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Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs
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With the interest of obtaining more information on the low-energy phase diagram of germanium and its
degree of similarity with silicon, we have performed first-principles calculations of the electronic structure and
lattice dynamics of the R8, BC8, ST12, and hexagonal diamond structures of Ge. To aid future experimental
investigation, we include predictions of the Raman-active frequencies of these phases as well as present the full
phonon dispersion throughout the zone. Calculated equation of states within the local density approximation
reveal a small pressure region where the R8 phase is energetically favored over the other metastable BC8 and
ST12 structures, although the energy differences involved are relatively small and affected by the approximations
used in the choice of pseudopotential.
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I. INTRODUCTION

The phase diagrams of group IVa materials such as carbon,
silicon, and germanium have generated substantial research
interest not simply because of their status as prototypical
insulators/semiconductors, but also because of their immense
technological importance. The silicon and germanium phase
diagrams have strong similarities in the structures reported
both upon compression and decompression of experimental
samples.1 Both materials have the cubic diamond (cd) structure
under ambient conditions and convert to the metallic β-Sn
phase near a pressure of 10–12 GPa. Upon further compression
both materials go through a similar sequence of high-pressure
metallic phases, with the possible exception of the highest
pressure transition being hexagonal close-packed (hcp) to
face-centered cubic (fcc) in Si, while in Ge the highest pressure
structure obtained thus far remains the hcp phase.2

If samples of Si or Ge are decompressed from the metallic
β-Sn phase, they do not return to the cubic form at low
temperatures, but instead go to a series of metastable phases. In
Si, the slow decompression from the β-Sn phase results in the
rhombohedral R8 phase at 9.4 GPa.3 Further decompression
results in the BC8 structure at 2 GPa.4 In Ge, rapid release
from the β-Sn structure to ambient pressure results in the
BC8 structure, whereas slower release of pressure has resulted
in the ST12 structure being recovered.5 The ST12 phase
has not yet been observed in Si and the R8 phase has not
yet been definitively observed in Ge. The R8 phase of Ge
has been reported in a single experiment but the result was
not reproducible.6 The phase transition pressures in Si are
well determined experimentally and have been corroborated
with theoretical calculations.7,8 In Ge, on the other hand,
fewer experimental and theoretical studies have been carried
out. In particular, experimental studies of Ge often quench
the pressure to ambient and then study the resulting phases
with x-ray diffraction.5,9 This is in contrast with experiments
performed on Si in which the pressure has been reduced in
small steps with the diffraction studies being performed at
intermediate pressures in order to detect any resulting change
in structure.10

From a theoretical standpoint, early calculations on the
phase stability of Ge polymorphs report that the ST12 phase

has a lower enthalpy than the BC8 phase over the pressure
range 0–20 GPa.11 At the time of these calculations the R8
phase of Si had yet to be discovered and was not considered
in the study on Ge. Later, after the discovery of R8 Si,10

density functional theory calculations predicted that the R8
phase of Ge was lower in enthalpy than that of the BC8 phase
at moderate compression, and suggested that R8 might be
obtained experimentally from compressing the BC8 phase.12

The small differences in energy shown in the energy-volume
relations for the three metastable phases made it difficult to
estimate the transition pressure and thus no estimate was given.

The possibility of obtaining Ge in the R8 phase is
an interesting one because R8 Si is believed to be a
semiconductor13,14 with interesting optical properties.15,16

Additionally, the theoretical prediction of transition pressures
between the metastable germanium phases would be of interest
in helping to guide future experimental work in searching
for metastable Ge structures, especially those which more
carefully explored the pressure regime intermediate between
ambient pressure and that where the β-Sn phase is stable. As
noted earlier, the analogous theoretical transition pressures in
Si are in good agreement with experimental observation,7,8

and thus it might be expected for the same to be true in Ge.
In this work we focus on obtaining more information on

the properties of Ge in the BC8, ST12, and R8 structures.
In addition, we have performed calculations for the cubic, the
hexagonal diamond, and β-Sn phases of Ge to have a complete
description of the phases expected to be relevant below
pressures of ∼10 GPa. We carry out detailed calculations on
the structural properties, the electronic structure, the equations
of state, and give estimates for the transition pressures between
phases. Additionally, since except for the frequencies of the
zone-center phonons for the BC8 and ST12 phases, little is
known about the lattice dynamics of these phases.17 Hence
we compute the full phonon dispersions for the phases ST12,
BC8, R8, and hexagonal diamond.

