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Simulation of alloy thermodynamics: From an atomic to a mesoscale Hamiltonian
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Starting from an atomic interaction model of an alloy with a clustering tendency, a mesoscopic thermodynamic
simulation method is developed. The alloy is represented by a mesoscopic rigid lattice of cells characterized by
the number of solute atoms they contain and a discrete cellular Monte Carlo (CMC) algorithm is designed to
perform simulations at this scale. The central quantity is a mesoscopic free energy, whose components (local free
energy and stiffness parameter) are extracted from the equilibrium properties of single-cell and two-cell systems.
Particular attention has been paid to properly incorporate, at mesoscale, the correlations between neighboring
cells with identical concentrations. Finally, the ability of the CMC method to compute thermodynamic properties
such as phase diagrams, interface profiles, and equilibrium fluctuation spectra is illustrated on a model alloy
as well as on an Ising model with interactions up to the second-nearest neighbors, previously developed for
body-centered-cubic Fe-Cu alloys. The very good agreement between the CMC calculation results for different
cell sizes and direct computations at the atomic scale indicate that the proposed scale change is thermodynamically

consistent.
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I. INTRODUCTION

Microstructures of alloys determine to a large extent their
physical and mechanical properties. A quantitative descrip-
tion of their evolution can now be achieved using atomic
kinetic Monte Carlo simulations based on a vacancy diffusion
mechanism.' While they provide impressive results on the
early stages of a two-phase separation and ordering kinetics,
they are rapidly limited by the cost of CPU time and fail to
predict late-stage kinetics. The study of the alloy behavior at
later time and larger scale is, however, essential to get a better
understanding of microstructures.

In dilute systems, a multiscale approach coupling density
functional theory calculations, atomic kinetic Monte Carlo
models, and mesoscale methods such as cluster dynamics* and
event-based Monte Carlo® makes the link between diffusion
mechanisms and long-term microstructure evolutions. How-
ever, a similar approach remains to be done for concentrated
alloys. An efficient way to predict microstructural evolutions
at large scale is provided by coarse-grained methods such
as the phase field one.®” The main advantage of these
approaches is that they are free from any restriction on
the spatiotemporal correlations in microstructure evolutions
which, for concentrated alloys, play a major role. The precise
aim of this paper is to propose and validate a coarse-graining
procedure that, first, derives an effective cellular Hamiltonian
from the atomic scale, and, second, uses this Hamiltonian in a
mesoscopic Monte Carlo algorithm.

In general, coarse-grained methods consist of dividing a
solid into mesoscopic cells and writing kinetic equations for
the evolution of the cell concentrations, assuming that a local
equilibrium is established in every cell at the characteristic time
scale of the microstructure evolution. This procedure leads
to a mesoscopic master equation where the driving force is
derived from a coarse-grained free-energy functional of the
Ginzburg-Landau type.'®!!

Recently, following this route, a complete derivation
of phase field equations from the atomic scale has been
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proposed for phase-separating systems with a kinetics based
on first-nearest-neighbor direct exchanges.'> The obtained
mesoscopic kinetic model was able to quantitatively describe
a precipitation kinetics involving a nucleation and growth
mechanism. In this approach, all of the ingredients (chemical
potentials, mobilities, stiffness coefficient, and noise terms)
are derived from a numerical coarse-graining procedure and
therefore depend on the coarse-graining size. In addition,
this derivation has made clear that the stiffness coefficient
significantly depends on the local concentration, whereas this
concentration dependence is usually neglected in the classi-
cal phenomenological approach. This stiffness coefficient is
extracted from the concentration fluctuation spectrum of a
macroscopic system at equilibrium. However, this approach
is only valid for homogeneous states and cannot therefore
be used inside the miscibility gap. In that region, the value
of the stiffness coefficient is extrapolated using a low-order
polynomial. The accuracy of this procedure decreases at low
temperature when solubility limits are small because the
concentration range in which the thermodynamic states are
homogeneous is very limited.

An important point of the present paper is to propose
and validate an alternative procedure to compute the stiffness
coefficient down to low temperature. Another aspect of the
present work is to use a coarse-grained free energy into
a discrete Monte Carlo approach, i.e., the cellular Monte
Carlo (CMC) method, which operates directly at the scale
of the mesoscopic cells. In other words, the mesoscopic
kinetics equations retain the nonlinear relation between the
temporal derivatives of the evolving cell concentrations and
the thermodynamic driving forces. Therefore, this approach
may still be valid when the chosen cell size is not large enough
to justify the Fokker-Planck approximation of the mesoscopic
master equation needed to derive a stochastic phase field
model.?

In the present work, this discrete and stochastic mesoscopic
method is validated not only on thermodynamic properties
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such as the phase diagram, equilibrium interface profiles,
and equilibrium fluctuation spectra, but also on the finite-size
calculation of the free energy, including inside the miscibility
gap. The first system studied is a binary model alloy with
a body-centered-cubic (bcc) structure, first-nearest-neighbor
interactions, and a clustering tendency. A second application
is the Fe-Cu alloy for which the atomic interaction model
extends to second-nearest-neighbor interactions. Its main char-
acteristic from a theoretical point of view is its simplicity: it is
a typical unmixing system, with a large and almost sym-
metrical miscibility gap where size effects due to the atomic
radius differences are negligible. As a consequence, it has been
frequently studied as a benchmark case to test the validity
of models of phase-transformation kinetics: nucleation and
growth theory,'? cluster dynamics (see Ref. 4, and references
therein), and Monte Carlo simulations.!+'°

Section II is dedicated to the presentation of the CMC
method. In Sec. III, we introduce a local parametrization
method based on a Widom procedure!”!8 to calculate cell free
energies using both an atomic Monte Carlo (AMC) method and
an analytical approach for the stiffness evaluation. In Sec. IV,
the resulting thermodynamic properties of the model alloy
predicted by the CMC method are compared to direct AMC
simulations. In Sec. V, the efficiency of the parametrization
procedure combined with the CMC algorithm is illustrated on
the Fe-Cu system.

