣∣∣
2 rep

= g3
0

3!
3C6(n − 2)

∑
αβ

′ 1

2
:∇θα∇θβ :

× 1

(2π )2

∫
x

∫
z

(x − z) · (y − z)

|x − y|T |y − z|T |z − x|T . (147)

The integral to be calculated is

I6b = 1

(2π )2

∫
x

∫
z

(x − z) · (y − z)

|x − y|T |y − z|T |z − x|T . (148)

In Appendix I 5, we show that

I6b = L6τ

12τ 2
+ O(τ 0) . (149)

This yields the correction for the off-diagonal term:

− δK
(6b)
αβ

T
= C6(n − 2)

3!
3g3

0I6b(1 − δαβ). (150)

Taking together diagonal and off-diagonal terms yields in the
limit of n → 0,

δK
(6a)
αβ + δK

(6b)
αβ

T
= C6

2
g3

0

[
1

2
I6aδαβ + I6b(1 − δαβ)

]
= L6τ

6τ 2
+ O(τ 0). (151)

This gives a correction of σR ,

δ(2)σR = −g3
0

6

L6τ

τ 2
+ O(τ 0) . (152)

It is an important consistency check that only σ gets renor-
malized, but not the diagonal term (temperature), as necessary
due to the statistical tilt symmetry of the problem.

E. Beta functions to two-loop order

Summing all one- and two-loop contributions calculated
above, we find

gRL−2τ = g0 + δ(1)g + δ(3)g + δ(4)g + δ(5)g

= g0 − g2
0
L2τ

τ
+ g3

0
L4τ

τ 2
+ g3

0
L4τ

4τ
+ O

(
g4

0

)
, (153)

σR = δ(1)σ + δ(2)σ = g2
0
L4τ

8τ
− g3

0
L6τ

6τ 2
· · · . (154)

Here, the beta functions are defined as the variation with
respect to the large-scale cutoff L, keeping fixed the bare
coupling g0. The result, reexpressed in terms of gR , is

βg(g) := L
∂

∂L
gR

∣∣∣∣
g0

= 2τgR − 2g2
R + g3

R + O
(
g4

R

)
, (155)

βσ (g) := L
∂

∂L
σR

∣∣∣∣
g0

= 1

2
g2

R + O
(
g4

R

)
. (156)

Comparing now with the general expression (45) and (46), we
have obtained the coefficients:

A = 2, B = 0, C = 1,
(157)

D = 1/2, E = 0, F = 0,

and we can now repeat the analysis of Sec. III. Remarkably,
the universal invariants in the beta functions (50) assume,
using (157) the same values (63) as found above. The various
methods, while quite different, are thus mutually consistent
and predict the same amplitude A as in Eq. (87) and finite-
size-correction exponent ω as in Eq. (80).

VIII. CONCLUSIONS

In this paper, we have reexamined the random-phase sine-
Gordon model. We performed a perturbative RG calculation in
the vicinity of the glass transition temperature, in a systematic
expansion in τ = (T − Tc)/T , to the next order (two loop)
than was considered previously (one loop). We used several
different RG schemes which yield consistent results. We have
obtained the scaling equations of the model, i.e., the beta
functions, given by Eqs. (75)–(77) to next order in the nonlin-
earity. We elucidated the structure of these RG equations which
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contain several nonuniversal constants, and two temperature-
dependent universal invariants. The first invariant yields the
correction-to-scaling exponent (52) that controls, e.g., the
finite-size dependence of the susceptibility fluctuations in
the glass phase. We further calculated the correlation function
in the low-temperature phase and found that it has the
super-rough squared-logarithm form given by Eq. (85). Its
amplitude, which is related to the second invariant in the beta
functions, was obtained to be A = 2τ 2 − 2τ 3 + O(τ 4). To
O(τ 2) it agrees with the one-loop result first correctly obtained
in Ref. 17. The next orderO(τ 3) obtained here is in discrepancy
with the prediction A = 2τ 2(1 − τ )2 obtained in Ref. 29 by
a simple translation to the RPSG model of the exact results
of Ref. 28 based on the fermionic version of the model (1).
The fact that this latter prediction could not be correct for
all 0 < τ < 1, on physical grounds and inconsistency with
the zero temperature numerics was pointed out in Ref. 29.
Here, however, we find that the disagreement occurs already
at two-loop level. Hence it would be important to perform
the RG calculation for the model (1) directly in a fermionic
language and locate the origin of the discrepancies between
our results and the ones from Ref. 28. This goes beyond the
scope of this paper and is left for future work.

Another apparent discrepancy can be noted, since a calcula-
tion taking into account corrections of orders g and g2 (which
both lead to zero contribution) leads to the following result for
the Edwards-Anderson order parameter,14

〈ei[θ(x)−θ(0)]〉〈e−i[θ(x)−θ(0)]〉 ∝ (x/a)−4(1−τ ), (158)

which is different from the one quoted in Ref. 28 which has
a temperature independent universal decay exponent equal
to −4. More studies are then called for to clarify the full
connection between the model considered in the present paper
and the one from Ref. 28. Note that the predictions made in
this paper have been compared to a numerical simulation, with
excellent agreement. The numerical results and the comparison
is presented in Ref. 27.
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APPENDIX A: EFFECTIVE ACTION

In this Appendix, we derive an analytic formula of the
effective action up to third order of perturbation theory. We
have not found in the literature a systematic derivation of
such an expression apart from the result in second-order
perturbation theory in Ref. 64. An advantage with respect
to the traditional diagrammatic perturbation theory is that it
gives all the terms in a certain order in the coupling constant
without need to for determination of multiplicative prefactors
for diagrams. Our aim is to calculate the effective action for
a theory defined by the reduced action (or Hamiltonian in our
case) S(ϕ) = S0(ϕ) + gV (ϕ), perturbatively in g, where S0

is the quadratic part of the action and V some perturbation.

Denoting by W (J ) the generator of connected correlations,45

eW (J ) =
∫

Dϕe−S(ϕ)+Jϕ. (A1)

The effective action is defined as45 �(ϕ) = Jϕ − W (J ). Using

J (x) = δ�

δϕ(x)
, (A2)

after translating the field ϕ → ϕ + χ , Eq. (A1) eventually
becomes

e−�(ϕ) =
∫

Dχ exp

[
−S(ϕ + χ ) +

∫
dxχ (x)

δ�

δϕ(x)

]
.

(A3)

Further we introduce �̃(ϕ) = �(ϕ) − S0(ϕ) + ln Z0, and
Eq. (A3) is transformed into

e−�̃(ϕ) = 1

Z0

∫
Dχ exp

[
− S0(χ ) − gV (ϕ + χ )

+
∫

dxχ (x)
δ�̃

δϕ(x)

]
=
〈
exp

[∫
dxχ (x)

δ�̃

δϕ(x)
− gV (ϕ + χ )

]〉
. (A4)

When deriving Eq. (A4), we have used that S0 is a quadratic
action, so it satisfies

S0(ϕ + χ ) = S0(ϕ) +
∫

dx
δS0

δϕ(x)
χ (x)

+1

2

∫
dxdy

δ2S0

δϕ(x)δϕ(y)
χ (x)χ (y)

= S0(ϕ) +
∫

dx
δS0

δϕ(x)
χ (x) + S0(χ ). (A5)

Here, one should notice that is important to define �̃ as
difference between � and S0 in order to avoid further
complications when solving the implicit equation for �̃.

The next step consists in solving Eq. (A4) and extracting
�̃ out of it. This can be done by iterations. We write �̃ in the
form

�̃(ϕ) =
∞∑

n=1

gnVn(ϕ) (A6)

and use the cumulant expansion

ln〈eA〉 =
∞∑

n=1

1

n!
〈An〉c, (A7)

where the first few connected cumulants read65

〈A〉c = 〈A〉, (A8)

〈A2〉c = 〈A2〉 − 〈A〉2, (A9)

〈A3〉c = 〈A3〉 + 2〈A〉3 − 3〈A〉〈A2〉. (A10)

Then we easily obtain

V1(ϕ) = 〈V (ϕ + χ )〉. (A11)
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Next, we get

〈A2〉c = g2〈V 2(ϕ + χ )〉c +
∫

dxdyG(x − y)
δ�̃

δϕ(x)

[
δ�̃

δϕ(y)
− 2g

δ〈V (ϕ + χ )〉
δϕ(y)

]

= g2〈V 2(ϕ + χ )〉c − g2
∫

dxdyG(x − y)
δ〈V (ϕ + χ )〉

δϕ(x)

δ〈V (ϕ + χ )〉
δϕ(y)

+ O(g4), (A12)

where we used the notation G(x − y) = G(y − x) = 〈χ (x)χ (y)〉 and the identity

〈V (ϕ + χ )χ (x)〉 =
∫

dyG(x − y)
δ〈V (ϕ + χ )〉

δϕ(y)
. (A13)

Therefore

V2(ϕ) = −1

2
〈V 2(ϕ + χ )〉c + 1

2

∫
dxdyG(x − y)

δ〈V (ϕ + χ )〉
δϕ(x)

δ〈V (ϕ + χ )〉
δϕ(y)

. (A14)

In a similar way, we obtain

V3(ϕ) = 1

6
〈V 3(ϕ + χ )〉c − 1

2

∫
dxdyG(x − y)

δ〈V (ϕ + χ )〉
δϕ(x)

δ〈V 2(ϕ + χ )〉c
δϕ(y)

+ 1

2

∫
dxdydzdtG(x − z)G(y − t)

δ2〈V (ϕ + χ )〉
δϕ(z)δϕ(t)