II. METHODS

Our calculations of the structural and electronic properties
are done within the local density approximation (LDA) to
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density functional theory (DFT). The plane-wave pseudopo-
tential method18,19 is used with a norm-conserving pseu-
dopotential utilizing a nonlinear-core correction (NLCC)20

to take into account the spatial overlap between the 3d

electrons treated as core states and the 4s24p2 electrons that
were treated as valence. A kinetic energy cutoff of 40 Ry
was found to result in highly accurate total energies and
phonon frequencies. When structural relaxations were being
performed, a higher cutoff of 70 Ry was used in order to
have a highly converged stress tensor, which is known to
converge more slowly with respect to the energy cutoff.
This methodology is implemented in the QUANTUM ESPRESSO

package.21 Calculations of the phonon frequencies were also
done within QUANTUM ESPRESSO using the density functional
perturbation theory (DFPT) approach.22 In this work we are
very careful to ensure adequate sampling of the electronic and
phonon Brillouin zones. Details of these samplings will be
given later with the discussion of the corresponding results.

III. RESULTS

A. Structural descriptions

We have relaxed all structures with respect to all degrees
of freedom to obtain the relaxed structures at zero pressure.
Tests have been performed on the cubic phase of germanium
to evaluate the quality of the pseudopotential in providing a
good structural description. For cubic Ge a lattice constant
of 5.58 Å was found, which underestimates the experimental
lattice parameter of 5.66 Å by 1.4%.23 The calculated bulk
modulus is 77.2 GPa, which is in excellent agreement to
the value of 75.8 GPa found experimentally.24 Below we
will provide the structural descriptions obtained and used in
this work. More extensive descriptions of the space groups,
bond length and angle distributions, etc. can be found in the
references.

The ST12 structure of Ge can be described as a tetragonal
unit cell with a 12 atom basis. The basis is fully specified with
four internal parameters x, y, z, and α. We take as our starting
point the structural parameters of Mujica and Needs which
result from their theoretical relaxation as given in Ref. 11.
Structural relaxation from these parameters changes little. We
have used a 8 × 8 × 8 grid to sample the Brillouin zone which
ensures highly accurate forces and components of the stress
tensor. Our final relaxed parameters for the tetragonal lattice
are a = 5.82 Å with c/a = 1.181 Å. These compare well with
the reported experimental values of 5.93 Å and 1.17707.25 Our
internal parameters of x = 0.171, y = 0.370, z = 0.252, and
α = 0.0868 compare well with the experimental parameters of
x = 0.1730, y = 0.3784, z = 0.2486, and α = 0.0912.25 The
bulk modulus of ST12 Ge is calculated to be 65.3 GPa, which
is in excellent agreement with the value of 66 GPa calculated
by Mujica and Needs.11

The BC8 structure of Ge is a body-centered cubic lattice
with 8 atoms in the unit cell. It is completely specified by
its lattice constant a and a single internal parameter x. We
begin with the experimental lattice parameter as determined in
Ref. 9, in which a = 6.92 Å, and take the internal parameter x

to be that of the BC8 structure in Si, which experimentally is
found to be 0.1033.25 We then relax this starting structure with

a mesh of size 12 × 12 × 12 in the Brillouin zone. Our relaxed
parameters are a = 6.82 Å and x = 0.102, in good agreement
with both experiment and previous theory.11 The calculated
bulk modulus is determined to be 73.9 GPa, slightly smaller
than the value for the cubic diamond phase and slightly higher
than the value of 68 GPa calculated in Ref. 11.