II. MONTE CARLO ALGORITHM: FROM THE ATOMIC
TO THE MESOSCOPIC SCALE

A. AMC simulations

In the present framework, the thermodynamic description
is restricted to atomic-scale configurations on a rigid lattice
where each node is occupied by an atom. The atomic
interactions may be associated to each local cluster: pairs,
tetrahedra, etc. They are usually parameterized on ab initio
calculations (e.g., Ref. 2). We consider an alloy of atoms A
and Boccupying N sites of a bee lattice and restrain ourselves
to pair interactions, leading to a simple Ising Hamiltonian:

H=Z Y Y %

{«.8)e(A,B} I (i, j)ell,N]?

vEviPar (=), (1)

where yili, the adjacency matrix, is equal to 1 if sites i and j are
the /th nearest-neighbor (NN) sites. n; = 1 if site i is occupied
by a B atom, and O otherwise. Vl“ﬂ is the pair interaction
between atoms « and B located on the /th NN sites. As we
considered pair interactions only, the properties of the system
are invariant by the transformation ¢ — 1 — ¢, where c is the
total concentration in solute atoms B.

Starting from an initial configuration, other configura-
tions in the phase space are explored using a Monte Carlo
algorithm,'® i.e., the Metropolis algorithm®” in the present
case. Next, the Hamiltonian is truncated to first-NN interac-
tions, with only repulsive heterointeractions V/*# > 0. Such a
system displays a complete miscibility at high temperature.
At a temperature T = T,, a second-order phase transition
occurs, and at lower temperature, a miscibility gap related to a
first-order phase transitions appears. As a consequence, at low
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FIG. 1. Representation of an assembly of 27 atoms linked by
first-NN bounds, forming a d = 3 rhombohedric cell.

temperature, phase interfaces are sharp, while they broaden
close to 7.

B. Principles of CMC simulations

In cellular Monte Carlo (CMC) simulations, a bcc crystal
is divided into cells of linear dimension d in units of first-NN
distance. We choose to divide the bcc solid into rhombohedral
cells with faces parallel to the (110) ¢, as they are the planes
of lowest surface energy in the case of a first-NN interaction
model. As a consequence, the cellular lattice is not homothetic
to the atomic one. The cellular lattice is arhombohedral lattice,
and a representation of the rhombohedral cell can be found in
Fig. 1. To any atomic-scale configuration {n; }, we can associate
a mesoscopic configuration {N,}, where N, = Zi en Ni 1s the
total population of solute atoms B in the cell n, which can
take d® + 1 different discrete values. The canonical partition
function Z can be written as

Z= Z Z o PH(n) Ze—ﬁrd(w,,})’ @

{Ny} {ni}/{Nn} {Nn}

where B = (kT)™! is the inverse temperature. The sum over
{n;} at a given {N,} corresponds to an integration of the
short-range modes of wavelength £ < d. The functional FE’{ N,
is a free energy that reduces to the original Hamiltonian if
d =1, and is equal to the total free energy if d is the size
of the system. Concerning microscopic properties, it is a free
energy of the short modes that have already been integrated
out. Concerning macroscopic properties, it can be formally
considered as an effective Hamiltonian for the long-range
modes that have not been integrated out yet. An objective
of this work is to propose a controlled procedure to evaluate
this mesoscopic Hamiltonian I'?.

I'? is a function of the whole set {N,}. As the atomic
system displays short-range interactions only, it makes sense
to consider a cluster expansion of this function restricted to
first-NN cell interactions:

TN, })~ZE"<N)+Zynm O 3)

054103-2



SIMULATION OF ALLOY THERMODYNAMICS: FROM AN ...

where E4(N,) is the local free energy of a cell n of population
N,,and Af\,” ., 1s the interaction energy between first-NN cells

nand m. EY(N,) is such that T¢({N,,}) = E?(N)) for a system
made of a single cell with periodic boundary conditions (PBC).
For a given cell size, the accuracy of the expansion in Eq. (3) is
expected to decrease when the correlation length £ increases,
with the latter corresponding to the characteristic length at
which site occupancies affect each others. When & is smaller
than the cell size, the site correlations are almost all included
in the local free energy E¢(N,,) and the cell interaction energy
terms A‘f\,“ w,,- In the opposite case, for example close to the
critical terﬁperature where the correlation length diverges, it
should be less justified to consider first-NN cell interaction
energies only.

As in AMC, a Monte Carlo approach can be used to
explore the energy landscape associated with the cellular
Hamiltonian. In the present case, the metropolis algorithm
is used. Moreover, only discrete conservative exchanges
between cells (N,,,N,,) > (N, + 1,N,, — 1) are considered.
The corresponding CMC algorithm consists of the following
steps:

(1) randomly drawing a couple of cells (n,m),

(2) computing the energy difference, AT = I'Y(N, +
19Nm - 1) - Fd(Nn»Nm)v

(3) drawing a random number R € [0,1],

(4)if R < (e7PAT), then accept the exchange.

The formal continuity between the CMC and AMC simu-
lations is obvious: an AMC simulation is a CMC simulation
with only one site per cell. Taking into account the discrete
nature of exchanges allows one to study contiguity problems
such as percolation phenomena within a vacancy mediated
kinetics, as it allows discontinuities of the concentration
field. Additionally, the master equation is not approximated
by a Fokker-Planck equation, allowing for a more accurate
description of the fluctuations.”!

III. PARAMETERIZATION METHOD

In this section, we present the procedure to calculate the
energy parameters of the cellular Hamiltonian. A Widom
integration method is employed to calculate the cell local free
energies, and exact free-energy calculations are performed to
estimate the cell interactions.

