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Phase diagram of polar states in doped ferroelectric systems
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We report a complete phase diagram that describes the relationships among all polar states in doped
ferroelectrics, including the paraelectric (polar liquid), ferroelectric (polar crystal), relaxor (polar glass), and
precursory states (partially frozen nanopolar domains). We employ a model that considers a randomly distributed
local polarization field associated with point defects, which breaks the symmetry of the Landau free energy
with respect to polarization. In the meantime, the model also takes into account the effect of point defects on
the overall stability of the ferroelectric phase. Based on this model, the phase field simulations reproduce all
the polar states and important characteristics associated with ferroelectric-glass (relaxor) transition observed
in experiments, including rugged free energy, wide relaxation time, nanosized ferroelectric domain structure,
“diffuse” transition, temperature dependence of third-order dielectric susceptibility, nonergodicity, frequency
dependence of dielectric loss, and domain switching.

DOI: 10.1103/PhysRevB.86.054120 PACS number(s): 77.80.B−, 64.70.K−, 64.70.P−, 77.80.Jk

I. INTRODUCTION

A normal ferroelectric is characterized by a transition
in polarization from a disordered state (i.e., paraelectric
state or polar liquid) to a long-range-ordered state (i.e.,
ferroelectric state or polar crystal) upon cooling to a critical
temperature called the Curie temperature Tc. The long-range-
ordered state exhibits a number of important properties, such
as piezoelectricity, electric switching, and pyroelectricity,
making ferroelectric materials the heart of a wide range
of advanced technological applications. In contrast, it has
been known for decades that ferroelectric materials with
complex compositions exhibit a “glassy polar state,” which
is usually referred to as the relaxor ferroelectric state.1–6 A
relaxor is neither a polar liquid nor a polar crystal but is
a frozen disordered polarization state with only short-range
order characterized by a “smeared” dielectric permittivity
peak with frequency dispersion and nonergodicity indicated by
zero-field-cooled/field-cooled (ZFC/FC) experiments.7 The
unique frozen local ferroelectric order makes the relaxor in-
dispensable for some key technological applications from con-
densers to high-power piezoelectric sensors and actuators.8,9

Over the past decades, extensive efforts have been made
to explore the physical origin of relaxor ferroelectrics.10–19

However, the long-standing question concerning the polar
state in relaxors remains:4,19 Whether a relaxor state is in
doped ferroelectrics (such as PbMg1/3Nb2/3O3 where the
presence of random fields exists), a ferroelectric state broken
up into nanodomains,4,16 a dipolar glass state with randomly
interacting polar regions,20 or a spherical vector glass state with
reorientable interacting random polar clusters.18,19 Recently,
electric-field-induced domain-switching behavior at a relaxor
state in an experimental observation4 has proved that a relaxor
is essentially a ferroelectric state broken up into nanodomains
under the constraint of quenched random electric fields.4,16

Therefore, a new model which can predict all relaxor charac-
teristics in experiments is needed. In this paper, we propose

a model that considers two well-known effects associated
with a random polarization field created by point defects in
ferroelectrics: (a) a random local static polarization field that
breaks the symmetry of the Landau free energy polynomial
as a function of polarization10,11,16,17 and (b) a decrease in the
normal ferroelectric transition temperature Tc of the system5

as defect concentration increases. Following the convention
in literature,10,11 the former is referred to as the local field
effect (LFE), whereas, the latter is referred to as the global
transition temperature effect (GTTE) hereafter. Computer
simulations using the phase field method based on this model
have predicted all the polar states in a prototype-doped ferro-
electric system and unique properties of relaxor ferroelectrics
found in experiments (such as nanosized ferroelectric domain
structure, “diffuse” transition, temperature dependence of
third-order dielectric susceptibility, nonergodicity, frequency
dependence of dielectric loss, wide relaxation time, and slim
hysteresis loop). Furthermore, a complete polar state phase
diagram characterizing both normal ferroelectric transition and
ferroelectric-glass (relaxor) transition is established, which
shows all the polar states and their relationships as functions
of temperature and defect concentration.