As mentioned in the Introduction, no definitive experimen-
tal report has been made on the existence of the R8 phase in
Ge and thus no experimental starting description is available.
In this case we use the lattice constants known for Si in the
R8 structure and scale them by the ratio of the Ge to the Si
lattice constants parameters in the cubic phase. There are four
internal parameters which specify the atomic positions in the
R8 structure: u, x, y, and z. These values were given in Ref. 12
as a result of DFT calculations on the R8 structure in Ge and
we take these values as our starting point (the lattice constants
were not given in this work). As in the calculation of the BC8
structure, a mesh of 12 × 12 × 12 was used for the integration
over the Brillouin zone. Our relaxed lattice parameters for
R8 Ge are ar = 5.91 Å for the rhombohedral lattice vector
with an angle of 109.95◦. The obtained internal parameters for
the R8 structure are u = 0.285, x = 0.470, y = −0.027, and
z = 0.277. The values are similar, although slightly different,
from those obtained in Ref. 12. Finally, the calculated bulk
modulus of Ge in the R8 structure is 70.5 GPa.

Finally, in this work we also examine the hexagonal dia-
mond structure of Ge. The initial parameters of the hexagonal
lattice were taken to be a = 3.96 Å and c = 6.57 Å26 with an
internal parameter u taking the “ideal” value of 0.0625 (i.e.,
1/16). Our relaxed parameters of a = 3.93 Å, c = 6.49 Å,
and u = 0.0631 are in excellent agreement with these values.
The bulk modulus is obtained to be 78.2 GPa, in very
close agreement to other LDA results in the literature.27 The
relaxation of this structure was performed with a mesh of
12 × 12 × 12 in the Brillouin zone.

B. Electronic structure

The band structure of the ST12 Ge is shown in Fig. 1(a).
Previous density functional calculations obtain a direct gap of
size 0.7 eV about 70% of the way along the �-M line,11

whereas those obtained via the empirical pseudopotential
method (EPM) obtain a value of 1.47 eV.28 Due to the
well-known band gap problem inherent in DFT, the estimate
provided by the EPM calculation is likely closer to the
experimental value.29 Our results are very similar to prior
DFT results, although we find a direct gap of 0.56 eV just
off the �-M line at (0.333,0.345,0). However, we also find
that the fundamental gap is indirect. It is of magnitude 0.54 eV
between the valence band maximum at (0.316,0.333,0.083)
and the conduction band minimum at the location of the
nonfundamental direct gap given above. This difference is
simply attributed to the fact that we carried out a very fine
sampling of the Brillouin zone (60 × 60 × 60) and therefore
could resolve small deviations of the extremum positions off
of the high-symmetry lines. Additionally, it should be noted
that the valence band manifold in the vicinity of the valence
band maximum has little dispersion and so the precise position
of this gap could vary slightly depending on the details of the
calculation.
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FIG. 1. (Color online) Band structures of Ge in the (a) ST12, (b) BC8, (c) R8, and (d) hexagonal diamond (lonsdaleite) phases. In (a) the
zero of energy is set to zero at the valence band maximum (VBM), which lies just off the �-M line (see text). In (b), (c), and (d) the zero of
energy is taken to be at the Fermi energy.

The BC8 phase of Ge, like that of Si,7,14 is found to be
semimetallic within DFT. The band structure of this phase is
plotted in Fig. 1(b) throughout the high-symmetry points in
the equivalent rhombohedral Brillouin zone. There is a direct
overlap at the Z point (the H point in the body-centered cubic
Brillouin zone). There is also a conduction-band-like state
which drops below the Fermi level and has a minimum around
50% of the way along the �-Z line. This result is in good
agreement with the results of Mujica and Needs.11 The early
results of Joannopoulos and Cohen with the EPM method find
this conduction-band-like state to be higher in energy than that
of the other conductionlike states at the Z point, which just
touch the valence band maximum there and result in a zero-gap
material.28

To our knowledge, the electronic structure of germanium
in the R8 structure has not been explored previously. Using
the close correspondence to silicon,7 one would guess that
R8 Ge would be semimetallic within DFT with an indirect
overlap. Our calculations, shown in Fig. 1(c), confirm this
expectation. The lowest conduction band occurs at the point
L, and overlaps with the highest valence band at the point
Z, by 0.57 eV. These are the same points where the band
overlap occurs in the R8 phase of silicon. In the case of Si,
both GW14 and hybrid HSE30 calculations predict that the
band overlap present within DFT is lifted to obtain a small

band gap semiconductor, and this prediction is consistent
with recent experiments.13 The examination of the electronic
structure of R8 Ge at a level of theory beyond DFT is needed to
evaluate this possibility, but lies outside the scope of the present
work.