A. Local free energy of a single cell

The Widom integration scheme is a computational tool
employed to calculate chemical potentials.!”!%2? Originally
written in the lattice gas formalism, it can as well be applied on
rigid lattice models of alloys. The canonical partition function
of an alloy with N solute atoms is written as a function of
the energy of a system with (N — 1) solute atoms, obtaining
this way the alloy chemical potential (see Appendix A). The
Widom scheme combined with AMC simulations is applied to
a small simulation box identical to a single cell with PBC. An
integration of the resulting chemical potential leads to the free
energy Fy of a cell of population N. As defined in Sec. II, the
latter corresponds to the cell local free energy E4(N) = Fy.
This method is very efficient, especially when cells are small:
the number of concentrations to explore scales as d°.
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The precision on the local free energy is estimated by
calculating the relative difference between two independent
computations of the alloy chemical potential using Egs. (AS5)
and (A7) presented in Appendix A. In order to get a relative
error below 1073, the number of Monte Carlo steps (MCS,
number of exchange attempts per site) to reach and explore
equilibrium and the number of energies to be measured
has to be specified. At temperatures not too close to the
critical temperature (|7 — T.|/T. > 0.1), 10000 MCS to reach
equilibrium and around 50 000 energy calculations per site
with one MCS between each calculation allows one to reach a
relative error of 1073,

B. Interaction energy term

Concentration gradient terms between two cells are linked
to the interaction energy terms [see Eq. (3)]. It is a tremendous
work to compute all of the interaction energies, as their number
evolves as d®. For two given cells with populations N and M,
we therefore consider the Taylor expansion of the interaction
energy at the average population between the cells with respect
to the concentration difference:

2

AN ™ A v —i—%k‘@%—i—m. )
The zeroth-order term is a homogeneous term which depends
on the average concentration. It is related to the boundary
condition applied during the calculation of the local free
energy. The first-order term disappears for obvious symmetry
reasons: the energy cannot depend on the orientation of the
lattice.

In the present work, we choose not to focus on the case
of a second-order transition where the correlation length is
large. Our purpose is to find a convenient way to parametrize
the cellular interactions when correlations are small enough.
In this limiting case, the Taylor expansion may be limited to
the second-order term. In the continuous limit of Eq. (4), the
interaction term would be approximated by A?vn, N, = AMVN 2,
and the CMC effective Hamiltonian would tend toward the
Cahn-Hilliard free-energy functional®® widely used in phase
field methods.

The stiffness coefficient Aj’v is, of course, size dependent.
This size dependency can be analyzed through the normalized
stiffness coefficient x defined as follows:

d d
= A§ % , 5
o N Zcell ( )

where Z; is the total number of first-NN bonds going out of
the cell. While in a simple cubic atomic lattice, the number of
bounds between two cells is d2, in the case of a bece lattice, it
slightly differs at small d. There is a total of Z.y = 12d° —
6d + 2 bounds going out of the cell: two bounds per atom on
each face, plus a correction as the atoms on the six broad angle
edges have three bounds going out while belonging to two
faces, and a corner correction for the two atoms belonging to
three such edges. As we consider first-NN cellular interactions
only, the effective number of bounds between two cells is the
total number of atomic bounds going out of the cell divided
by the number of faces, i.e., six in the present case.
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1. Correction of the periodic boundary conditions

The local free-energy term, noted Ej‘f, in Eq. (3), is
computed by considering a single cell with PBC. Therefore,
it does not incorporate all of the fluctuations that exist
between two neighboring cells constrained to have the same
concentration but not the same atomic configurations. The
free-energy contribution associated with these additional
fluctuations corresponds in Eq. (4) to the zeroth-order term
A?v - hereafter referred to as periodic boundary correction
term.

In order to compute this quantity, a coupled Widom
integration scheme is designed on a two-cell system: an atomic
system with PBC is divided into two closed subsystems of the
size of a cell. Atoms are not allowed to cross the interface but
they interact through it. The homogeneous interaction term
is extracted from the Widom integration of such a coupled
system with the same concentration on both sides. The Widom
integration is performed simultaneously on both subsystems
(the calculation is detailed in Appendix B). Due to the PBC,
the two subsystems interact through two interfaces of 2d>
bounds each. The energy correction per bound of the interface
is then %, where AE is the difference between the energy
computed on the coupled system and twice the one derived
from the single-cell Widom integration scheme. The boundary

; ; d _ Zen AE
correction term is then A NN = g I

2. Stiffness parameter

A method has been proposed to compute the stiffness
coefficient A%. It is based on a fitting procedure of the
coarse-grained AMC fluctuation spectra.'> According to this
procedure, an atomic configuration obtained by an AMC
simulation is divided into cells. Average concentrations of
cells are calculated and the fluctuation spectrum of the cell
concentration field S;(Kk) is measured:

1

Sk = ———,
0T = 5z 00m)

(6)
where ¢,;(Kk) is the discrete Fourier transform of the local cell
concentration field, L is the linear size of the simulation
box, and k = Z(n,m,p) with (n,m,p) € [0, —1]° is a
vector in the reciprocal cell lattice. This quantity is then
averaged over many configurations. In the hypothesis of
small Gaussian fluctuations, the stiffness A,dv characterizing
the cell interactions is obtained from the slope of the
inverse fluctuation spectrum when plotted as a function of
|k|> by a fit in the linear regime (small |k|?). Typically,
10° MCS are performed to equilibrate the system. They
are followed by 8 x 10° spectrum measurements with one
MCS between each. This yields an average spectrum from
which the stiffness )\?\, is extracted. The resulting normalized
stiffness parameter «¢ is deduced from it according to Eq. (5).
An example of the calculation at T = 1.57, is shown in Fig. 2.
dfcf, is found to increase linearly with d for cell sizesup tod =
5. Therefore, this result indicates that away from the critical
temperature, the main size effect is the geometrical factor
introduced in Eq. (5) down to the smallest sizes we investigated
here.