II. MODEL

The model system considered is a generic single crys-
tal undergoing a first-order cubic-to-tetragonal ferroelectric
transition15 upon cooling. The domain structure is described
by spatial distribution of spontaneous polarization P =
(P1,P2,P3). The total free energy of the system includes the
following three physically distinctive terms:10,15,21–23

F = F (P,c̄) + F (P,ϕ) + F (P)

=
∫

V fbulkdV +
∫

V fcoupledV

+
∫

V (felas + felec + fgrad)dV, (1)
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with the first term describing the GTTE and the bulk free
energy density fbulk can be approximated by a Landau
polynomial,

fbulk = A1

∑
i=1,2,3

P 2
i + A11

∑
i=1,2,3

P 4
i

+ A12

2

∑
i,j=1,2,3; i �=j

(PiPj )2

+A111

∑
i=1,2,3

P 6
i + A112

∑
i,j=1,2,3;i �=j

P 2
i P 4

j

+A123
(
P 2

1 P 2
2 P 3

3

)
, (2)

where A1, A11, A12, A111, A112, and A123 are the dielectric
stiffness and higher-order stiffness coefficients. The effect of
point defects on the transition temperature is described through
the temperature dependence of the leading term coefficient,
i.e., A1 = A0

1(T − Tc),Tc = T 00
c − bc, where c is the average

defect concentration, T 00
c is the transition temperature at c = 0,

and b is a constant.
The second term describes the LFE where

fcouple = −
∫

d3x

3∑
i

Pi(x) · ϕloc(x), (3)

and ϕloc(x) is a random vector field (local polarization field)
created by the point defects.10,11,17 ϕloc(x) is assumed to have a
zero mean and short-range spatial correlations.17 The last inte-
gral in Eq. (1) includes the long-range elastic and electrostatic
interaction energies and the short-range exchange interaction
energy. The elastic energy density felas is described as felas =
1
2Cijkleij ekl = 1

2Cijkl(εij − ε0
ij )(εkl − ε0

kl), where eij , εij , and
ε0
ij denote the elastic strain, total strain, and spontaneous

strain, respectively. The spontaneous strain in our simulation
is given by ε0

ij = QijklPkPl , where Qijkl is the electrostrictive
coefficient of a single crystal. The elastic energy can be
calculated by using the phase field microelasticity theory23

based on Green’s function solutions. The contribution of
domain walls to the total free energy, fgrad, is introduced
through the spatial gradient of the polarization field fgrad =
1
2G11

∑3
i=1 �Pi , where G11 is the gradient energy coefficient

and �Pi = ∑3
j

∂2Pi

∂x2
j

. The electrostatic energy density felec

includes the dipole-dipole interaction energy density fdipole,
the depolarization energy density fdepol, and the energy density
caused by applied electric field fappl. The total electrostatic
energy can then be described as a combination of the
above-mentioned energies felect = fdipole + fdepol + fappl. The
long-range dipole-dipole interaction energy density is given
by fdipole = − 1

2EiPi , where Ei denotes the inhomogeneous
electric field due to dipole-dipole interactions. The depo-
larization energy density is given by fdepol = − 1

2Ei,depolPi ,
where Ei,depol describes the average depolarization field caused
by surface charges and Pi denotes the spatial average of
the ith component of polarization. The electrostatic energy
due to an external electric field Ei,appl is given by fappl =
− 1

2Ei,applPi .
The temporal evolution of the spontaneous polarization

field can be obtained by solving the time-dependent Ginzburg-
Landau equation dPi (x,t)

dt
= −M δF

δPi (x,t) , i = 1,2,3, where M is

the kinetic coefficient and t is time. The following parameters
used previously21,22 are adopted in the current paper: Landau
expansion coefficients A0

1 = 0.0035, A11 = −6.697, A12 =
3.23, A111 = 82.94, A112 = 447.0, and A123 = 691.0, elastic
constants C11 = 1780.0, C12 = 964.0, and C44 = 1220.0, and
electrostrictive coefficients Q11 = 0.10, Q12 = −0.034, and
Q44 = 0.029 (all in dimensionless units). The domain-wall
energy for 90◦ domain walls is assumed to be ∼0.1 J m−2,24

which yields a length scale of lo ∼ 2.0 nm (where lo is the
numerical grid size). The simulations are carried out in two
dimensions (2D). A periodic boundary is used, and the simula-
tion cell size is 256 × 256 (i.e., ∼0.5 μm × 0.5 μm). The time
scale can be calculated through t = P 2×l0

M×γ
= 2.4 × 10−13 s,25

where M = 4 × 104 C2 J−1 ms−1 (Ref. 26) is the domain wall
mobility, P = 0.757 C/m2 is the spontaneous polarization, and
γ is the domain-wall energy. In our simulations, a step-cooling
process is employed, and at each temperature, the system is
equilibrated for 50 000 time steps (∼10−8 s).