The hexagonal diamond phase is a phase which is believed
to be typically recovered upon annealing depressurized sam-
ples of Si and Ge.5 The band structure of this material is shown
in Fig. 1(d) and we find a small overlap of 0.19 eV at �. This
is similar to previous DFT theory suggesting a zero band gap
at �27 as well as EPM results which predict a direct gap of
0.55 eV at the zone center.28 Again, because of the band gap
underestimation within DFT, the EPM estimate is likely closer
to what would be obtained experimentally.

C. Lattice dynamics

We have calculated the phonon dispersions for the ST12,
BC8, R8, and hexagonal diamond phases of Ge throughout the
entire Brillouin zone as shown in Fig. 2. The lattice parameters
used in the calculations correspond to the zero-pressure
theoretical relaxed structures. As a test, we have computed
the zone-center optical phonon mode in the cubic phase of
Ge and obtained a value of 298.2 cm−1, which is in excellent
agreement with the experimental result of 300.6 cm−1.31
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FIG. 2. (Color online) Phonon dispersions and phonon DOS for Ge in the (a) ST12, (b) BC8, (c) R8, and (d) hexagonal diamond (lonsdaleite)
phases. In all plots the phonon DOS is normalized to 1.

The phonon dispersion of ST12 Ge is shown in Fig. 2(a).
The full phonon dispersion was obtained by Fourier inter-
polation of a 4 × 4 × 4 uniform grid of q points in the
Brillouin zone. The electronic sampling in these calculations
was on a shifted 5 × 5 × 5 grid. The phonon dispersion of
ST12 exhibits relatively flat bands in the region around 85
and 280 cm−1 leading to peaks in the phonon density of
states (DOS) in those regions. An interesting feature is the
presence of a slight discontinuity of approximately 3 cm−1 in
the phonon frequency near � at ∼135 cm−1 as one goes from
the M → � → Z direction. The source of this discontinuity
is the nonanalytic part of the force constant matrix which
is present due to macroscopic polarization associated with
this phonon mode. Typically one does not expect such
contributions related to polar materials in a phase composed of
only one element, but here it occurs due to the specific structure
present in ST12. Phonon calculations we have performed on
silicon in the ST12 structure show a similar discontinuity at
this point. The calculated Raman active modes at � are (all
frequencies in cm−1): 54(B1), 75(E), 80(E), 85(A1), 87(B1),
88(B2), 97(A1), 152(E), 187(E), 194(B2), 195(A1), 216(B1),
217(B2), 226(E), 232(B1), 249(E), 275(E), 276(A1), 281(E),
284(B1), and 295(B2).

The phonon dispersion for BC8 was obtained throughout
the zone via Fourier interpolation from a uniform grid of 6 ×
6 × 6 phonon wave vectors in the Brillouin zone and a 10 ×
10 × 10 shifted grid for the sampling of the electronic states

and is displayed in Fig. 2(b). The Raman-active modes in
the BC8 structure are obtained as (all frequencies in cm−1):
87(Tg), 214(Tg), 227(Ag), 246(Tg), and 259(Eg).

The phonon dispersion for the R8 phase of Ge is shown
in Fig. 2(c). The electronic integration mesh, like in BC8,
was performed on a 10 × 10 × 10 shifted grid and a uniform
grid of 6 × 6 × 6 phonons were calculated to obtain the
interpolated dispersion. Qualitatively, the phonon spectra for
the R8 phase is similar to that found in the BC8 phase,
although the differences present manifest themselves clearly
in the calculated phonon DOS where the difference in the peak
structure can be seen. The zone-center Raman active modes
are found to be (all frequencies in cm−1): 83(Ag), 90(Eg),
203(Ag), 212(Eg), 223(Ag), 244(Ag), 247(Eg), and 278(Eg).