In the miscibility gap, the equilibrium state is a system
decomposed in two phases of concentrations equal to the
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FIG. 2. (Color online) Cellular stiffness extracted from fits of the
AMC fluctuation spectra at T = 1.57,, ¢ = 0.2 and different cell
sizes d. Squares are the stiffness parameters extracted from AMC
values, while the dashed line corresponds to a linear fit.

solubility limits. Concentrations of the cells used to calculate
the fluctuation spectrum fluctuate around the solubility limits
as well. Nonetheless, the applicability of the method described
above, which is valid only for homogeneous equilibrium states,
is limited. We propose here an alternative method based on
the exact free-energy calculation of dilute finite-size systems,
which avoids these drawbacks. Again we consider a two-cell
system with PBC. The free energy of the system is denoted
F{; y» where N and M correspond to the solute number of
the cells, while F{ is the free energy of a single cell with
PBC. We deduce from both free energies the coupling free
energy, Fcfv M= FI{/,M — F;’, - F,‘é This system is similar
to two interécting first-NN cells, but due to the PBC they
interact through two interfaces of 2d? bounds each. Taking into
account the fact that «¢; is almost independent of d, we can then
write

2 (N — M)?
—— K N4M —————,
2d? d®
Using the definition of the coupling energy, we obtain

@)

d d
FCN,M — Fc'vin vow =
2 02

1 2
ﬁkw(]\’ — M)

= Fi = B = Bl = (Pl e =27 ). ®

*2

In the dilute case, where N =2 and M = 0, we finally

get
k= Flo— B = R — (F{, - 2F). ©)
Details of the calculation are explained in Appendix C. One
can force the cells to have a concentration in the miscibility
gap. However, the approach is limited by the complexity of
the calculation when the number of solute atoms included
in the two-cell system increases. Despite this limitation, a
large range of concentration can be explored, overcoming
the limitation by the use of the fact that x% is almost d
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FIG. 3. (Color online) Reduced free energy per atom calculated
by means of the Widom scheme applied on a first-NN atomic
interaction model for various cell sizes, at 7 = 1.57, (top) and
T = 0.8T, (bottom).

independent. By varying the cell size, concentrations up
to ¢ =0.125 can be reached. These results can then be
interpolated using a polynomial fit to obtain the stiffness at any
concentration.

C. Numerical results

Figure 3 shows the local free-energy density computed with
the Widom scheme for different cell sizes. The local free-
energy density is definitely size dependent, as it was observed
in earlier works.?>?* We also note a continuous concentration
dependency of the local free energy for all sizes investigated
here. In all cases, the free energy is decreasing with the cell
size. This last result could be expected considering the free
energy from a variational point of view: the equilibrium state of
a system is the one that minimizes its free energy with respect
to the configuration probability density, i.e., the fluctuation
probability. When the system size increases, the fluctuation
range increases and therefore the free energy can be further
minimized.

The analytical method to calculate the stiffness parameters
in the limiting case of dilute systems provides one with a few
discrete values at concentrations up to ¢ = 0.125. To get the
values over the entire concentration range, an interpolation
between the known values is needed. The symmetry property
of the stiffness implies the use of an even function. As
the calculated stiffness parameters present a non-negligible
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FIG. 4. Reduced mean interaction per bound of a first-NN atomic
interaction model at 7 = 1.57,. The squares are the exact calculation
and the solid line is the polynomial extrapolation.

concentration dependency, at least a second-order polynomial
is required to fit them. However, as no exact calculation is
available in the concentrated region, the use of a polynomial
with an order larger than four induces spurious oscillations
in the concentrated region. Therefore, we use the highest
polynomial fit with a monotonous derivative: a fourth-order
polynomial fit (cf. Fig. 4).

IV. MACROSCOPIC PROPERTIES

The parametrization procedure of the cellular Hamiltonian
is validated by comparing several macroscopic properties
computed by CMC simulations with the reference ones
obtained by AMC simulations. For this purpose, a benchmark
system is considered, where atoms sit on a bcc lattice and
interact through first-nearest-neighbor interactions. Three ther-
modynamic properties are explored: the fluctuation spectrum,
the phase diagram, and the interface profile. In addition to these
properties, the free energy of finite-size systems is investigated
to test the cellular Hamiltonian at intermediate concentrations
in the miscibility gap.

A. Phase diagram

To estimate the solubility limits of the phase diagram,
equilibrium two-phase systems are simulated in the canonical
ensemble. When the simulation box is large enough, concen-
trations at the end of the equilibrium profile correspond to the
solubility limits. The simulations are performed in a 2 * 643
cell box. As observed in Fig. 5, where phase diagrams for
two different cell sizes are presented, the CMC results are in
very good agreement with the reference AMC phase diagram.
While the mean-field approximation gives good results at low
concentrations only (¢ < 0.01), the CMC phase diagram sticks
to the AMC one at all temperatures. A more quantitative
comparison is presented in Fig. 6, where the relative difference
between solubility limits obtained by CMC simulation or
mean field and the reference AMC simulation result is shown.
Near T, the quality of the CMC results slightly decreases.
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FIG. 5. (Color online) Phase diagram of a first-NN interaction
model obtained by AMC and CMC simulations. The small window
is a zoom of the phase diagram at low temperature. The dashed line
is the mean-field approximation. T is the critical temperature of the
AMC system.

However, the agreement with the AMC solubility remains
good: while the mean-field approximation predicts a critical
temperature with a relative error of about 20%, the relative
error of the CMC method on 7, does not exceed 3%. Thus,
the approximation made in Eq. (3) appears to be relevant for
our current problem. Finally, the importance of the correction
to the boundary condition discussed in Sec. III B1 is shown in
Fig. 7 by displaying the relative difference between solubility
limits obtained by CMC simulations with and without this
correction and the reference AMC simulation result. The
relative error on the solubility limit in CMC simulations is re-
duced by one order of magnitude by considering the boundary
correction.

0.6
05 m 27 atom cells
71 | e 64 atoms cells
Mean field

0.4
S
= 0.3
2]
(@)
Rl

0.2

0.1

]
00la =B panoeasns002? 209
0.6 0.7 0.8 0.9 1.0

T/Tc

FIG. 6. (Color online) Effect of the cell size on the relative
differences between the solubility limit obtained by CMC calculations
with 27 atom cells (black) and 64 atom cells (dark gray) or by a
mean-field approximation (light gray) and the AMC one. T, is the
critical temperature of the AMC system.
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FIG. 7. (Color online) Effect of the boundary correction on the
relative differences between the solubility limit obtained by CMC
calculations with 64 atom cells, including the boundary correction
(dark gray), without the boundary corrections (black), or by the mean-
field approximation (light gray) and the AMC one.