δ〈V (ϕ + χ )〉
δϕ(x)

δ〈V (ϕ + χ )〉
δϕ(y)

, (A15)

where we used

〈V (ϕ + χ )χ (x)χ (y)〉 = 〈V (ϕ + χ )〉G(x − y) +
∫

dzdtG(x − z)G(y − t)
δ2〈V (ϕ + χ )〉
δϕ(z)δϕ(t)

. (A16)

Our final expression for the effective action up to third order in the potential V reads

�(ϕ) = S0(ϕ) − ln Z0 + g〈V (ϕ + χ )〉 − g2

2
〈V 2(ϕ + χ )〉c + g2

2

∫
dxdyG(x − y)

δ〈V (ϕ + χ )〉
δϕ(x)

δ〈V (ϕ + χ )〉
δϕ(y)

+ g3

6
〈V 3(ϕ + χ )〉c − g3

2

∫
dxdyG(x − y)

δ〈V (ϕ + χ )〉
δϕ(x)

δ〈V 2(ϕ + χ )〉c
δϕ(y)

+ g3

2

∫
dxdydzdtG(x − z)G(y − t)

δ2〈V (ϕ + χ )〉
δϕ(z)δϕ(t)

δ〈V (ϕ + χ )〉
δϕ(x)

δ〈V (ϕ + χ )〉
δϕ(y)

+ O(g4). (A17)

This formula straightforwardly extends to the case where the fields carry indices, such as replica indices. In that case, the
propagator G carries a double index. These indices can be restored unambiguously using the spatial coordinate of the field by
matching the field indices with the propagator ones.

The obtained formula (A17) agrees with the one of Ref. 64 to O(g2) terms. [The formula of Ref. 64 is written only to O(g2).]
We have tested (A17) on the sine-Gordon model to two-loop order (i.e., including g3 terms) and found agreement with the
effective action from Amit et al.4 The final expression (5.1) of Amit et al.4 contains a typo: the argument of the last term in the
third line of (5.1) should be y instead of x.

APPENDIX B: TRANSFORMATION OF SUMS

When one calculates cumulants of Eq. (8), one needs to decompose the two sums over pairs of unequal indices, Eqs. (B1) and
(B2), into sums where all addends are sums over all unequal indices [denoted by superscript

′
, i.e.,

∑
α �=β g(α,β) =∑′

αβ g(α,β)].
These relations read∑

α �=β
γ �=δ

g(α,β,γ,δ) =
∑
αβ

′
[g(α,β,α,β) + g(α,β,β,α)] +

∑
αβγ

′
[g(α,β,α,γ ) + g(α,β,β,γ ) + g(α,β,γ,α) + g(α,β,γ,β)]

+
∑
αβγ δ

′
g(α,β,γ,δ) (B1)
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and ∑
α �=β

γ �=δ

μ �=ν

g(α,β,γ,δ,μ,ν) =
∑
αβ

′
g2 +

∑
αβγ

′
g3 +

∑
αβγ δ

′
g4 +

∑
αβγ δμ

′
g5 +

∑
αβγ δμν

′
g6, (B2)

where g2 = g(α,β,α,β,α,β) + g(α,β,α,β,β,α) + g(α,β,β,α,α,β) + g(α,β,β,α,β,α) and g6 = g(α,β,γ,δ,μ,ν). The remaining
terms from Eq. (B2) have somewhat lengthy form and we do not give them explicitly.

APPENDIX C: THE REMAINING TERM OF �3

In this Appendix, we quote the remaining term of �3 that is not important for purposes of renormalization:

�′′
3 = 1

6

(
− g

2πa2

)3

e−3G(0)
∫

d2xd2yd2z

×
{
B(x − y,y − z,z − x, −2, −2, −2)

∑
αβ

′
cos[θα(x) + θα(y) + θα(z) − θβ(x) − θβ(y) − θβ(z)]

+ 6B(x − y,y − z,z − x, −2, −1, −1)
∑
αβγ

′
cos[θα(x) + θα(y) + θα(z) − θβ(x) − θβ(y) − θγ (z)]

+ 6B(x − y,y − z,z − x, −2,1,1)
∑
αβγ

′
cos[θα(x) + θα(y) − θα(z) − θβ(x) − θβ(y) + θγ (z)]

+ 6B(x − y,y − z,z − x, −1, −1,1)
∑
αβγ

′
cos[θα(x) + θα(y) − θβ(x) + θβ(z) − θγ (y) − θγ (z)]

+ 6B(x − y,y − z,z − x, −1, −1,0)
∑
αβγ δ

′
cos[θα(x) + θα(y) − θβ(y) − θβ(z) + θγ (z) − θδ(x)]

+ 12B(x − y,y − z,z − x, −1,1,0)
∑
αβγ δ

′
cos[θα(x) + θα(y) − θβ(y) + θβ(z) − θγ (z) − θδ(x)]

+ 6B(x − y,y − z,z − x,1,1, −1)
∑
αβγ δ

′
cos[θα(x) − θα(y) + θα(z) + θβ(y) − θγ (z) − θδ(x)]

+ 2B(x − y,y − z,z − x, −1, −1, −1)
∑
αβγ δ

′
cos[θα(x) + θα(y) + θα(z) − θβ(y) − θγ (z) − θδ(x)]

}
. (C1)

APPENDIX D: EVALUATION OF INTEGRALS:
FINITE-A METHOD

1. One-loop integrals

In this Appendix we will evaluate the unknown integrals
that appear in expressions for the beta functions (43) and (44).
One should have in mind that we need the divergent con-
tributions (when a → 0) from these integrals in a power law
expansion with respect to the small parameter τ . The divergent
contribution to a1 comes from the region of integration when
the argument of G(x) in A(x,p) [see Eq. (26)] is around zero.
After shifting the variable of integration and using the small-x
expansion of G(x) given by Eq. (19), we obtain

a1 = c2m2

2π

∫
d2yA(y,1)

=
∫ �

0
dy

y

y2 + a2
{1 + τ ln[c2m2(y2 + a2)]

+O(τ 2)} + f.t.

= −1

4
[2λ + τλ2 + O(τ 2) + f.t.], (D1)

where λ is defined in Eq. (57) and “f.t.” stands for finite terms.
The introduced parameter � satisfies

a � � � (cm)−1, (D2)

and will further serve us to split the divergent part of G(x) from
the nondivergent one when a → 0 in integrals. In the region
(D2), one can always use the expansion of the propagator (19).
As mentioned above, the abbreviation f.t. stands for “finite
terms” and denotes all terms that do not diverge in the limit
a → 0.

Using a similar reasoning as above, for the other contribu-
tion a2, we get

a2 = c4m4

2π

∫
d2yy2A(y,2) =

∫ �

0
dy

y3

(y2 + a2)2

×{1 + 2τ ln[c2m2(y2 + a2)] + O(τ 2)} + f.t.

= −1

2
λ − τλ − 1

2
τλ2 + O(τ 2) + f.t. (D3)

One may notice that divergent contributions come only from
the term eG(y) of A(y,1) in Eq. (D1) and only due to e2G(x)

from A(y,1) in Eq. (D3). The remaining terms in A(y,2) and
A(y,1) determine the finite part of the integrals.
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For our purpose of calculating the renormalization of the
effective action up to third order in the coupling constant g,
it turns out that finite parts in expressions (D1) and (D3) are
important, since they contribute in the beta functions. It is
important to notice that these finite parts, denoted by c1 and
c2 in Eqs. (31) and (32), multiply the renormalized parameters
g3

R or τg2
R , so for our order of accuracy of renormalization

(that is third order in g) it is sufficient to evaluate them for
τ = 0 in Eqs. (D1) and (D3). Here, we should have in mind
that our general strategy of double expansion of the effective
action (37) is in g and τ , which are assumed to be of the
same order. That explains why we need constants c1 and c2 to
order τ ′.

The constant c1, which is a finite term in the expression
(D1) in the limit of τ = 0 and for a → 0 is determined from
the expression obtained from Eq. (D1),

c2m2

2π

∫
d2y(eG(y) − G(y) − 1) = −1

4
(2λ + c1) , (D4)

taken in the limit a → 0 and with the propagator G(y) =
2K0(m

√
y2 + a2). This leads to

c1 = lim
ρ→0

{
−4 ln (cρ) − 4c2

∫ ∞

ρ

dtt[e2K0(t) − 1]

}
+ 8c2

≈ 1.891. (D5)

We should mention that the contribution 8c2 in c1 comes from
the term −G(x) that renders A(x,1) one-particle irreducible.

Similarly, the finite part in Eq. (D3) is determined from

c4m4

2π

∫
d2yy2[e2G(y) − 2G(y) − 1] = −1

2
λ + c2, (D6)

taken in the limit a → 0 for τ = 0. This leads to

c2 = −1

2
+ lim

ρ→0

{
ln (cρ)

+ c4
∫ ∞

ρ

dtt3
[
e4K0(t) − 1

] }
− 16c4 ≈ 1.611. (D7)

The contribution −16c4 in c2 comes from the term −2G(x)
that makes A(x,2) one-particle irreducible. With that, we arrive
at the final expressions for a1 and a2 given in the main text,
Eqs. (56) and (58).