III. RESULTS

A. Phase diagram of polar states in doped ferroelectrics

The simulation results obtained upon cooling from a
paraelectric state at different defect concentrations (c = 0.0–
0.4) are shown in Fig. 1. The insets show the diffuse scattering
patterns (i.e., the Fourier transform of |Pi(x)|2). In the cases
of c = 0.0 and c = 0.02, the system transforms sharply into
typical ferroelectric domain structures with long-range spatial
correlations (as indicated by the diffuse scattering patterns)
and well-defined 90◦ and 180◦ domain walls. When the defect
concentration increases to c = 0.05–0.1, small polar nan-
odomains start to appear at high temperatures, which is similar
to the precursory tweed structure observed in ferroelastic
systems.11 Such a precursory state transforms into a normal
ferroelectric domain structure upon further cooling but with
much smaller domain sizes. The diffuse scattering patterns
show weak spatial alignment. When the defect concentration
exceeds a critical value c > 0.1, the nanosized polar domains
become randomly distributed in space and no longer transform
into the normal ferroelectric domain structures. The diffuse
scattering pattern does not show clear spatial alignment. This
is consistent with the experimental observations.4,26,27 Direct
TEM observations of (Pb1−xLax)TiO3

27 have shown different
polar domain states at different defect concentrations. In
(Pb1−xLax)TiO3, long-range-ordered micron-sized tetragonal
domain structures can be seen for x = 0.2, whereas, only fine
domainlike striations are found for x = 0.23. For x = 0.25,
only polar nanodomain contrast can be observed, typical of
a glassy polar state seen in relaxor ferroelectrics (Fig. 6 in
Ref. 27).

To study whether the randomly distributed nanoscale polar
domains shown in Fig. 1 are glassy, ZFC/FC simulations are
performed, and the typical result obtained at c = 0.3 is shown
in Fig. 2(a). The FC curve shows a monotonic change in
polarization with temperature, whereas, the ZFC curve shows
a clear peak at Tf . The ZFC and FC curves begin to deviate
from each other at TB [the branching temperature indicated in
the inset of Fig. 2(a)], which means that the system begins to
lose its ergodicity and static nanodomains begin to appear at
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FIG. 1. (Color online) Polar domain structures with different defect concentrations at different temperatures. Different colors describe
different polarization domains, and arrows indicate the polarization directions. The system size is ∼0.5 μm × 0.5 μm. The insets in the bottom
row are the diffuse scattering of the corresponding domain structures.

this temperature. At higher temperatures, the system is at a
paraelectric state (polar liquid) with ergodic properties. When
the temperature is below TB but above Tf , there exist both
dynamic and static nanosized polarization domains. When the
temperature is below Tf , the polar nanodomains are completely

frozen, and the system transforms into a ferroelectric-glass
state.

It should be noted that the ZFC peak position is defined
as a glass-freezing temperature Tf ,28 where the system loses
its ergodicity completely. More interestingly, our simulated

FIG. 2. (Color online) (a) ZFC/FC curves for a system with a defect concentration of c = 0.3, where Tf indicates the ZFC peak temperature
and TB indicates the branching temperature. The deviation in the FC curve from the ZFC curve around the branching point is plotted in the
inset. (b) ZFC/FC curves for a system with a defect concentration of c = 0.02. (c) and (d) Loss dielectric permittivity obtained at different
frequencies for the two systems.

054120-3



WANG, KE, WANG, GAO, WANG, ZHANG, YANG, AND REN PHYSICAL REVIEW B 86, 054120 (2012)

ZFC/FC curves shown in Fig. 2 exhibit a striking similarity to
the ZFC/FC curves obtained experimentally for the relaxor in
the (Pb1−xLax)(Zr1−yTiy)O3 (PLZT) system,7 strain glass,29

and cluster-spin glass.30 In contrast, the ZFC/FC curves of a
normal ferroelectric phase transition (at c = 0.02) [Fig. 2(b)]
are found to be associated with a jump at the reverse
ferroelectric transition temperature Trc with large polarization,
followed by a separation at low temperatures. Furthermore,
the obvious frequency dependence of the dielectric loss for the
relaxor transition (c = 0.3) shown in Fig. 2(c) is a typical
signature of a relaxor observed in the experiments.1–6 For
comparison, the frequency independence of the dielectric loss
obtained for the normal ferroelectric transition (c = 0.02)
is shown in Fig. 2(d). The dielectric loss ε′′ is calculated
through applying an ac field cycle [with different periods (the
reciprocal of frequency)] with a small electric field at different
temperatures.