B. Fluctuation spectrum

The fluctuation spectrum S;(k) can be measured on AMC
simulations according to the procedure detailed in Sec. [l B2
as well as on CMC simulations. The comparison between
the two is an important test of the CMC parametrization
since it shows both short-range and long-range fluctuation
features. As shown in Figs. 8 and 9, the comparison is
performed by measuring the relative difference between CMC
and AMC fluctuation spectra. A systematic study is performed
at various concentrations and for temperatures in the range
T €[0.6T,,2T,]. It shows that a good agreement over the
whole spectrum is achieved in all circumstances, with a
maximum discrepancy below 10% and which increases near

0.08 T=1.5Tc

c=0.15

0.04 -

0.00

(asTys™

—— 27 at. cells

-0.04 - —— 64 at. cells

-0.08 4 " T " T " T " T " T
0.0 0.2 0.4 0.6 0.8 1.0

(k/kmax)?

FIG. 8. (Color online) Relative difference between AMC and
CMC fluctuation spectra with respect to the AMC spectrum at a
concentration C = 0.15 and a temperature 7 = 1.57, with cells of
27 atoms (black) and 64 atoms (red). ké = 3(27”)2‘
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FIG. 9. (Color online) Relative difference between AMC and
CMC fluctuation spectra with respect to the AMC spectrum at various
concentrations and a temperature 7 = 1.57, with cells of 64 atoms.
kg =3(3)%

the solubility limit. The lone points at very low k come from
the poor statistics in this area.

It is not possible to measure fluctuations of a homogeneous
system at intermediate concentrations in the miscibility gap,
since a phase separation would occur. As a consequence, the
parametrization in this area cannot be validated by this test.

C. Interface profile

The simulation of an interface profile using a CMC method
allows checking the cellular Hamiltonian on a large range
of concentration: from the solubility limits to the unstable
region. An equilibrium two-phase system is simulated using
an AMC simulation in the canonical ensemble with a box of
2 x 643 atoms, using two pure phase separated by a (110)gcc
plane as the initial condition. The resulting interface profile
is obtained by averaging the concentration in each (110)gcc¢
plane after equilibration and comparing to the corresponding
CMC one. It is well known that a two-dimensional interface
in a three-dimensional system may display a roughening
transition at a temperature Tg: for T < Tk, the interface
is thin and pinned on the lattice, whereas for 7 > Tk, it
is rough, wanders across the lattice, and its width increases
with its longitudinal size. Concerning the present analysis,
the coarse-grained simulations should produce the complete
thermodynamic behavior of the interface, whether roughening
fluctuations are present or not.>> As can be observed in Fig. 10
and in Table I, the interfaces of a few atomic ranks are

TABLE 1. Parameters of the interface profile at 7 = 0.87, for
various cell sizes. The interface profile is fitted with the function
c(x) = 0.5 + (¢, — 0.5) tanh(5).

&3 Cs + B +

1 0.08 0.01 1.19 0.02
27 0.07 0.01 1.05 0.05
64 0.08 0.01 1.09 0.06
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FIG. 10. (Color online) Interface profiles calculated by the AMC
and CMC method for various cell sizes at T = 0.87, on a 2 x (64)°
site system. The average concentration in a (110)pcc plane is given
as a function of the atomic rank.

correctly described at the cellular scale. More specifically, with
a coarse-graining size close to half the interface width (cells
of 64 atoms), the accuracy of the interface width is better than
10%.

D. CMC free energy of a finite-size system

The alloy chemical potential of a CMC system can be
integrated to obtain the total free energy of the CMC system, as
was done for an AMC system in Sec. III A. By this method, the
free energy can be computed at any concentration, including
inside the miscibility gap, and allows one to check the accuracy
of the method in this area, which was out of range for the
fluctuation measurement (cf. Sec. IV B). For this purpose,
the Widom integration scheme has been adapted to the CMC
algorithm (cf. Appendix A).

In Fig. 11, the free energy of a single cell of 4096 atoms
computed with the Widom scheme at the atomic scale is

— 1 cell of 4096 at.

0.08 4 T=0.8Tc — — 64 cells of 64 at.
1 cell of 64 at.
— 0.04-
—
=<
2
@
=
2 0.00
[0]
c
(0]
(0]
o
[T
-0.04
T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

concentration

FIG. 11. (Color online) Free energy per site obtained by a Widom
integration scheme of a single AMC box of 64 atoms (red dotted line),
a single AMC box of 4096 atoms (black solid line), and a large CMC
system of 64 cells of 64 atoms (blue dashed line), at temperature
equal to T = 0.87..

054103-7



T. GARNIER, A. FINEL, Y. LE BOUAR, AND M. NASTAR

compared to the one computed with the Widom scheme applied
to CMC simulations with 64 cells of 64 atoms. It shows
that the total free energy is well reproduced by the CMC
method, even in the concentration region of the miscibility
gap. An additional curve corresponding to the free energy of
a single cell of 64 atoms is plotted to emphasize again the
dependency of the local free energy with the cell size (see
also Fig. 3). The relative error between the AMC simulation
and the equivalent CMC simulation with the same number of
atomic sites is below 3%. To exemplify the reliability of CMC
simulations with respect to AMC simulations in the miscibility
gap, we discuss a specific point inside the miscibility gap and
choose the spinodal limit for that purpose. The spinodal limit
corresponds to the concentration value at which a change of
sign of the first derivative of the free energy with respect to
concentration occurs. The spinodal limit is thus a function
of the size of the whole system. Thermodynamic consistency
implies that AMC and CMC simulations should provide the
same value of the spinodal limit if they are performed on
a system with the same number of atomic sites. Performing
simulations on a 4096 site box, the finite difference provides
us with the first derivative of the chemical potential and thus
the spinodal limit. A relative difference between CMC and
AMC spinodal limit of around 5% was observed.