2. Two-loop integrals

We will now calculate the coefficients that stand in front of
the operators in Eq. (33). To achieve that, we use the procedure
described in Appendix E for evaluating of the divergent parts
of double integrals. We emphasize here that in all terms in �3

we set τ = 0, since our purpose is to obtain the renormalized
action to third order in the small parameters g and τ , and
�3 already contains a prefactor g3. We emphasize here that
for simplicity we calculate separately the part of B without B1

(terms with superscript′) and afterwards we evaluate B1 (terms
with superscript ′′), see Eq. (28). The first term of interest is

b1 = c4m4

(2π )2

∫
d2xd2yB(x + y,x,y, −2,2,2) = b′

1 − b′′
1,

(D8)

which has divergent contributions from three regions of
integration, (a), (b), and (c), see Eq. (E2). In the first region
(a), after angular integration, we have

b′
1a =

∫ �

0
dx

∫ �

0
dyxy

4x2y2 − a4

(x2 + a2)2(y2 + a2)2

=
[

3

4
− 4 ln

�

a
+ 4 ln2 �

a
+ O

(
a2

�2

)]
+ f.t. (D9)

Combining the contributions from regions (b) and (c), we
easily obtain

b′
1bc = −2c4m4

∫ �

0
dxx3e2G(x)

∫ ∞

�

dyyf (2,y) + f.t.

= −6 ln
�

a
− 8 ln

�

a
ln(cm�) + f.t. (D10)

The contribution that comes from B1 in Eq. (D8) reads

b′′
1 = c4m4

(2π )2

∫
d2xG(x)

∫
d2y[e−2G(y) + G(y) − 1]. (D11)

It does not contain divergencies and contributes only to finite
terms. Therefore the final result reads

b1 = b′
1a + b′

1bc − b′′
1 = 5λ + λ2 + f.t., (D12)

where λ have been defined in Eq. (57).
The second term of interest is

b2 = c4m4

(2π )2

∫
d2xd2yB(x,y,x + y,2,1, −1) = b′

2 − b′′
2 .

(D13)

As in the previous case, we consider three regions of
integration, (a), (b), and (c), see Eq. (E2). In the first region
(a), after angular integration, we get

b′
2a =

∫ �

0
dx

∫ �

0
dyxy

x2

(x2 + a2)2(y2 + a2)

= −1

2
ln

�

a
+ ln2 �

a
+ O

(
a2

�2

)
+ f.t. (D14)

Combining the contributions from regions (b) and (c), we
easily obtain

b′
2bc = c4m4

∫ �

0
dx

∫ ∞

�

dyxy{−x2e2G(x)f (1,y)

+ eG(x)+G(y) − eG(x)} + f.t.

=
{
−1 + c2m2

∫ ∞

�

dyy[eG(y) − 1]

}
ln

�

a

− ln
�

a
ln(cm�) + f.t. (D15)

The contribution that comes from B1 in Eq. (D13) is

b′′
2 = c4m4

(2π )2

∫
d2xG(x)

∫
d2y[eG(y) − 1]

= −2c2 ln(cma) + f.t. (D16)

Using the definition of c1 in Eq. (D5) after simple algebra, we
finally obtain

b2 = b′
2a + b′

2bc − b′′
2 = 1

4
λ2 + 6 + c1

8
λ + f.t. (D17)
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There we used the following result:

∫ ∞

�

dzz[eG(z) − 1] = 1

c2m2

[
2c2 − c1

4
− ln(cm�)

]
+O

(
a2

�2
,m2�2

)
, (D18)

where c1 is defined in Eq. (D5).

Finally, we calculate the integral

b3 = c6m6

(2π )2

∫
d2xd2yx2B(x,x + y,y,1,1,1) = b′

3 − b′′
3 .

(D19)

Contrary to the previous three cases where the region (d)
[see Eq. (E2)] has not yielded divergent terms, in the case of
Eq. (D19) it produces divergent terms. First, we will evaluate
Eq. (D19) in region (a). We have

b′
3a = c6m6

(2π )2

∫
|x|,|y|<�

d2xd2yx2[eG(x)+G(y)+G(x+y) − eG(x) − eG(y) − eG(x+y) + 2]

=
∫ �/a

0
dx

∫ �/a

0
dy

∫ 2π

0

dϕ

2π

x3y

(x2 + 1)(y2 + 1)(y2 + x2 + 2xy cos ϕ + 1)
+ f.t.

=
∫ �/a

0
dx

∫ �/a

0
dy

xy

(y2 + 1)
√

(y2 − x2)2 + 2(x2 + y2) + 1

(
1 − 1

x2 + 1

)
+ f.t.

=
∫ �/a

0
dy

y

2
(
y2 + 1

){ ln

[
�2

a2
+ 1 − y2 +

√(
�2

a2
+ 1

)2

+ y4 − 2

(
�2

a2
− 1

)
y2

]
− ln 2

}
+ f.t.

= ln2 �

a
+ f.t. (D20)

Only the first term on the right-hand side of the first line in
Eq. (D20) contributes divergencies. After using the expansion
(19), rescaling the variables x → ax,y → ay and doing the
angular integration, one ends up with two terms given in the
third line of Eq. (D20). Only the first term gives a divergent
contribution when a → 0. By doing one more integration over
x we end up with only one integration over y, see the fourth line
of Eq. (D20). Expanding the obtained integral with respect to
the large parameter �/a followed by integration over y leads
to the final result.

The sum of contributions in regions (b)–(d) is

b′
3bcd = 2c6m6

∫ �

0
dxx[1 + O(x2)]eG(x)

×
∫ ∞

�

dyy3[e2G(y) − 1]

= 2c4m4 ln
�

a

∫ ∞

�

dyy3[e2G(y) − 1] + f.t. (D21)

The contribution from B1 in Eq. (D19) is

b′′
3 = 2

c6m6

(2π )2

∫
d2xd2yy2 [G(y) + G(x + y)]

× [eG(x) − 1] + f.t.

= −32c4 ln(cma) + f.t. (D22)

At the end, we get

b3 = b′
3a + b′

3bcd − b′′
3 = 1

4
λ2 − 2c2 + 1

2
λ + f.t. (D23)

There we used the following result:∫ ∞

�

dzz3[e2G(z) − 1] = 1

c4m4

[
c2 + 1

2
+ 16c4 − ln(cm�)

]
+O

(
a2

�2
,m2�2

)
, (D24)

where c2 is defined in Eq. (D7).

APPENDIX E: IMPORTANT INTEGRALS

The coefficient in front of operators in �3 contain integrals
of the common type that will be calculated in this Appendix.
They can be written in the following form:

I =
∫

d2xd2yypeαG(x)−βG(x+y)+γG(y), (E1)

where the propagator G(x) = 2K0(m
√

x2 + a2) is obtained
by setting τ = 0 into Eq. (17). The parameters in Eq. (E1)
are assumed to belong to the set α,β,γ ∈ {0,1,2}, p ∈ {0,2}
that occur in unevaluated expressions in Eqs. (34)–(36). The
(logarithmic) divergence of integral (E1) arises because of
the behavior of G(x) at x < a � m−1. In order to isolate
divergent from nondivergent parts, we split the range of
integration in Eq. (E1) by a parameter �, which is introduced
in Appendix D and satisfies Eq. (D2). We distinguish four
regions of integration:

(a) |x|,|y| < �, (b) |x| < �,|y| > �,
(E2)

(c) |x| > �,|y| < �, (d) |x|,|y| > �,

and analyze integral (E1) in these regions.
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In region (a), one could use expansion (19) for all
correlation functions in Eq. (E1) and evaluate the integral.
We will not do it explicitly here for the most general case.
Particular cases are calculated in Appendix D.

In region (b), we can expand the correlation function around
y:

G(|x + y|) = G(|y|) + 1

2
h

1

|y|G
′(|y|)

+ 1

8
h2

[
1

y2
G′′(|y|) − 1

|y|3 G′(|y|)
]

+ O(h3),

(E3)

with h = x2 + 2xy. Then after expanding the term e−βG(x+y)

for small h and doing the angular integration, one gets

Ib = (2π )2
∫ �

0
dx

∫ ∞

�

dyxy1+peαG(x)+(γ−β)G(y)

×[1 − x2f (β,y) + O(x4)], (E4)

where for convenience we have introduced a function

f (β,y) = β

4

[
G′′(y) + 1

y
G′(y) − βG′(y)2

]
. (E5)

Using similar manipulations as above in region (c), with the
difference that we expand G(x + y) around x, after exchanging
the integration variables we get

Ic = (2π )2
∫ �

0
dx

∫ ∞

�

dyx1+pyeγG(x)+(α−β)G(y)

×[1 − x2f (β,y) + O(x4)]. (E6)

While the divergent terms of integral (E1) in regions (b)
and (c) arise only when one of the variables is around zero
and the corresponding propagator diverges, in region (d), both
|x| and |y| are large. However, their sum |x + y| could be a
small number that may in certain cases produce divergencies.
Therefore region (d) may contain divergencies when |x + y| <

� and β < 0. Changing the variables of integration x + y → x

and after using expansion (E3), one ends up with

Id =
∫

|x|,|y|>�

d2xd2yypeαG(x)−βG(x+y)+γG(y)

= (2π )2
∫ �

0
dx

∫ ∞

�

dyxy1+pe−βG(x)+(α+γ )G(y)

×[1 + O(x2)] + f.t. (E7)

The last expression has divergences for β = −1. That type of
integral appears during evaluation of b3, see Eq. (36). The case
β < −1 could be also analyzed, but it is of no interest for us.

We close this Appendix by explicitly evaluating three
integrals. The first one is∫ ∞

�

dyyf (β,y) = β2

2

[
1 + 1

β
+ ln(c2m2�2)

]
+O

(
m2�2,a2/�2

)
. (E8)

It could be done by expanding the propagator G(x) =
2K0(m

√
x2 + a2) around a = 0 to zeroth order, since

� � a. The remaining terms of that expansion produce after
integration a result which is at least ∼a2/�2. We remind the
reader that we have already set τ = 0 in all terms that come
with the overall prefactor g3, i.e., in all terms that arise from
�3.