The nanosize polar domains shown in Fig. 1, the ZFC/FC
curves, and the frequency dependence of dielectric loss shown
in Fig. 2 have confirmed the existence of ferroelectric-glass
transition at high defect concentrations. Figure 3(a) shows the
heat capacity (Cp) calculated from the simulation results11

as well as the ZFC/FC curves obtained for different defect
concentrations. The peak temperature of the Cp curve obtained
upon cooling is defined as the normal ferroelectric transition
temperature Tc at low defect concentrations, whereas, the peak
temperatures of the ZFC curves are defined as the ferroelectric-

FIG. 3. (Color online) (a) Transition temperatures determined
from the heat-capacity and ZFC/FC curves. (b) Corresponding polar
state phase diagram constructed using the transition temperatures
indicated in (a).

glass-freezing temperature Tf at high defect concentrations.11

The branching temperatures TB on the ZFC/FC curves indi-
cate the start of the appearance of static, nonergodic polar
nanodomains and are defined as the precursory polar states
start temperatures. These transition temperatures, determined
from Fig. 3(a), are plotted in Fig. 3(b) for different defect
concentrations, which yield a polar state phase diagram that
describes the relationships among all the polar states in a doped
ferroelectric system. For example, it captures the normal fer-
roelectric transition, the ferroelectric-glass transition, and the
appearance of a high-temperature precursory state.26,31 This
calculated phase diagram shows striking common features
with the experimentally determined phase diagram of PLZT.5

B. Properties associated with normal
ferroelectrics and relaxor transitions

Figure 4 shows the comparisons of different properties
associated with a normal ferroelectric transition (c = 0.02)
to those associated with a ferroelectric-glass transition
(c = 0.3). The heat-capacity curves show a sharp peak at
the ferroelectric transition [Fig. 4(a)] and a diffuse hump
at the relaxor transition [Fig. 4(b)]. Figures 4(c) and 4(d)
show the remnant polarization vs temperature curves for the
two transitions. Comparing with the sharp change in polariza-
tion at the reverse transition temperature Trc upon heating ob-
tained from the normal ferroelectric transition [Fig. 4(c)], the
relaxor transition shows a gradual vanishing of polarization.
Figures 4(e)–4(h) show the related polarization-electric (P-E)
field curves and the electrostrictive strain-electrical field curves
obtained for the two systems at three different temperatures:
T = 273, 323, and 393 K. The normal ferroelectric system
exhibits a hysteresis loop that has a large remnant polarization
PR, whereas, the relaxor exhibits a slim hysteresis loop
with a small remnant polarization. The inset in Fig. 4(f)
shows the temperature dependence of χ3, the third-order
dielectric susceptibility, which is calculated through fitting
the P-E curves by P = χ1E + χ3E

3 . . . . The calculation
shows an obvious peak, which agrees with the experimental
observation.32 Furthermore, the frequency dependence of
dielectric permittivity ε′(ω) and loss dielectric permittivity
ε′′(ω) for the relaxor (c = 0.3) are shown in Figs. 5(a) and
5(b), which are calculated through applying an ac field cycle
with a small electric field at different temperatures. The solid
lines are predictions from the Cole-Cole equations,

ε′ = ε∞ + (εs − ε∞)
1 + (ωτ0)1−α sin(πα/2)

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α)
,

(4)

ε′′ = (εs − ε∞)
(ωτ0)1−α cos(πα/2)