The stiffness parameter «y is crucial as it triggers phase
transitions and controls microstructures of out-of-equilibrium
systems. Therefore, in order to estimate the required accuracy
for its calculation, the sensitivity of the free energy to errors
on the measurement of the stiffness is investigated. Figure 12
shows that the free energy is sensitive to the stiffness parameter.
While the effect of an increase of 20% of ky is hardly
noticeable on the minimum of the free energy, its impact
is important in the miscibility gap. Figure 12 shows that at
¢ = 0.5, the disagreement with AMC simulation on the free
energy is increased by a factor of two for an increase of ky by
20%. However, this disagreement remains limited compared
to the depth of the well. On the other hand, we remind one

-0.03

-
< -0.04
Q
°
3 —— 1 cell of 4096 at.
E — — 64 cells of 64 at.
) -0.05 1 64 cells of 64 at.,
3 20 % increased «
C \
\ S’
-0.06 L T T T T T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0

concentration

FIG. 12. (Color online) Free energy per site obtained by a Widom
integration scheme of a single AMC box of 4096 atoms (black solid
line), a CMC system of 64 cells of 64 atoms (blue dashed line), and
the same with a stiffness « increased by 20% (light-blue dotted line),
at temperature equal to 7 = 0.87T,.
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that ky was extrapolated using a polynomial approximation
(see Sec. III B2). The uncertainty of x5 due to this polynomial
approximation can be estimated to roughly 10%. Thus, taking
into account the previous discussion, we can expect this error
to be of little consequence on macroscopic properties.

V. APPLICATION TO FE-CU

Extensive ab initio calculations have already been per-
formed on the Fe-Cu system,2 which allowed one to build
a set of first-NN and second-NN pair interactions. The
corresponding AMC simulations were observed to be in good
agreement with experimental thermodynamic and kinetic data.
We consider here the same atomic interactions and again use
them to validate the parametrization procedure and the CMC
algorithm. Above T ~ 1100K, the Fe-Cu alloy displays an
allomorphic transformation from a body-centered-cubic to a
face-centered-cubic structure. Since the rigid lattice does not
allow allomorphic transformations, such a phase transition
is completely ignored by the present AMC and thus CMC
simulations.

A. The cellular Fe-Cu Hamiltonian

If the atomic Hamiltonian had been restricted to first-
NN interactions, then the previous results could have been
immediately employed by rescaling the temperature. The
present study allows one to check if the parametrization
procedure and the CMC algorithm still hold in a system
including longer-range interactions.

We again use the coarse-graining procedure presented
above. The mesoscopic cell interactions are limited to first-
NN cells only. The cell local free energies and boundary
correction terms are computed using, respectively, the Widom
scheme and the coupled Widom scheme according to the
parametrization procedure described in Sec. III. All quantities
are used as input parameters of the CMC code without
additional treatment. For various cell sizes, the interaction
stiffness is derived from the analytical free-energy calculation
of dilute two-cell systems. The resulting values are interpolated
and extrapolated to higher concentrations using a parabolic fit.

B. The thermodynamic Fe-Cu properties

The phase diagram of the Fe-Cu system has been computed
using both CMC and AMC simulations. As shown in Fig. 13,
the overall agreement is very good. While the phase diagram
of a mean-field model is correct only at low temperature,
the phase diagram obtained with the CMC method is still
good at high temperatures. However, the agreement obtained
with the smallest cell of 27 atoms is not as satisfying as the
one obtained in the situation described in Sec. IV, where
the atomic Hamiltonian was limited to first-NN interactions
(see Fig. 5). This loss of accuracy can be explained considering
the size of the atomic interaction range. Indeed, the correlation
length at the atomic scale increases with the range of
the atomic interactions. Consequently, the precision of the
coarse-graining procedure used here, in which the effective
cell interactions are limited to first NN, will decrease for a
given cell size when the atomic interaction range increases.
Therefore, we can see in Fig. 13 that as soon as the cell has a
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FIG. 13. (Color online) Phase diagram of the Fe-Cu system in
the Fe-rich region obtained through AMC and CMC simulations.
The small window shows a zoom of the dilute region. The thin line
is the mean-field approximation, the broad one is the AMC result,
and the symbols are the CMC results.

size of 64 atoms, the phase diagram is in much better agreement
with the reference AMC one. This illustrates the fact that
away from T,, i.e., when the correlation length is finite, it is
always possible to select a minimum cell size for which the
coarse-grained procedure with effective interactions limited to
first NN will reproduce accurately the overall thermodynamic
behavior.

The fluctuation spectra of the Fe-Cu system are obtained
using the same procedure as in Sec. III. Once again, as can be
observed in Fig. 14 at T = 1700 K, a good overall agreement
is obtained.

The study of the interface profile is consistent with the
fluctuation spectra. As can be seen in Fig. 15, the interface

0.08 -
T=1700K
c=0.05
0.04 1
ﬂ 0.00-
7))
2

—— 27 at. cells
—— 64 at. cells

'0-08 T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

(k/k,)?

FIG. 14. (Color online) Relative difference between AMC and
CMC fluctuation spectra with respect to the AMC spectrum at a
concentration ¢ = 0.05 and a temperature 7 = 1700 K with cells of
27 atoms (black) and 64 atoms (red). ké = 3(27”)2.
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FIG. 15. (Color online) Equilibrium interface profile of the
Fe-Cu system obtained with AMC simulation and CMC simulations
at various cell sizes and at T = 1550 K.

profile at T = 1550 K is qualitatively correct. The measure-
ment of the profile width by adjusting the classical function
c(x) =054+ (c; —0.5) tanh(%) on the profile shows that a
semiquantitative agreement is obtained between CMC results
for 27 and 64 atom cells and AMC results (see Table II).

Finally, we confirm that these results were obtained
using the systematic parametrization procedure proposed
in Sec. III A, without any free parameter. They show the
reliability of our coarse-graining approach.

