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Renormalization of the Coulomb blockade gap due to extended tunneling in nanoscopic junctions
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In this work we discuss the combined effects of finite-range electron-electron interaction and finite-range
tunneling on the transport properties of ultrasmall tunnel junctions. We show that the Coulomb blockade
phenomenon is deeply influenced by the interplay between the geometry and the screening properties of the
contacts. In particular, if the interaction range is smaller than the size of the tunneling region, a “weakly
correlated” regime emerges in which the Coulomb blockade gap � is significantly reduced. In this regime � is
not simply given by the conventional charging energy of the junction, since it is strongly renormalized by the
energy that electrons need to tunnel over the extended contact.
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I. INTRODUCTION

The transport properties of nanoscale systems are strongly
affected by electron-electron interactions that may cause large
deviations from the Ohm’s law.1,2 When two conductors
are connected by a tunnel junction with capacitance C,
electrostatic effects inhibit the current flow for applied voltages
V < 1/2C.3 This phenomenon is known as Coulomb blockade
(CB) and is at the origin of the observed gap around V = 0
in the I -V curve of a variety of systems.4–16 The widely
accepted dynamical theory of the CB17,18 is based on the
notion that the fluctuations generated by the thermal agitation
of the charge carriers inside the leads (Nyquist-Johnson noise)
render the tunneling processes inelastic. As a consequence,
the environment represents a frequency-dependent impedance,
capable to adsorb energy from the tunneling electrons. Thus,
in the subgap region the effective voltage felt by the electrons
is drastically reduced, resulting in a suppression of the current
according to a power law with nonuniversal exponent. At larger
bias, however, the ohmic regime is recovered, with the I -V
curve having an offset of order 1/2C.

As pointed out by some authors,19–23 the peculiar power-
law behavior of the tunneling current reveals an interesting
relationship between the dynamical CB and the zero-bias
anomaly predicted within the Luttinger liquid (LL) theory.24–26

In Ref. 22 it was noted that the similar predictions of the two
approaches arise from a close analogy in the description of
the tunneling processes. In the semiclassical theory,17,18 the
influence of the environment is incorporated in a modification
of the tunneling Hamiltonian that accounts for quantum
fluctuations in the phase difference between the left and
right side of the junction, which is formally equivalent to
the tunneling term of a LL with barrier in the bosonized
form.22 This similarity has been further exploited by Safi
and Saleur, who established a rigorous mapping between
the one-channel coherent conductor in series with a resistance
R and the impurity problem in a LL.23 They found that the
LL parameter K of the effective interacting theory can be
expressed as K = (1 + R/R0)−1, where R0 is the resistance
quantum. This equivalence, however, holds only in the power-
law regime and does not help to predict the magnitude of the
CB gap �, and neither provides a microscopic explanation
of why the shifted ohmic (SO) regime is recovered at large

voltage. Sassetti et al. addressed these issues by showing
that a finite-range interaction U (x) within the LL model is
needed to describe the crossover from the power law to the SO
behavior in the I -V curve, where the the CB gap takes the value
� ∼ 2U (0).19,20

We point out that the above results are valid under the
assumption that the tunneling between the two conductors
occurs only at their edges. However, in practice, due to
the geometry of the junction (see, e.g., Fig. 1) and due to
the nontrivial (i.e., exponential) spatial dependence of the
tunneling amplitude, the tunneling processes take place over
a finite region.27–32 Furthermore, in these systems, the size
of the tunneling region and the screening length are often
comparable,33 and, hence, it is desirable to include and treat
their effects on the same footing.

In this paper we study the transport properties of two
semi-infinite wires with finite-range electron-electron inter-
action, linked via an extended contact close to the interface,
as depicted in Fig. 1. The wires are described within the
open-boundary Tomonaga-Luttinger model, and the tunneling
Hamiltonian is treated to linear order. We show that if the
interaction range is sufficiently small, the competition between
screening and extended tunneling (ET) gives rise to a novel
“weakly correlated” regime in which the CB (i.e., power law)
regime and the SO regime are separated by an intermediate
region characterized by a different power law. Remarkably,
this competition produces a sizable reduction of the CB gap
from the expected value � ∼ 2U (0) to the renormalized value
� ∼ v/r , r being the extension of the contact region and v the
velocity of the interacting quasiparticles. This finding suggests
that under certain conditions the CB gap is not directly related
to the conventional charging energy of the junction but is
strongly renormalized by the energy that electrons need to
tunnel over a region of extended size.