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α)
,

(5)

where ε∞ and εs are the dielectric permittivity at infinite
frequencies and the static dielectric permittivity, respectively,
ω is the frequency, α is the distribution degree of relaxation
time, and τ0 is the relaxation time. As shown in Fig. 5(b), the
relaxation time τ = 2π/ω increases, and the distribution of
relaxation times broadens upon cooling. The inset in Fig. 5(b)
shows clearly broadening of the distribution of relaxation
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FIG. 4. (Color online) Physical properties
associated with the normal ferroelectric transi-
tion (c = 0.02) and relaxor transition (c = 0.3):
(a) and (b) heat capacity, (c) and (d) remnant
polarization (PR) change upon heating, (e) and
(f) hysteresis loop, and (g) and (h) electrostrictive
strain vs electric field at different tempera-
tures. The inset in (f) describes the temperature
dependence of the third-order dielectric
susceptibility χ3.

time (τl − τ0 − τh) and slowing down of the kinetic process
(increase in τ0) upon cooling. Here, τ0 corresponds to the peak
position in ε′′(ω), and τl and τh correspond to ε′′ = 0.001 at the
low- and high-frequency ranges, respectively. Even though the
actual calculation time spans from 10−2 to 10−8, the calculated
data follow the Cole-Cole equations well and, hence, a rather
wide relaxation time distribution (e.g., 10−8–102 s at 303 K)
has been obtained as shown in the inset of Fig. 5(b). These

calculations agree well with experimental observations.33 The
frequency dispersion in our simulation comes from the size
distribution of the nanopolar domains. Domains of different
sizes have different response times to the external fields,
leading to the broadening distribution of relaxation time. It
should be pointed out that other types of relaxation, such
as space charge at lower frequencies or electrons at higher
frequencies are not considered in these calculations.

FIG. 5. (Color online) The frequency dependence of (a) dielectric permittivity ε′(ω) and (b) loss dielectric permittivity ε′′(ω) for relaxor
(c = 0.3) at different temperatures. Symbols show the calculated results, and solid lines show predictions from the Cole-Cole equations. The
inset in (b) describes the relaxation time distribution τ (1/ω) according to ε′′(ω). τ0 shows the relaxation time at peak position in the ε′′(ω)
curves, while τl and τh show the relaxation time with ε′′ = 0.001 at a low-frequency range and a high-frequency range, respectively.

054120-5



WANG, KE, WANG, GAO, WANG, ZHANG, YANG, AND REN PHYSICAL REVIEW B 86, 054120 (2012)

IV. DISCUSSION

A. Effect of point defects on the formation of relaxor

By coupling the LFE with the GTTE, the phase field simu-
lations have reproduced all the unique properties associated
with the normal ferroelectric and relaxor transitions, upon
which, a complete phase diagram of all the polar states in a
generic-doped ferroelectric system has been established. The
GTTE lowers the global stability of the ferroelectric phase
and, thus, results in a decrease in the normal ferroelectric
phase transition temperature Tc. The LFE breaks the symmetry
of the Landau free energy10,11 with respect to polarization
and prefers certain polarizations at randomly distributed
defect locations, which hinder the formation of long-range
correlated ferroelectric domains. At low defect concentrations,
the resistance to long-range correlation in ferroelectric domain
structures from the point defects is not strong enough to prevent
the system from transforming from a polar liquid to a polar
crystal upon cooling. Because of the LFE, however, static
polar nanodomains (precursory state, partially nonergodic)
appear at TB, which is above the normal ferroelectric transition
temperature Tc. When the point defect concentration is high
enough, the randomly distributed local polarization fields
created by the point defects prevent the formation of long-
range-ordered polar states (polar crystals), and the system is
frozen into a ferroelectric polar glass with randomly distributed
static nanoscale polar domains. Note that because of the
displacive nature, a normal ferroelectric transition takes place
at a time scale of 10−12–10−9 s in micrometer-size systems,34

which is much faster than any experimentally accessible
cooling rate. Thus, a normal ferroelectric material (i.e., with
low defect concentrations) cannot transform into a glassy state
(i.e., relaxor) even under a very fast cooling rate or quenching.
It is the point defects that “freeze” the polar configuration into
a glass state in doped ferroelectrics. Thus, doped ferroelectric
materials that have strong random local fields (electric or
stress) present, such as heterovalent-doped (Bi2/3xSr1−x)TiO3,

(Pb1−xLa2/3x) (ZryTi1−y)O3 (PLZT), and equivalently doped
BaSnxTi1−xO3 and BaZrxTi1−xO3 are promising candidates
for relaxor ferroelectrics.