Finally, the phonon dispersion of the hexagonal diamond
(lonsdaleite) phase of Ge is shown in Fig. 2(d). These
calculations were performed for a uniform grid of 6 × 6 × 6
phonons with an electronic sampling on an 10 × 10 × 10
shifted grid. The phonon DOS exhibits a prominent peak near
a frequency of 275 cm−1. The Raman-active modes for this
phase are determined to be (all frequencies in cm−1): 287(E2g),
301(E1g), and 302(A1g).

D. Equation of state

In order to calculate coexistence pressures that may aid
future experimental investigations, we have calculated the
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FIG. 3. (Color online) Energy-volume relations for low-pressure
polymorphs of germanium. The markers correspond to the calculated
data and the lines are fits to the Birch-Murnaghan equation of state.
The equilibrium energy of the cubic phase is located at zero energy.

energy-volume relations for the cubic, BC8, R8, ST12, hexago-
nal diamond, and β-Sn structures of Ge. These calculations are
performed by calculating the total energies of each structure
while fully relaxing the cell and ion positions at fixed volume.
The resulting E(V ) curve is fit with a Birch-Murnaghan
equation of state.32 The results are shown in Fig. 3. Pressure-
volume curves are shown in Fig. 4 and are obtained via
numerical differentiation of the E(V ) relations. Knowledge of
E(V ) and V (P ) allows for the determination of the enthalpy
as a function of pressure, H (P ) = E[V (P )] + PV (P ), which
is shown in Fig. 5. It is simpler to obtain coexistence pressures
from the enthalpy-pressure curves than from the equivalent
“common tangent” approach to the energy-volume relations.

From the results of Fig. 5, we can calculate transition
pressures between the various phases. The first of these we
will examine is that of the cubic → β-Sn transition that
occurs experimentally at 10.5 GPa.33 We find this transition at
a pressure of 7.9 GPa, which underestimates the transition
in comparison to the experimental value. This result is in
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FIG. 4. (Color online) Pressure-volume relations for low-
pressure polymorphs of germanium. The markers correspond to the
calculated data and the lines are taken from numerical differentiation
from the E(V ) curves shown in Fig. 3.
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FIG. 5. (Color online) Enthalpy as a function of pressure for low-
pressure polymorphs of germanium. All enthalpies are taken relative
to that of the cubic phase, which is shown at zero. The inset is a
zoomed-in view showing the BC8-R8-ST12 transition region.

reasonable agreement with that obtained in previous theoret-
ical calculations by Mujica et al. within the LDA, who also
underestimate the experimental transition pressure, predicting
the transition at 6 GPa.11 The early LDA results of Yin and
Cohen34 also underestimate the transition pressure at a value
of 9.6 GPa, although in this work the coexistence pressure is
higher and closer to the experimental value partly because of
the use of the Wigner formula35 for the exchange-correlation
energy.36 The underestimation of the cubic → β-Sn transition
pressure within LDA functionals occurs in both Si and Ge and
is improved upon in the inclusion of gradient corrections to the
exchange correlation functional which increase the transition
pressure and bring it closer to the experimental value.36,37 This
behavior was explained as being the result of a greater lowering
of the total energy for systems with more inhomogeneous
charge densities upon going from the LDA to the generalized
gradient approximation (GGA).36 Since the cubic diamond
phase has a more inhomogeneous charge density than that
of the metallic β-Sn phase, its total energy is lowered by a
greater amount upon going to the GGA. This results in a larger
difference in energies at equilibrium between the two phases
and thus a larger transition pressure.36

An interesting observation, originally seen in the results of
Mujica et al.,11 is that if the cubic → β-Sn transition pressure
were corrected to the experimental value of 10.5 GPa, that
this would result in a region of stability for the ST12 phase
because the enthalpy for the cubic diamond phase becomes
equal to that of ST12 at 8.7 GPa. This is just under 2 GPa from
the experimental cubic-β-Sn coexistence pressure. Although
there have been reports recently in nanocrystalline samples
of Ge that the ST12 phase appears to be more stable than
previous experiments have suggested,38 we are not aware of
any experimental results that have reported this possible region
of stability at higher pressures.