V1. CONCLUSION

To make a link between atomic and macroscopic sim-
ulations, a mesoscopic method based on a coarse-graining
procedure that keeps the discrete aspect of atoms is presented:
the cellular Monte Carlo algorithm. The parametrization
procedure relies on an atomic lattice model of alloys. A cellular
Hamiltonian is obtained using an AMC algorithm combined
with a Widom integration scheme to get local free-energy
terms associated with a single cell and direct free-energy
calculations of a two-cell system for the stiffness parameter
between cells. It is shown that this procedure allows for the
determination of this mesoscopic stiffness parameter down
to low temperature. This cellular Hamiltonian is directly
incorporated into the CMC algorithm. This procedure keeps
the nonlinear link between the temporal derivatives of the
concentration field and the thermodynamic driving force.
The overall procedure leads to quantitative simulations of
the thermodynamic properties, such as the phase diagram,
equilibrium fluctuations, or interface profiles. Also, the good

TABLEII. Parameters of the interface profile of the Fe-Cu system
at 1550 K at various cell sizes. The interface profile is fitted with the
function c(x) = 0.5 + (¢, — 0.5) tanh(53).

&’ Cs + B +

1 0.08 0.01 1.11 0.05
27 0.09 0.01 1.0 0.1
64 0.09 0.01 1.3 0.1
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agreement between the AMC and CMC predictions of the free
energies of finite-size systems provides a full validation of the
parametrization method at cell concentrations not only in the
stable region but also in the miscibility gap. It is emphasized
that the CMC ingredients (cell free energy, periodic boundary
correction term, and mesoscopic stiffness coefficient A‘,’V) are
highly cell-size dependent.

As in phase field approaches, the CMC method tackles the
simulation of concentrated as well as dilute alloys, whereas
some other mesoscopic approaches of the thermodynamics
of inhomogeneous systems are usually limited to a more
restrained concentration range. Close to T, a better under-
standing of the variation of the cellular interaction energy with
the concentration difference between cells and the cell size
would be useful to improve the parametrization procedure.
The application to the Fe-Cu alloy containing first-NN, but
also second-NN, atomic interactions extends the validation
of the method to longer-range interaction models. It can
be extended easily to larger cluster interactions. Moreover,
the coarse-graining procedure used to define the cellular
Hamiltonian is not limited to rigid lattices. Continuous degrees
of freedom, such as displacements around an average lattice,
can be easily integrated within the Widom scheme. This would
lead to a coarse-grained cellular Hamiltonian that embeds the
free-energy contributions of atomic displacements. Also, if
atomic size mismatch leads to a change of lattice parameter,
then the long-range elastic interactions induced by coherency
could be incorporated using the usual continuous elasticity
theory, provided that the cells are large enough.

As an AMC algorithm corresponds to a CMC algorithm in
the particular case of cells containing a single atom, an adaptive
Monte Carlo algorithm would be easy to implement. The
outcome will be the same cellular Hamiltonian, complemented
by associated coarse-grained mobilities defined at the scale of
the cells. The authors of Ref. 12 presented a procedure to
derive coarse-grained mobilities from an atomic model of the
direct exchange diffusion mechanism. This approach has to be
generalized to describe realistic diffusion mechanisms such as
the vacancy mediated mechanism.
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APPENDIX A: WIDOM INTEGRATION SCHEME
FOR AMC AND CMC SYSTEMS

The Widom integration scheme is presented here in the
formalism of a binary alloy on a rigid lattice. We consider
a lattice made of Ny sites, either occupied by atoms of
type A or B, with the latter being called the solute. Each
configuration of the N solute atom system can be seen as
a configuration of the (N — 1) solute atom system in which
an A atom is changed into a B atom. Following this idea, we
write the canonical partition function with N solute atoms as

PHYSICAL REVIEW B 86, 054103 (2012)

a function of the energy of a system of (N — 1) solute atoms
plus the energy required to change an A into a B. Let Zy be
the canonical partition function of a N solute atom system,
Qy its phase space, H,, the value of its Hamiltonian in the
configuration n, and t, the set of the positions where an A is

available:
Zy= Y e fH (A)
neQy
Zy= 2, ¢’ H“(Ze‘ﬁ“"?), (A2)
neQy_ JET

where AEj" is the energy required to change an A into
a B on site j, and (g7)~! is the number of times a given
configuration is built this way. As a consequence, in general
g% is a configuration-dependent quantity: gt = gI We can
write that

—BH, _ i+
Zn ZHGQN—I e’ (Zj‘ffn nge PAE ) (A3)
B ZneQN,l e_ﬂH" '

This is a thermodynamic average deduced from a (N — 1)
solute atom system:

Zy + —BAEj*
= .e .
Zn_ <Z 8En, .

j

(A4)

JET
As a result, we obtain the exchange chemical potential

/L(ANif) =Fy— Fn_1

:_ﬁ—'1n<2g;je—ﬂﬂf‘*> . (A5)
N—1

JE

In a similar way, we can build the (N — 1) solute atom
partition function as a function of the N solute atom partition
function and deduce from it the chemical potential

Zy i = Z e—ﬁHn (Z e_ﬁAEigmi>v (A6)

neQy i€ay

where «, is the set of sites occupied by a B atom in
configuration n, AEi~ is the energy required to turn a B into
an A on site 7, and 1/g,; is the number of times a given
configuration is built this ’Way. Using the same procedure as
above, we then obtain

B4
oy " = Fn-1— Fy

_— ln<Z g;[eﬁAEi> . (A7)
N

i€y

In principle, if the thermodynamic averages are computed
exactly, we have uu {4 = —u(\2 5. However, due to the finite
length of the Markov chain, a discrepancy may appear between
the estimations of these two quantities.