Note that our model is formulated for A-site substitu-
tion systems, such as (Bi2/3xSr1−x)TiO3 and (Pb1−xLa2/3x)
(ZryTi1−y)O3 that produce local polarization because of the
heterovalent-doped point defects. In these systems, x must
be above a critical value for the ferroelectric-glass properties
to appear. However, this model can also shed light on
the nonequivalent B-site substitution and equivalent B-site
substitution systems. The local polarization field in the former
and the local strain/stress fields in the latter caused by dopants
should play an important role in the formation of ferroelectric
glasses.

B. Ruggedness of a free energy landscape
in doped ferroelectrics

The wide relaxation time as shown in Fig. 5 has proved the
glassy characteristics of the relaxor in our simulation. To de-
scribe the physical origin of this important dynamic property,
the ruggedness of the free energy landscape with increasing
defect concentration is calculated, and the result is shown in
Fig. 6. We plot the total free energy landscape [i.e., Eq. (1):
local Landau free energy + gradient energy + electrostatic
interaction energy + elastic interaction energy] of doped fer-
roelectric systems with different defect concentrations. The
system size is 256 × 256 (∼500 nm) (single crystal), and
a free surface condition (i.e., without depolarization energy
caused by surface charges) is used. There exist two degenerated
polarization states Px ([100] direction) and Py ([010] direction)
in this 2D system, determined by the Landau polynomial. For
the sake of simplicity, we use the average polarization of the
whole system to represent the “space configuration.” The X

axis in Fig. 6 describes the value of average polarization at the
[100] direction, i.e., P̄x and the Y axis describes the calculated
total free energy with different space configurations. In these

FIG. 6. (Color online) The total free energy
landscape of doped ferroelectric systems having
defect concentrations from 0.0 to 0.3. The system
size is 256 × 256. The x axis describes the
“configuration space.” In these plots, we use the
average polarization in the [100] direction P̄x to
represent the configuration space, e.g., the left
side (P̄x = 0 and P̄y = 0.12) describes the single
domain structure with all [010] polarizations,
and the right side (P̄x = 0.12 and P̄y = 0)
describes the single domain structure with all
[100] polarizations. All the states in between
are polydomain states with different average
polarizations P̄x .

054120-6



PHASE DIAGRAM OF POLAR STATES IN DOPED . . . PHYSICAL REVIEW B 86, 054120 (2012)

calculations, the ground states are the single domain states,
corresponding to a single domain of [100] polarization on
the left and a single domain of [010] polarization on the right,
respectively, in Fig. 6. All the states in between are polydomain
states with different average polarizations P̄x . Figures 6(a)–
6(f) show the free energy landscape change with increasing
defect concentrations from c = 0.0 to c = 0.3. It is readily seen
that the ruggedness of the free energy landscape increases with
increasing defect concentration. At low defect concentrations
(c < 0.15), there just exists a single large barrier between the
two different single domain states, and the free energy shows a
smooth variation with the space configuration. Therefore, it is
relatively easy for the system to go to either of these two ground
states (i.e., the single domain states). However, at high defect
concentrations (c > 0.15), the doped defects alter the free en-
ergy landscape significantly, and there are a lot of local minima
and local barriers between the two ground states. In this case, it
is difficult for the system to evolve into the ground states (much
longer relaxation time). So, with the increase in defect concen-
tration, the local barriers become higher and higher, and corre-
spondingly, the relaxation times P̄x become longer and longer.

V. CONCLUSIONS

With the consideration of global transition temperature
effect and local field effect, phase field simulations have repro-
duced both normal ferroelectric transition and ferroelectric-
glass transition. All the characteristics associated with a

ferroelectric polar glass state predicted by the simulations
agree well with experimental observations, including wide re-
laxation time, “diffuse” transition, temperature dependence of
third-order dielectric susceptibility, nonergodicity, frequency
dependence of dielectric loss, and domain switching. Based
on these results, a complete ferroelectric-glass crossover
phase diagram including all the polar states [paraelectric
state, normal ferroelectric state, precursory polar state, and
polar glass state (randomly distributed nanosized ferroelectric
domains)] in a doped ferroelectric system is established,
which describes the relationships among these polar states
in the temperature-defect concentration space. Furthermore,
the simulations predict the unique dynamical nature of the
relaxor, i.e., relaxation that extends over an extremely wide
range of time. The physical origin could be attributed to the
defect-induced ruggedness of the free energy landscape.
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