With regards to the phases obtained upon decompression
from β-Sn, namely the R8, BC8, and ST12 phases of Ge,
we obtain regions of metastability (compared to the cubic
phase) for all three phases. This can be seen from the inset
of Fig. 5. The ST12 phase of Ge is found to transition to the
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R8 structure at 2.0 GPa, which remains the lowest enthalpy of
these three phases until 0.65 GPa when it transitions to the BC8
phase.

Predictions of phase stability are known to be sensitive,
in some cases strongly so, to the underlying treatment of
exchange and correlation effects. This was discussed above
in relation to the cubic → β-Sn transition. The small enthalpy
differences between the BC8, R8, and ST12 phases near
the predicted transitions as seen in Fig. 5 suggest that these
transitions might also be sensitive to the functional used. In
order to illustrate this, we have repeated the equation of state
calculations with another pseudopotential which includes both
the semicore 3d states explicitly and in addition treats the
correlation-exchange energy in the PW91 GGA functional
of Perdew and Wang.39,40 The purpose of this is not to
systematically evaluate the effects of gradient corrections, the
inclusion of semicore states, etc., but to simply obtain the
results that would be expected if different choices were made in
the pseudopotential construction. As expected with the GGA,
the lattice constant of cubic germanium is overestimated, in
this case by 1.7%, in comparison to experiment. The bulk
modulus obtained is 60.2 GPa, which compares less favorably
to the experimental value of 75 GPa that we obtained with
our calculations within the LDA. This underestimation of the
bulk modulus in Ge within GGA is consistent with results
elsewhere in the literature.27,36 With the GGA functional, the
transition pressure of the cubic → β-Sn transition is pushed up
to 10 GPa, in close agreement with the experimental value of
10.5 GPa, as expected due to the effect of the GGA on systems
with large differences in their degree of charge homogeneity. In
the GGA calculations the pressure region where R8 is favored
over BC8 or ST12 is no longer present, and BC8 is found
to have a coexistence pressure with ST12 at 3.6 GPa. The
enthalpies of the ST12 and β-Sn phases become equal at a
pressure of 8.4 GPa, which differs from the 6.8 GPa we find
in the calculation within the LDA.

Changing the exchange-correlation functional and altering
the split between core and valence electrons changes the
prediction of a metastable R8 phase in Ge means that we
cannot draw firm conclusions that this is the case. This is
not surprising because of the closeness in enthalpy of the
three enthalpy curves in both of our calculations. However, it
must be pointed out that GGA calculations do not uniformly
improve the results in relation to the LDA.41 The strong effect
of simply including gradient corrections on the cubic-β-Sn
transition due to the differences in charge homogeneity is not
expected to exist in relation to the transitions between BC8,
R8, and ST12, which all have similar bonding characteristics.

Furthermore, the calculations performed with the LDA result
in a much more accurate bulk modulus than that in the GGA,
which has a direct and obvious relationship to the E(V )
relations and thus the calculated transition pressures. Finally,
it is well-known that DFT has shortcomings in its treatment of
localized states. In germanium this results in binding energies
which are too shallow in relation to experiment by about 5 eV
for the semicore 3d states,42 and thus their inclusion into
the valence might also induce some errors in the computed
quantities.

IV. CONCLUSION

In this work we have calculated the electronic structure,
phonon dispersions, and the phase diagram of the low pressure
phases of germanium, namely those of hexagonal diamond,
ST12, R8, and BC8. Our electronic structures are in good
agreement with previous calculations and suggest BC8 and R8
to be semimetallic, at least within DFT, while ST12 is semicon-
ducting. Calculations of the lattice dynamics of these phases
have been performed and Raman-active phonon frequencies
have been identified which may help aid future experimental
work in the identification of metastable germanium phases in
diamond anvil cell and nanoindentation experiments.

Calculations of the equation of state of these phases find
regions of metastability of the BC8, R8, and ST12 phases of
germanium, which suggests that the R8 phase of Ge might
be obtained from compression of the BC8 phase or a partial
reduction of pressure upon obtaining ST12. However, because
of the small energy differences involved, this result is sensitive
to choices made in constructing the pseudopotential, and thus
firm predictions on the metastability of the R8 structure in Ge
are difficult to make at this time. Further experimental studies
could help shed light on this matter, and the Raman-active
phonon modes calculated here will hopefully be of use in
helping to identify these phases.
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