For an AMC system, gnf ; and g, are independent of the

configuration:

1
T &= (A8)
Nigt = (N = 1) '

gl:j = N
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In a CMC system, this is not the case: atoms of a given cell
are undifferentiated and then the number of ways a cell may
increase by one its number of solute atoms reduces to one.
Similarly, while the set t, is the set of positions of the A atoms
in AMC, in CMC it is the set of the nonfull cells. Therefore,
the gt term of Eq. (A5) becomes the inverse of the number of
cells which have B atoms after the virtual addition of a solute
atom B:

1

_—, (A9)
Ncell - Nempty(n,j)

8 =
where N is the total number of cells and Nempiy, j) is the
number of empty cells in B after the virtual addition in the
configuration (n). We note that in the case of a single site
cell, the AMC expression of g% is retrieved. Moreover, as in
general in a CMC system g: ; 1s configuration dependent, it
has to be computed for the various cell configurations which
are explored during the thermodynamic averaging process.

APPENDIX B: WIDOM INTEGRATION OF TWO
INTERACTING SYSTEMS

We consider a system made of two coupled subsystems. No
particle exchange is allowed between them, but there are some
chemical interactions between atoms of different subsystems,
with every subsystem being identical to a single cell. Let
Zy.y be the partition function of a coupled system of two
N solute atom cells, Qy ® Quy be its phase space, and H,
be its Hamiltonian in the configuration n. We then have the

relationship
Zyn= Y Y e Pt (B1)

HGQN mEQN

Similarly as done previously, we can write the canonical
partition function of the coupled system with (N + 1,N 4 1)
solute atoms as a function of the Hamiltonian of a system of
(N,N) particles. First we use the previous approach on one of
the subsystems:

ZN-H.N-H = Z |: Z e—ﬁHn,m (Z e_ﬁAEk+gIk) :|

neQy meQyy kety
(B2)
Here, for example in an AMC system, g, = N+r1 Then we
apply the same approach on the second subsystem:
ZNpI N1 = Z Z ¢ PHnm
mEQN HEQN
_ _ +
P
ket, lety
(B3)
The resulting partition function ratio is then written as
ZN+1,N+1
Zy.N
- <Z Z(e'“E"*g,tk><eﬂ“”g$,z)> -
ket lety NN
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We deduce the free-energy difference:
B(Fnt1,n+1 — Fyn)

- _ ln <Z Z(eﬂAEk‘*g;-.k)(eﬂAEl+g;’l)>
N,N.

let, ker,

(B5)

By carrying out this calculation at every cell concentration,
one gets the homogeneous interaction term.

APPENDIX C: EXACT CALCULATION IN THE DILUTE
LIMIT OF THE FREE ENERGY

In the dilute limit, exact cellular free energies can be easily
calculated. The interaction stiffness can be computed from the
values of Fy, Fy, F11, and F,. Let Z; (Z;) be the number
of neighbors in the first (second) shell. Considering that in a
cell of size d, there are d° sites and, as a consequence, w
ways to put a pair of solute atoms into it, we define Y; (Y>)
as the number of configurations among them, where the two
atoms are first (second) NN. Similarly, in a two-cell system
with PBC, there are w configurations with two, and only
two, solute atoms in the same cell. We define in such a case
Wi (W,) the number of configurations among them where
the two atoms are first (second) NN. Finally, in a two-cell
system with PBC, there are d° configurations with a single
solute atom in each cell, and we define X (X») as the number
of configurations among them where the two atoms are first
(second) NN. Using the definition of the free energy as the
logarithm of the partition function, we obtain

dd -1 \
Foo=—p" ln{ [% — W, — Wz] BV ez

w e BV QL) 4y =BV P ZI= D] VLT AT VPP

x e PV L Whe PV Q20 g BV 2Zo= 1 =BV

x e—ﬁV;‘A} _ ﬂ—l In [e—ﬁV]AA(ZZ]/2d3—ZZl)

x e—ﬁVzAA(222/2d3—ZZz)]’ (Cl)

Fii= =B In[(@® = X, = Xp)e #1201V
+X1€_‘5V1A32(Z‘_l)e_‘szABz(Zz)e—ﬁVFBe—/sVIAA
—i—Xze_ﬁVlABZ(Z])e—ﬂV2A52(Z2—l)e_ﬂVZBBe_ﬂVZAA]

_,3_1 In [e—ﬁVlAA(221/2d3—ZZ|)e—ﬂVZAA(ZZZ/2d3—2ZZ)]’
(€2

30,73
F,=—p"" ln{ |:—d (d2— D -Y - Y21| e PVI"2Z1 = pV22)

1Y, e BV UZID g =BV AZ) p= VP =BV

1Yo BV UZ) g =BV P AZo=1) p=BVY? =BV }
_1371 In [efﬁv,M(z,/2dtzz,)efﬂsz(zz/zdtzzZ)] (C3)

F = —ﬂ_l In (dSe_ﬂVIAEZ‘e_ﬂVZABZZ)

—ﬂ_l In [e—ﬁV]’“‘(zl/2(13—Zl)e—ﬁVzAA(22/2613—22)]7 (C4)
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TABLE III. Exact calculation of the free energy of a first-NN
interaction model in the dilute limit at 7 = 1.57,. The free energy
unit is 71

d Fo F Fi F
3 —2.64321 —2.66593 —3.24128 —1.60784
4 —4.28958 —4.29742 —4.94995 —2.47089
where
z z
W, = 71d3 —2d%, W, = 72613 — 242, (C5)
X, =4d*, X, =8d> (C6)
Z . Zy 4
Y = 2Ld, v, = 2240 c7
1= 2= (C7)
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This leads to

—d8 —1 d3d3_]
K = 4/3 (m{[ (2 )—Wl—Wz}—i—Wle_ﬁQ‘

-1
+W2€_ﬁ92} — ln{ [% — Yl — Yzi| + Yle_ﬂﬂl

+Y2e-592} —In[(d® — X; — X5) + X e P

+X e B0 4 ln(d6)), (C8)

where we have defined the ordering energies
Q =V 4 v _2vAB (C9)
Q= VM 4 VBB V8, (C10)

In the case of a first-NN interaction model, we obtain the
values presented in Table III.
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