The second and the third one can be easily done by using
the expansion of the propagator (19) followed by simple
integrations. They read∫ �

0
dzzeG(z) = 1

c2m2
ln (�/a) + O(a2/�2) (E9)

and∫ �

0
dzz3e2G(z) = 1

c4m4
[ln (�/a) − 1/2] + O(a2/�2).

(E10)

APPENDIX F: DIMENSIONAL METHOD

In this Appendix, we calculate integrals (31)–(36) by a
dimensional method. The main idea is to consider τ > 0 (i.e.,
T < Tc), where one can set the short-distance cutoff a to
zero in all correlation functions that appear in the above-
mentioned integrals. The logarithmic divergencies contained
in the parameter λ [see Eq. (57)] will become poles with respect
to τ in final expressions. The calculation is straightforward
once one is acquainted with the techniques and ideas presented
in Appendix D.

While some results at intermediate steps in Appendix D are
calculated using the Bessel function (17) for the propagator,
here we show that this is not necessary because the universal
parts of the integrals come from the short-distance behavior of
the propagator that is universal. For distances |x| � (cm)−1,
it reads

G(x) = −(1 − τ ) ln(c2m2x2). (F1)

In addition, the limiting behavior G(∞) = 0 is necessary
for the calculation, which is a quite weak assumption. Later
we will see that we need one more condition and it is
limy→∞ yG′(y) = 0.

The first term of interest is Eq. (31) and it can be evaluated
by splitting the integration range by a parameter � that satisfies
� � (cm)−1 [c.f. Eq. (D2)]. The divergence arises from the
region of integration 0 � x � �, while the remaining region
x > � delivers a constant c′

1. The final result can be written in
the form

a1 = 1

2τ
− c′

1 + O(τ ). (F2)

Similarly, we get

a2 = 1

4τ
− c′

2 + O(τ ), (F3)

where again we have a constant c′
2 that only depends on the

precise form of the correlation function G(x). We should
mention that for the special choice of propagator (17) the
constants c′

1 and c′
2 are well defined, however their precise

value is immaterial for our purposes.
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Further, we compute two-loop integrals by the new method
(they have been already calculated in Appendix D by another
method), and we closely follow the notation from that
Appendix. In the following, we are only interested in the
divergent parts of the expressions in the limit τ → 0. It is
convenient to introduce the abbreviation

gn(�) =
∫ �

0
dxx2n−1enG(x), (F4)

which after using Eq. (F1) yields

g1(�) = 1

c2m2

[
1

2τ
+ ln(cm�)

]
, (F5)

g2(�) = 1

c4m4

[
1

4τ
+ ln(cm�)

]
, (F6)

valid in the limit cm� → 0.
The first term is defined in Eq. (34). It has divergent

contributions from three regions of integration, (a), (b), and (c),
see Eq. (E2) for the definition. In the first region, all correlation
functions have the logarithmic form (F1) and we obtain

b′
1a = 1

2τ 2
− 1 − 2 ln(cm�)

τ
+ O(τ 0). (F7)

Regions (b) and (c) combine into the form given in the first
line of Eq. (D10). After evaluation one gets

b′
1bc = − 1

2τ
[1 − h(�)] , (F8)

where h(�) = ∫∞
�

dyyG′(y)2. We also used∫ ∞

�

dyyf (β,y) = −1

4
yG′(y)

∣∣∣∣∞
�

− β2

4
h(�)

= β

2
− β2

4
h(�), (F9)

where the assumption limy→∞ yG′(y) = 0 has been used. The
remaining term (D11) does not contain divergencies, and we
finally obtain

b1 = 1

2τ 2
− 3

2τ
+ 4 ln(cm�) + h(�)

2τ
+ O(τ 0). (F10)

Further we calculate the term given in Eq. (35). In region
(a), we obtain

b′
2a = 3

16τ 2
− 1 − 6 ln(cm�)

8τ
+ O(τ 0). (F11)

The first two lines of Eq. (D15) after simple manipulations
become

b′
2bc

c4m4
= −g2(�)

∫ ∞

�

dyyf (1,y) + g1(�) [a1 − g1(�)]

+ g1(�)
1

2π

∫
d2xG(x), (F12)

while the divergent part of the contribution (D16) reads

b′′
2 = c4m4g1(�)

1

2π

∫
d2xG(x). (F13)

Combining the previous expressions one obtains

b2 = 3

16τ 2
− 4 + 8c′

1 − 4 ln(cm�) − h(�)

16τ
+ O(τ 0).

(F14)

The important combination that appears in the beta function
(43) now reads

b1 − 8b2 + 4a2
1 = 1

2τ
+ O(τ 0). (F15)

There are several important things to mention about the last
result. First, all nonuniversal terms connected with � and c′

1
from Eqs. (F10) and (F14) have canceled in Eq. (F15). Also
there is no 1/τ 2 divergence in the combination. This is quite
reminiscent to the situation we had in the same term evaluated
by another method, see Eq. (59).

The last integral we evaluate is defined in Eq. (36).
However, it is more convenient to rewrite it in an equivalent
form:

b3 = c6m6

(2π )2

∫
d2xd2y(x + y)2B(x,x + y,y,1,1,1). (F16)

In region (a), we obtain

b′
3a = 1

6τ 2
+ ln(cm�)

τ
+ O(τ 0). (F17)

In regions (b)–(d), now there are two contributions. The terms
multiplied by x2 + y2 from Eq. (F16) give a contribution that
is two times larger than the result stated in the first two lines of
Eq. (D21). The remaining term 2xy has divergent contributions
only in the region (d) that equals Eq. (D21) multiplied by minus
one. Overall we obtain the same contribution as given in the
first two lines of Eq. (D21). After simple regrouping, we obtain

b′
3bcd

c6m6
= 2g1(�) [a2 − g2(�)] + 4g1(�)

1

2π

∫
d2yy2G(y).

(F18)

The divergent part of Eq. (D22) reads

b′′
3 = 4

c6m6

2π
g1(�)

∫
d2yy2G(y), (F19)

and finally, we obtain

b3 = 1

6τ 2
− c′

2

τ
+ O(τ 0). (F20)

APPENDIX G: TWO POINT FUNCTION AT FINITE MASS
AND ONE LOOP IN THE CONTINUUM LIMIT a → 0

In this Appendix, we study the one-loop result (96) for
the two-point function derived in the main text. We focus on
the continuum limit a → 0, keeping m finite, which exists
for τ > 0. To recover this limit we must express the result
in terms of g̃, or equivalently of gR using Eq. (40). We use
G(x) = 2(1 − τ )K0(mx), perform the rescaling x → x/(mc)
and get by adding the first and second orders in g contributions
(95) and (96):

�(q) = �

(
q

mc

)
+ �0, (G1)
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�0 = − 1

π
c2m2gR [1 + 2(a1 + ã1)gR] , (G2)

with

ã1 =
∫ ∞

0
xdx[e−2G̃(x) − 3e−G̃(x) − eG̃(x) + 3]. (G3)

Here, G̃(x) = 2(1 − τ )K0(x/c), and we note that in the
combination

a1 + ã1 =
∫ ∞

0
xdx[e−2G̃(x) − 3e−G̃(x) − G̃(x) + 2]

= −0.047 327 6, for τ = 0, (G4)

the logarithmic divergencies cancel yielding a finite result for
�0 at τ = 0. The momentum-dependent part is

�(p) = − 1

π2
c2m2g2

R

∫
d2x(eip·x − 1)

×[2 sinh G̃(x) − sinh 2G̃(x)]. (G5)

Let us now consider its limit for large p = q/m limit
obtained by rescaling x = y/p. Using

lim
p→∞ p−4(1−τ ) sinh[2G(y/p)] = 1/[2y4(1−τ )], (G6)

lim
p→∞ p−4(1−τ ) sinh[G(y/p)] = 0, (G7)

one finds

�(p) = 1

π
c2m2g2

Rp2−4τ

∫ ∞

0
ydy(J0(y) − 1)y−4(1−τ )

= 1

π
c2m2g2

Rp2−4τ 24τ−3�(2τ − 1)

�(2 − 2τ )
(G8)

= 1

π
c2m2g2

R

[
− p2

16τ
+ 1

4
p2 ln(pc/e) + O(τ )

]
. (G9)

Let us now comment on the various regimes for �(q) as
a function of q. By comparing with (100), we see that the
ln q behavior (that leads to super-rough correlation) extends
from the region q ∼ 1/a up to the region q ∼ m. However,
for very small q, q ∼ me−1/(4τ ) the coefficient −2π�(q)/q2

saturates to 1/8τ (plus a finite part). The pole in τ has precisely
the value obtained in Eq. (39) together with Eqs. (65) and
(67) by considering the limit q → 0 first. Finally, the above
result allow to determine the correlation function G0(q) =
f (q/m)/m4 as a scaling function of q/m using Eq. (92).

APPENDIX H: MORE ON TWO-LOOP INTEGRALS:
SIMPLIFICATIONS AND EXPLICIT EVALUATION FOR A

SIMPLE CUTOFF FUNCTION

In this Appendix, we calculate the integrals (31), (32), and
(34)–(36) using a simple cutoff function.

1. Simplifications

First, we show that the terms linear in G(x) in all integrals,
which make the effective action a sum of one particle
irreducible graphs, cancel in universal invariants in the beta
functions. We also provide simpler expressions for evaluation
of two-loop integrals.

Let us start with one-loop integrals. We define

a
(p)
1 = m2c2

2π

∫
y

epG(y) − pG(y) − 1, (H1)

a
(p)
2 = m2c2

2π

∫
y

y2[epG(y) − pG(y) − 1], (H2)

so that a1 = a
(1)
1 and a2 = a

(2)
2 . Here, we denote

∫
y

= ∫ d2y.
Analogously we define expressions without the term linear in
G(x):

â
(p)
1 = m2c2

2π

∫
y

epG(y) − 1, (H3)

â
(p)
2 = m2c2

2π

∫
y

y2[epG(y) − 1]. (H4)

This changes only the finite parts in the one-loop integrals
since the integrals linear in G(y) are finite. More precisely,
Eqs. (64) and (65) are changed into

4â1 = 4â
(1)
1 = A

τ
+ B̂ + O(τ ), (H5)

2â2 = 2â
(1)
2 = D

τ
+ Ê + O(τ ), (H6)

with B = B̂ − 4m2c2

2π

∫
x
G(x) and E = Ê − 4m2c2

2π

∫
x
x2G(x)

(in other words Â = A and D̂ = D).
For the two-loop integrals, we will use an expression

equivalent to Eq. (28):

B(x,y,z,a,b,c) = [eaG(x) − 1][ebG(y) − 1][ecG(z) − 1]

+ [eaG(x)− aG(x)− 1][ebG(y)−bG(y) − 1]

+[ebG(y)− bG(y)− 1][ecG(z)− cG(z) − 1]

+[eaG(x) − aG(x)− 1][ecG(z)− cG(z)− 1].

(H7)

Then one can rewrite the needed combinations of two-loop
integrals:

b1 − 8b2 + 4a2
1

= m4c4

(2π )2

∫
x+y+z=0

[e−2G(z) − 1][e2G(x) − 1]

× [e2G(y) − 1] + (â(2)
1

)2 + 2â
(2)
1 â

(−2)
1 + 4

(
â

(1)
1

)2
− 8

{
m4c4

(2π )2

∫
x+y+z=0

[e−G(z) − 1][e2G(x) − 1][eG(y) − 1]

+ â
(2)
1 â

(1)
1 + â

(2)
1 â

(−1)
1 + â

(1)
1 â

(−1)
1

}
+ finite, (H8)

the same expression without the hats and the additional finite
part being exact [by definition from Eq. (H7)]. Comparing with
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(68) it means Ĉ = C, i.e., C can be computed discarding linear
terms in G(y). The second combination (69) can be rewritten
as

6b3 − 8a1a2 = 6
m4c4

(2π )2

∫
x+y+z=0

x2[eG(x) − 1][eG(y) − 1]

× [eG(z) − 1] + 24â1â2 − 8â1â2 + 8
m2c2

2π

×
∫

x

[â2G(x) − â1x
2G(x)] + finite, (H9)

again the same expression without the hats, the terms linear in
G, and the additional finite part being exact. Comparing with
Eq. (69), one sees that now the coefficient F is changed i.e.,
F = F̂ + 4D m2c2

2π

∫
x
G(x) − 2Am2c2

2π

∫
x
x2G(x). However, the

combination

F + BD − 1
2AE = F̂ + B̂D − 1

2AÊ (H10)

does not change and since A and D are also unchanged the
three universal ratios (50) are unchanged. Hence one can just
suppress the terms

∫
x
G(x) and

∫
x
x2G(x) since they cancel in

universal quantities.

2. Calculation with a simple cutoff function

We consider the continuum (or dimensional) limit scheme
where a = 0 and τ > 0. Until now we have used the Bessel
cutoff function G(x) = 2(1 − τ )K0(mx) and noted that all
factors mc in the definitions of the integrals can be set
to unity by rescaling x → x/(mc). This is equivalent to
using G̃(x) = 2(1 − τ )K0(x/c). Here, we will test further the
universality with respect to the choice of the cutoff function
by considering

eG̃(x) = �(x < 1)x2τ−2 + �(x > 1) (H11)

such that G̃(x) is continuous and has the same logarithmic
behavior at small x as the Bessel function cutoff and vanishes
at infinity. For convenience, we also suppress the tilde (and set
m = c = 1 in all definitions).

The one-loop integrals are

â1 =
∫ 1

0
dxx(x2τ−2 − 1) = 1

2τ
− 1

2
, (H12)

â2 =
∫ 1

0
dxx3(x4τ−4 − 1) = 1

4τ
− 1

4
, (H13)

so that

A = 2, B̂ = −2, D = 1/2, Ê = −1/2. (H14)

a. Coefficient F̂

From Eqs. (H9) and (69), the coefficient F̂ can be extracted
as

F̂

τ
+ O(1) = 6

∫
x+y+z=0

x2(eG(x) − 1)(eG(y) − 1)(eG(z) − 1)

+ 24â1â2 − 8â1â2 = N1 − 1

τ 2
+ 5

τ
, (H15)

where we have used Eq. (H12) and computed the one-loop
integral â1â2 = 1

2t

∫ 1
0 dxx3(x−2 − 1) = 1/(8τ ), keeping only

divergent parts. We have defined

N1 = 1

(2π )2

∫
x<1,y<1,z<1

2(x2 + y2 + z2)(x2τ−2 − 1)

× (y2τ−2 − 1)(z2τ−2 − 1). (H16)

To compute this integral (which is ultraviolet convergent), we
use symmetry to restrict to the domain 0 < y < x < z < 1 and
write y = wx and 0 < w < 1 and z2 = x2 + y2 + 2xyc with
c = cos(φ). The measure is then 12x3wdxdwdc/

√
1 − c2

with c ∈ [−1,1]. The condition x < z < 1, i.e., x2 < z2 =
x2(1 + 2cw + w2) < 1 implies that 2c + w > 0, hence we use
that∫

x<1,y<1,z<1
· · · = 2π

∫ 1

−1

dc√
1 − c2

∫ 1

0
dw12w

×
∫ 1/

√
1+2cw+w2

0
dxx3�(w + 2c > 0) · · ·

(H17)

After integration over x for 0 < x < 1/
√

1 + 2cw + w2,
one finds

N1 = 1

2π

∫ 1

0
dw

∫ 1

−1

dc√
1 − c2

gτ (w,c)�(w + 2c > 0)

(H18)

with

gτ (w,c) = 1

τ

8[w(c + w) + 1]

w(2cw + w2 + 1)
+ O(τ 0). (H19)

That would naively give N1 � A/τ but there is a pole at w =
0.66 To treat this pole, one checks that replacing in Eq. (H18)
gτ → g

reg
τ = gτ − g

p
τ with

gp
τ (w,c) = 16(τ − 1)2w2τ−1

τ (2τ 2 + 5τ + 2)
�(0 < w < 1), (H20)

one finds a finite integral �A/τ as τ → 0. Hence we can write
N1 = N

p

1 + N
reg
1 , where the contribution of the pole is

N
p

1 = 1

2π

∫ 1

0
dw

∫ 1

−w/2

dc√
1 − c2

gp
τ (w,c)

= 1

2π

4(τ − 1)2
[
4π − 3 × 4τB 1

4

(
τ + 1

2 , 1
2

)]
3τ 2
(
2τ 2 + 5τ + 2

)
= 1

τ 2
+ α − 9

2

τ
+ O(1). (H21)

Here, α = 3ψ (1)(1/3)−ψ (1)(5/6)
8π

√
3

and the regularized part is

N
reg
1 = − 1

2π

∫ 1

0
dw

∫ 1

−w/2

dc√
1 − c2

1

τ

8c

2cw + w2 + 1

+O(τ 0) = −α

τ
+ O(τ 0), (H22)

054201-23



RISTIVOJEVIC, LE DOUSSAL, AND WIESE PHYSICAL REVIEW B 86, 054201 (2012)

where we have checked that the remainder O(τ 0) is integrable.
In total, we have N1 = 1/τ 2 − 9/(2τ ), which gives F̂ = 1/2
and the combination F̂ + B̂D − 1

2AÊ = 0 using Eq. (H14).
Hence we find that the universal combination is I = 0, in
agreement with the other calculations.

b. Coefficient C

To treat the other two-loop coefficients, one should group
the terms so that the integral is ultraviolet finite for τ > 0. This
leads to

C

2τ
+ O(τ 0) = b1 − 8b2 + 4a2

1 = M + Q + 1

τ 2
− 2

τ

(H23)

with

M = 1

(2π )2

∫
x+y+z=0

e−2G(z)[e2G(x) − 1][e2G(y) − 1]

+{[e2G(x) − 1] + [e2G(y) − 1]}[e−2G(z) − 1], (H24)

Q = −8
1

(2π )2

∫
x+y+z=0

e−G(z)[e2G(x) − 1][eG(y) − 1]

+{[e2G(x) − 1] + [eG(y) − 1]}[e−G(z) − 1]. (H25)

After symmetrization on the arguments x,y,z one obtains (with
x + y + z = 0 implicit):

M + Q = N1 + N2, N1 =
∫

x<1,y<1,z<1
f1(x,y,z),

N2 = 3
∫

x<1,y<1,z>1
f2(x,y,z), (H26)

since when two or more distances are larger than 1 the
integrand is identically zero. The functions f1 and f2 are easily
obtained using MATHEMATICA. For the sector x < 1,y < 1,z <

1, we perform the same manipulations as above. We find again
Eq. (H18) with now

gτ (w,c) = −8{w[w3 − 2c4w + 6c2w + 3c(w2 + 1)] + 1}
τw(2cw + w2 + 1)2

+O(τ 0). (H27)

The pole at w = 0 can again be treated via a substraction with
now

gp
τ (w,c) = 8(τ − 1)w2τ−1

τ (τ + 1)
�(0 < w < 1). (H28)

To see this, we note that gτ can be split in three terms:
(i) the coefficient of w−1+2τ that gives the above gp (ii)
the coefficient of w−3+4τ that turns out to simplify into an
expression yielding no pole in w (due to a cancellation of poles
between M and Q) (iii) an expression regular at w = 0. Hence
we have again N1 = N

p

1 + N
reg
1 where the contribution of the

pole is

N
p

1 = 1

2π

2(τ − 1)
[
4π − 3 × 4τB 1

4

(
τ + 1

2 , 1
2

)]
3τ 2(τ + 1)

= − 1

τ 2
+ 2 − α

τ
+ O(τ 0). (H29)

and the regularized part is

N
reg
1 = 1

2π

∫ 1

0
dw

∫ 1

−w/2

dc√
1 − c2

×
{

1

τ

[
8(2c4w − 2c2w + cw2 + c + 2w)(

2cw + w2 + 1
)2 ]

+O(τ 0)

}

= α + 1
2

τ
+ · · · (H30)

In total, we have N1 = −1/τ 2 + 5/(2τ ). Next, one easily
checks that N2 is finite, as the expansion of the integrand
(gτ ) up to O(τ ) at small w is regular. Hence from Eq. (H23)
and below, we find cancelation of 1/τ 2 poles and the residue
C = 1. This is again in agreement with the other calculations.

APPENDIX I: 2-LOOP INTEGRALS FOR THE OPE
METHOD

1. Integral I3

The first integral at 2-loop order is

I3 := 1

(2π )2

∫
x

∫
z

( |x − z|
|x||z|

)2T

�(|x − z|,|x|,|z| < L).

(I1)

We remind that this and other similar integrals are defined via
finite-part prescription. Integral (I1) is a counter term of the
theory, which has itself subdivergences. It can be calculated
by brute force, but the task is simplified by recognizing
that the structure of the renormalization group dictates these
subdivergences, or equivalently lower-order counter-terms.
After subtraction of these counter terms, which themselves
are easy to calculate, the rest can be written as a convergent
integral and be calculated. This is the road we will follow. To
show how this works, consider the OPE-coefficient associated
to I3, which is the integral of three interactions projected onto
a single one (not writing the replica content), which we note
as (not yet setting y = 0)

x

z

y =
( |x − z|

|x − y||z − y|
)2T

. (I2)

Subdivergences occur for x → y or z → y. Let us consider
x → y, keeping in mind that a similar term appears for z → y.
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Then, we use the OPE to extract the small-x behavior:

x

z

y

=
x

y
1y (1y z | )

+
x

y
∇jθ(y) (∇jθ(y) z | )

+
x

y
∇j∇kθ(y)

× (∇j∇kθ(y) z | )

+
x

y
∇jθ(y)∇kθ(y)

× (∇jθ(y)∇kθ(y) z | )
+ . . . (I3)

The above symbolic notations mean that we first consider the
OPE of the upper two interactions and projecting in the order
of their appearance: on the identity operator at position y, 1y

(termed relevant counter term below) times the contraction
of 1y with the interaction; then on ∇j θ (y) (termed relevant
odd counter term below) times the contraction of ∇j θ (y) with
the interaction; then on ∇j∇kθ (y) times the contraction of
the latter with an interaction; and finally, on the interaction
itself times, the projection of the interaction with the final
interaction, termed marginal counter term, or RG below, since
this is the repeated counter-term from 1-loop calculations. The
coefficients in the order of their appearance are

x

y
1y = |x − y|−2T , (I4)

= 1, (I5)

x

y
∇jθ(y) = 2i(x − y)j

|x − y|2T
, (I6)

= iT (z − y)j
|z − y|2T

, (I7)

x

y
∇j∇kθ(y) = i(x − y)j (x − y)k

|x − y|2T
, (I8)

= iT [δjk(z − y)2 − 2(z − y)j (z − y)k]

|z − y|4 , (I9)

x

y
∇jθ(y)∇kθ(y) = −2(x − y)j (x − y)k

|x − y|2T
,

(I10)

= −T 2(y − z)j (y − z)k
|y − z|4 . (I11)

Some remarks are in order. In a first-principles calculation, the
replica content would have to be written explicitly. Thus, e.g.,
the factor of 2 in Eq. (I6) comes from the two possibilities
to expand either the left our right replica. In the effective
action calculation presented earlier in this article, the first three
terms of Eq. (I3) are absent, since they correspond to 1-particle
reducible diagrams, which are automatically subtracted.

This allows us to give the list of counter terms. Note that if
we only know that such an expansion exists, but do not know
the coefficients, Eq. (I3) can be obtained via simple Taylor
expansion. (That is actually what we did, except to check the
working of the OPE on an example.)

Counter-terms for integral I3. To simplify notations, we set
y = 0. First, the relevant counter-terms, minus the product of
Eq. (I4) times Eq. (I5), since we want I3 plus the counter-terms
to be finite, (plus an analogous term with x and z exchanged)
are

I
c,rel
3 = − 1

(2π )2

∫
x

∫
z

[
1

|x|2T
+ 1

|z|2T

]
�(|z − x| < L) .

(I12)

This expression is zero due to analytical continuation.
Second, the odd relevant counter terms, minus the product

of Eq. (I6) times Eq. (I7) (plus an analogous term with x and
z exchanged),

I
c,odd
3 = 2T

(2π )2

∫
x

∫
z

[
z · x

|z|2|x|2T
+ z · x

|x|2|z|2T

]
×�(|x|,|z| < L) . (I13)

These terms are zero due to analytical continuation, and zero
due to parity. The marginal counter terms read

I
c,RG
3 = − T

(2π )2

∫
x

∫
z

[
x2z2 + 2(T − 1)(z · x)2

|x|2T z4
�(|x| < |z| < L) + x2z2 + 2(T − 1)(z · x)2

|z|2T x4
�(|z| < |x| < L)

]
. (I14)

We have written two contributions: the first ∼T 2 is the repeated counterterm from RG, equal to minus (I10) times Eq.(I11) (plus
an analogous term with x and z exchanged). Note that we have put � functions to restrict the counterterm to the sector in which
it is needed to subtract the divergence. The second contribution is (I8) × (I9) (plus an analogous term with x and z exchanged).
It is zero due to radial integration, but makes the integral absolutely convergent (it can, e.g. be put on a computer).
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Consider J3 = L ∂
∂L

[I3 + I
c,rel
3 + I

c,odd
3 + I

c,RG
3 ]L=1. Using the mapping theorem of Appendix J, to map onto |x − z| = L

!= 1,
using z = x − 1, we can write with the respective counterterms regrouped in one line:

J3 = 4τ
[
I3 + I

c,rel
3 + I

c,odd
3 + I

c,RG
3

]
L=1 = L

∂

∂L

[
I3 + I

c,rel
3 + I

c,odd
3 + I

c,RG
3

]
L=1

≡ 1

2π

∫
x

[
max(1,|x|,|1 − x|)−4τ

|x|2T |1 − x|2T
− 1

|x|2T
− 1

|1 − x|2T
− 2T [x · (1 − x)] max(|x|,|1 − x|)−4τ

|x|2T |1 − x|2

− 2T [x · (1 − x)] max(|x|,|1 − x|)−4τ

|x|2|1 − x|2T
− T

x2(1 − x)2 + 2(T − 1)[(1 − x) · x]2

|x|2T (1 − x)4
�(|x| < |1 − x|) |1 − x|−4τ

− T
x2(1 − x)2 + 2(T − 1)[(1 − x) · x]2

|1 − x|2T x4
�(|1 − x| < |x|) |x|−4τ

]
= J normal

3 + J anomal
3 . (I15)

There are normal and anomalous terms, where the latter are those for which the difference between the above max-functions
matters, even though in the limit of τ → 0, they all become 1.

The normal term is

J normal
3 = 1

2π

∫
x

[
1

|x|2T |1 − x|2T
− 1

|x|2T
− 1

|1 − x|2T
− 2T [x · (1 − x)]

|x|2T |1 − x|2

− 2T [x · (1 − x)]

|x|2|1 − x|2T
− T

x2(1 − x)2 + 2(T − 1)[(1 − x) · x]2

|x|2T (1 − x)4
�(|x| < |1 − x|)

− T
x2(1 − x)2 + 2(T − 1)[(1 − x) · x]2

|1 − x|2T x4
�(|1 − x| < |x|)

]
max(1,|x|,|1 − x|)−4τ . (I16)

Since we have constructed the counterterms such that this
integral is convergent in each subdomain, one can take the
limit T → 2, i.e., τ → 0. This yields, up to terms of order τ ,

J normal
3 + O(τ ) = 0 , (I17)

since in that limit the integrand vanishes identically.
We now turn to the anomalous terms. Those come from

the regions where the divergences do not cancel exactly, either
x → 0, or x → 1. Due to symmetry, we consider x → 0 only
(this gives a factor of 2). We write the different contributions

as follows:

J anomal
3 = (I15) − (I16) = Janomal

3a + Janomal
3b + O(τ ). (I18)

The first term is

J anomal
3a = −2

1

2π

∫
x

[
1 − max(1,|x|,|1 − x|)−4τ

|x|2T

]
� (|x| < 1/2) , (I19)

but one could have taken a smaller number than 1/2 for the cutoff. This gives

J anomal
3a = 2

1

2π

∫
x

[ |1 − �x|−4τ − 1

|�x|2T

]
�(|�x| < 1/2)�(�x · 1 < 0), (I20)

where we have made explicit that �x is a vector, see Fig. 3. Going to complex coordinates gives

J anomal
3a = 2

2π

∫
x

[
(1 − x)−2τ (1 − x̄)−2τ − 1

(xx̄)T

]
�(|x| < 1/2)�(�(x) < 0)

= 2

2π

∫
x

[
2τ (x + x̄) + 4τ 2xx̄ + 2τ (2τ + 1)(x2 + x̄2)/2

(xx̄)T

]
�(|x| < 1/2) �(�(x) < 0) + · · ·

= 2
∫ 1

2

0
dx x4τ−3 1

2π

∫ 3π/2

π/2
[2τx(eiφ + e−iφ) + 4τ 2x2 + τ (2τ + 1)x2(e2iφ + e−2iφ) + · · · ] = O(τ ), (I21)

since the only (logarithmically at τ = 0) diverging terms are the term ∼4τ 2x2 → O(τ ) after integration, and the last one, which
vanishes due to angular integration.
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The interesting term is

J anomal
3b = −4T

2π

∫
x

�x · (1 − �x)

|�x|2T |1 − �x|2 �(|�x| < 1/2)[max(|�x|,|1−�x|)−4τ − max(1,|�x|,|1−�x|−4τ )]

= −4T

2π

∫
x

�x · (1 − �x)[|1 − �x|−4τ − 1]

|�x|2T |1 − �x|2 �(|�x| < 1/2)�(�x · 1 > 0)

= −4T

2π

∫
x

1
2 (x + x̄ − 2xx̄)2τ (x + x̄ + · · · )

(xx̄)T (1 − x)(1 − x̄)
�(|x| < 1/2)�(�(x) > 0)

= −4T τ

2π

∫ π/2

−π/2
dφ

∫ 1
2

0
dx x4τ−3 (xeiφ + xe−iφ − 2x2)(xeiφ + xe−iφ + · · · )

(1 − xeiφ)(1 − xe−iφ)

= −4T τ

2π

∫ π/2

−π/2
dφ (eiφ + e−iφ)2

∫ 1
2

0
dx x4τ−1 + · · · = −T + O(τ ). (I22)

The remaining anomalous terms only diverge logarithmically at small x, thus when expanding the factors of max(· · · )−4τ , this
yields an additional factor of τ |x|, ensuring convergence; thus these terms can be neglected. Therefore, calculating Eq. (I14)
analytically and using Eq. (I15), we conclude that

I3 = −I
c,RG
3 + 1

4τ
J anomal

3b = (1 − τ )2

2

L4τ

τ 2
− 2(1 − τ )

L4τ

4τ
+ O(τ 0) . (I23)

2. Integral I4

I4 = 1

(2π )2

∫
x

∫
z

( |x − z|
|x|2|z|

)T

�(|x − z|,|x|,|z| < L). (I24)

We follow the same strategy as for I3, first identifying the
counter terms. The relevant counterterm to be added is

I
c,rel
4 = − 1

(2π )2

∫
x

∫
z

1

|x|2T
�(|x − z| < L). (I25)

We can again add the following (relevant) odd (i.e., vanishing)
counterterm:

I
c,odd
4 = T

(2π )2

∫
x

∫
z

x · z

|x|2T z2
�(|x|,|z| < L). (I26)

This time, there are two marginal counter terms. The marginal
counterterm for x → 0 comes from the insertion of Eq. (121):

I
c,RG,1
4 = − T

(2π )2

∫
x

∫
z

(T − 2)(x · z)2 + x2z2

2|x|2T |z|4

� (|x| < |z| < L). (I27)

The marginal counterterm for z → 0 comes from the subdivergence (126):

I
c,RG,2
4 = − 1

(2π )2

∫
x

∫
z

1

|x|T |z|T �(|z| < |x| < L). (I28)

Consider now the combination

J4 := L
∂

∂L

[
I4 + I

c,rel
4 + I

c,odd
4 + I

c,RG,1
4 + I

c,RG,2
4

]
L=1 = 1

2π

∫
x

[(
1

|x|2|1 − x|
)T

max(|x|,1,|1 − x|)−4τ − 1

|x|2T

−T
x · (1 − x)

|x|2T |1 − x|2 max(|x|,|1 − x|)−4τ − T
(T − 2)[x · (1 − x)]2 + x2(1 − x)2

2|x|2T |1 − x|4 �(|x| < |1 − x|)|1 − x|−4τ

− 1

|x|T |1 − x|T �(|1 − x| < |x|)|x|−4τ

]
= J normal

4 + J anomal
4 . (I29)

The normal contribution is

J normal
4 = 1

2π

∫
x

[(
1

|x|2|1 − x|
)T

− 1

|x|2T
− T

x · (1 − x)

|x|2T |1 − x|2 − T
(T − 2)[x · (1 − x)]2 + x2(1 − x)2

2|x|2T |1 − x|4 �(|x| < |1 − x|)

− 1

|x|T |1 − x|T �(|1 − x| < |x|)
]

max(|x|,1,|1 − x|)−4τ = O(τ ) . (I30)
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The integral is convergent, since the counterterms where constructed in order to cancel exactly all subdivergences. Taking the
limit of τ → 0, one finds that the integrand identically vanishes, which shows that the expression is O(τ ).

There are two potentially anomalous terms,

J anomal
4 = J anomal

4a + J anomal
4b + · · · . (I31)

For the first term, a calculation identical to Eq. (I19) shows
that

J anomal
4a = 1

2π

∫
x

1

|x|2T
[max(|x|,1,|1 − x|)−4τ − 1]

= O(τ ) . (I32)

The second term is, up to a prefactor of 1/4 identical to
Eq. (I22),

J anomal
4b = T

2π

∫
x

�x · (1 − �x)

|�x|2T |1 − �x|2 �(|�x| < 1/2)

×[max(1,|�x|,|1 − �x|−4τ ) − max(|�x|,|1 − �x|)−4τ ]

= J anomal
3b

4
= −T

4
. (I33)

Calculating explicitly the integrals (I27) and (I28) yields

I4 = −I
c,RG,1
4 − I

c,RG,2
4 + 1

4τ
J anomal

4

= (1 − τ )2L4τ

16τ 2
+ L4τ

8τ 2
− (1 − τ )L4τ

8τ
+ O(τ 0) . (I34)

We remark that the contributions proportional to T 2 ∼ (1 −
τ )2 from I3 and I4 cancel. We will see later that the only terms
that appear in the RG-functions come from the anomalous
terms.

3. Integral I5

The integral I5 is

I5 = 1

(2π )2

∫
x

∫
z

�(|x|,|z|,|x − z| < L)

|x|T |z|T . (I35)

Clearly, the marginal counterterms are subtracted by (I2)2:

I5 − I 2
2

= 1

(2π )2

∫
x

∫
z

�(|x|,|z|,|x − z| < L) − �(|x|,|z| < L)

|x|T |z|T
(I36)

− 1

10

x |   | > 1z

|   | < 1z

z = x

FIG. 3. The geometry used for J3.

Using the mapping prescription, we find

L
d

dL

[
I5 − I 2

2

]
L=1

= 1

2π

∫
x

max(|x|,|1−x|,1)−4τ − max(|x|,|1−x|)−4τ

|x|T |1 − x|T
= O(τ ). (I37)

Thus there is again no genuine contribution. This is not
astonishing for a bubble chain. The final result is

I5 = I 2
2 + O(τ 0) = L4τ

4τ 2
+ O(τ 0) . (I38)

4. Integral I6a

The integral I6a is

I6a = 1

(2π )2

∫
x

∫
z

(x − z)2 �(|x − y|,|y − z|,|z − x| < L)

|x − y|T |y − z|T |z − x|T .

(I39)

It has two subdivergences, due to 1-loop counterterms for the
coupling g: for x − y → 0 and for y − z → 0,

I
c,RG
6a = −1

(2π )2

∫
x

∫
z

[
1

|x − y|T
(y − z)2

|y − z|2T

×�(|x − y| < |y − z| < L) + 1

|z − y|T
(x − y)2

|x − y|2T

×�(|z − y| < |x − y| < L)

]
. (I40)

We have explicitly written the subdivergence (first factor)
times the remaining term (second factor) times the restriction
on the sector (third factor, � function). Note that we have used
our freedom to put the second factor at a point of our choice.

We now note that (i) when combining the integrands of
I6a + I

c,RG
6a , there are no subdivergences, and (ii) the integrand

vanishes in the limit of τ → 0. Therefore

I6a + I
c,RG
6a = finite , (I41)

and

I6a = −I
c,RG
6a + O(τ 0) = L6τ

6τ 2
+ O(τ 0) . (I42)

5. Integral I6b

The integral I6b is

I6b = 1

(2π )2

∫
x

∫
z

(x − z) · (y − z)

|x − y|T |y − z|T |z − x|T
� (|x − y|,|y − z|,|z − x| < L). (I43)
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It has a sole subdivergence, when x − y → 0. It is subtracted
by

I
c,RG
6b = − 1

(2π )2

∫
x

∫
z

[
1

|x − y|T

× (y − z)2

|y − z|2T
�(|x − y| < |y − z| < L)

]
. (I44)

We have decided to use this specific form of the counterterm
(for later convenience) but a symmetrized version would also
be possible. We claim that I6b + I

c,RG
6b = O(τ 0). To prove this,

we set y = 0, vary L, and map onto |x| = 1:

J6 := L∂

∂L

∣∣∣∣
L=1

(
I6b + I

c,RG
6b

)
= 1

2π

∫
z

[
z · (z − 1) max(|z|,1,|1 − z|)−6τ

|z|T |z − 1|T

−�(|z| > 1) max(|z|,|1 − z|)−6τ

|z|2T −2

]
, (I45)

The integral is finite, thus one can go to the critical dimension.
This yields

J6 := L∂

∂L

∣∣∣∣
L=1

(
I6b + I

c,RG
6b

)
= 1

2π

∫
z

[
z · (z − 1)

z2(z − 1)2
− �(|z| > 1)

z2

]
. (I46)

The integral can be split into two parts, J6 = J<
6 + J>

6 , calling
J<

6 the part where |z| < 1, and the other term the part for
|z| > 1. We get

J<
6 = 1

2π

∫
d2z �(|z| < 1)

z · (z − 1)

z2|z − 1|2

= 1

4

1

2π

∫
d2z �(|z| < 1)

|2z − 1|2 − 1

z2|z − 1|2

= 1

4

1

2π

∫
d2z �(|z| < 1)

(2z − 1)(2z∗ − 1) − 1

zz∗(z − 1)(z∗ − 1)
, (I47)

where in the last line, we have introduced complex coordinates.
This gives

J<
6 = −1

2

1

2π

∫
d2z �(|z| < 1)

[
1

z(1 − z∗)
+ 1

z∗(1 − z)

]
.

(I48)

Since |z| < 1, Taylor expansion can be used around zero.
It shows that there are only terms that vanish upon angular
integration. Therefore

J<
6 = 0 . (I49)

We now turn to J>
6 :

J>
6 = −1

2

1

2π

∫
d2z �(|z| > 1)

×
[

1

z(1 − z∗)
+ 1

z∗(1 − z)
+ 2

zz∗

]
. (I50)

Using that the Taylor expansion for z → ∞ is

1

1 − z
= −1

z

1

1 − 1/z
= −1

z

(
1 + 1

z
+ 1

z2
+ · · ·

)
, (I51)

we conclude that the terms of order 1/(zz∗) cancel, and the
remaining terms vanish upon angular integration. Therefore

J>
6 = 0 . (I52)

Putting the pieces together, we conclude that

I6b + I
c,RG
6b = finite . (I53)

We checked that one can also map onto |x − z| = 1, yielding

J6b = L∂

∂L

∣∣∣∣
L=1

(
I6b + I

c,RG
6b

)
= 1

2π

∫
x

[
1 · (1 − x)

|x|2|1 − x|2 − �(|x| < 1)

|x|2
]

= 1

2π

∫
x

[
1

2xx∗ − 1

2(1 − x)(1 − x∗)

+ 1

2xx∗(1 − x)(1 − x∗)
− �(|x| < 1)

xx∗

]
= 0, (I54)

using again the Taylor-expansion method, this time separating
into |x| < 1 and |x| > 1. Thus, renaming the variables,

I6b = −I
c,RG
6b + O(τ 0)

= 1

(2π )2

∫
x

∫
z

1

|x|T
(z)2

|z|2T
�(|x| < |z|) + O(τ 0)

= L6τ

12τ 2
+ O(τ 0). (I55)

We note a consistency relation between integrals I6a and I6b:
rewriting the numerator of Eq. (I39) as (x − z)2 = (x − y)2 +
(y − z)2 + 2(x − y) · (y − z), we deduce that I6a = 2I6b. This
is indeed satisfied by our results (I42) and (I55).

APPENDIX J: THE CONFORMAL MAPPING THEOREM

In this Appendix, we discuss a convenient method to
extract the divergence of an integral, known as the conformal
mapping theorem.58,59,61 This method we use to extract the
1/τ contribution of the 2-loop integrals.

In general, we have to compute integrals over N points,
equivalent to N (N − 1) distances x,y, . . ., of the form

I S =
∫

max(x,y,...)�L

f̃ (x,y, . . .) (J1)

with a homogeneous function f such that the integral has
a conformal weight (dimension in L) κ: I (ε) ∼ Lκ . For the
integrals which appear in N -loop diagrams, this weight is
simply κ = 2Nτ (renormalization of g) or κ = 2(N + 1) τ

(renormalization of σ ).
The integral over the distances is defined by the integral over

N − 1 points, keeping one chosen point fixed. The residue is
extracted from the dimensionless integral

J S := κ L−κI S = L−κ L
∂

∂L
IS

= L

∫
max(x,y,...)=L

f̃ (x,y, . . .) max(x,y, . . .)−κ . (J2)

Note that the last factor is nothing but L−κ , but we have chosen
this form as will become apparent shortly. The domain of
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integration can be decomposed into “sectors,” for instance,

{· · · < y < x = L}, {· · · < x < y = L}, (J3)

and we can map these different sectors onto each other by
global conformal transformations. As we show below, we can
for instance rewrite the integral (J3) sector by sector as

J S ≡ L

∫
x=L; y,...

f̃ (x,y, . . .) max(x,y, . . .)−κ

≡ L

∫
y=L; x,...

f̃ (x,y, . . .) max(x,y, . . .)−κ . (J4)

The constraint on the maximum of the distances is replaced
by the constraint on an arbitrarily chosen distance. Due to our
normalization

∫
z

:= 1
2π

∫
d2z, this is equivalent to fixing the

both endpoints of this largest distance.
To formalize the above, consider the integral over a

function f̃ at order N − 1 loops. Suppose f̃ (z1, . . . ,zN ) is a
homogeneous function of dimension −2(N − 1) + κ . Define
the function

f (z1, . . . ,zN ,) := f̃ (z1, . . . ,zN ,)
[

max
i<j

{|zi − zj |}
]−κ

. (J5)

[This is the combination which appears in Eq. (J2).] Then the
integral over z1, . . . ,zN−1 (the relative coordinates between
points) cut off by C(z1, . . . ,zN ) :=∏i<j �(|zi − zj | < L),

IN (a,L) :=
∫

z1,...,zN−1

f (z1, . . . ,zN ) C(z1, . . . ,zN ), (J6)

has L dimension 0. Consider a sector S (ordering of the
distances). Be xα := |zi − zj |, with 1 � α � m := N (N −
1)/2. Then S := {z1, . . . ,}, s.t. x1 < x2 < · · · < xm. (Actually,
we have chosen the labeling of the distances xα to account for
the ordering. This is not always the most practical thing to
do.) Also define the characteristic function χS(x1, . . . ,xm) of
a sector S as being 1 if all distances satisfy the inequalities
of the sector and 0 otherwise. The L derivative of the integral
restricted to the sector S is

J S := L
∂

∂L
IS
N (a,L)

=
∫

f (z1, . . . )|xm=LχS(x1, . . . ,xm) . (J7)

The conformal mapping theorem,58,59,61 whose proof we
reproduce below for completeness, states that if the integral
(J7) is Riemann integrable everywhere (or at least via finite-
part prescription), then

J S ≡
∫

f (z1, . . . )|xl=LχS(x1, . . . ,xm) . (J8)

In words, the above integral can be evaluated by fixing any of
the distances to be L (or 1 equivalently). Equation (J4) is then
a simple corollary of Eq. (J8).

To prove the latter, we start from Eq. (J7). First of all, since
xm = L and introducing a δ function to enforce it, J S becomes

J S =
∫

f (z1, . . . )δ(xm − L)χS(x1, . . . ,xm) . (J9)

We now aim at integrating over the distances x1, . . . ,xm instead
of the coordinates. For an arbitrary function g of the latter
distances, this is∫

d2z1 · · · d2zN−1 g(x1, . . . ,xm)

=
∫

dx1 · · · dxm μ(x1, . . . ,xm)g(x1, . . . ,xm) . (J10)

The measure is easily constructed as

μ(x1, . . . ,xm) =
∫

d2z1 · · · d2zN−1 δ(x1 − |z1 − z2|)
· · · δ(xm − |zN−1 − zN |) , (J11)

where the δ distributions enforce the xi’s to be the distances
between the zj ’s.

We now want to map onto xl = L. To achieve this, we can
always do the integration over xl last. This gives for J S ,

J S =
∫

dxl

∫
dx1 · · · dxl−1dxl+1 · · · dxm μ(x1, . . . ,xm)

× δ(xm − L) f (x1, . . . ,xm) χS(x1, . . . ,xm) . (J12)

We now make a change of variables. For all i but l, set

xi := x̃ixl/L . (J13)

We also define x̃l := L, and introduce this into (J12) as 1 =∫
dx̃l δ(x̃l − L):

J S =
∫

dxl

∫
dx̃1 · · · dx̃m μ(x̃1, . . . ,x̃m) δ(x̃l − L)

× f (x̃1, . . . ,x̃m)χS(x̃1, . . . ,x̃m)

× δ(x̃mxl/L − L)
L

xl

. (J14)

Note that the factor of L/xl consists of ( xl

L
)N(N−1)/2−1 from the

terms dx̃i but dx̃l ; a factor of ( xl

L
)(N−1)(2− N

2 ) from the measure;
and a factor of ( xl

L
)−2(N−1) from f . Using that∫
dxl δ(x̃mxl/L − L)

L

xl

= 1 , (J15)

we obtain

J S =
∫

dx̃1 · · · dx̃m μ(x̃1, . . . ,x̃m) δ(x̃l − L)

× f (x̃1, . . . ,x̃m)�(x̃m/x̃1 < L/a)

×χS(x̃1, . . . ,x̃m) . (J16)

Dropping the tildes, this is nothing but Eq. (J12) with xm

replaced by xl , which completes the proof.
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