The plan of the paper is the following. In the next section
we introduce the model and describe the general framework to
calculate the I -V characteristics of the junction. Sections III–
VI are devoted to discuss different cases in which the screening
length can be smaller or larger than the tunneling length. In
Sec. VII we complete the analysis by introducing the spin.
Finally the summary and the main conclusions are drawn in
Sec. VIII.
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FIG. 1. (Color online) Shematic representation of three possible
extended contact geometries.

II. MODEL AND FORMALISM

We start by considering the one-dimensional (1D) tunnel
junction for spinless electrons with Hamiltonian

H = H1 + H2 + HT + HV , (1)

where Hj (j = 1,2) describes the semi-infinite interacting
wire j , HT the tunnel junction, and HV the applied bias
voltage. The wires with interaction potential U are modeled
as open-boundary Tomonaga-Luttinger liquids according to

Hj = 1

2

∑
α=R,L

[
− 2iεαvF

∫ ∞

0
dx ψ

†
jα(x)∂xψjα(x)

+ 1

2

∫ ∞

0
dx dy U (|x − y|)ρj (x)ρj (y)

]
, (2)

where α denotes the chirality of the electrons with Fermi
velocity εαvF (εR/L = ±1), ψ

(†)
jα is the annihilation (creation)

operator of one electron in wire j and chirality α with density
ρj = ∑

α : ψ
†
jαψjα :, “: :” being the normal ordering. The

junction between the two wires is modeled by the tunneling
Hamiltonian

HT =
∑
α,α′

∫ ∞

0
dx dy �(x,y)ψ†

1α(x)ψ2α′ (y) + H.c., (3)

where the function � can eventually account for tunneling of
electrons located not only at the boundaries of the wires. In the
above expression it is understood that the tunneling amplitude
� depends on the distance between one point at position x in
wire 1 and another point at position y in wire 2.

For latter purposes it is convenient to write �(x,y) =
�0g(x,y) with g an adimensional function encoding all the
spatial dependence. The junction is driven out of equilibrium
by an external voltage given by

HV =
∑

j

Vj

∫
dxρj (x) =

∑
j

VjNj , (4)

with Nj = ∑
α Nαj the number of electrons in the wire j

and V = V1 − V2 the total applied bias. The crucial quantity
we are interested in is the tunneling current whose operator

reads

J = dN1

dt
= −dN2

dt

= i
∑
α,α′

∫ ∞

0
dx dy �(x,y)ψ†

1α(x)ψ2α′ (y) + H.c. (5)

Since we focus on the tunneling regime, in this work we
evaluate the current to the second order in �0. By employing
the gauge transformation34,35 ψjα → ψjαeiVj t the steady-state
average current I = 〈J 〉 is (at zero temperature)

I = 1

4

∫ ∞

−∞
dt eiV t 〈	0|[HT (t),J (0)]|	0〉

≡
(

2�0

πa

)2 ∫ ∞

0
dx1 . . . dx4 g(x12)g(x34)

×
∫ ∞

−∞
dt eiV t e−W (t,{xi }), (6)

where |	0〉 is the interacting ground state of the equilibrium
uncontacted Hamiltonian H1 + H2, and HT (t) and J (0) are
in Heisenberg representation with respect to H1 + H2. In
the above equation we have used the short-hand notation
xi,j = (xi,xj ) and {xi} = (x1,x2,x3,x4). The function W is
the equilibrium phase correlation function and its Fourier
transform is related to the probability P (E) for a tunneling
electron of exchanging the energy E with the bath of
interacting electrons in the wires. It is explicitly given by19

P (E,{xi}) = 1

2π

∫ ∞

−∞
dEeiEt e−[W (t,{xi })−W0(t,{xi }], (7)

where W0 is the correlation function of the corresponding
noninteracting system.

The connection with the standard theory of CB is estab-
lished by observing that the steady-state current of Eq. (6) can
be rewritten as

I = 8�2
0

πvF

∫ ∞

0
dx1 . . . dx4 g(x12)g(x34)

×
∫ ∞

−∞
dEdE′f (E)[1 − f (E′)]P (E + V − E′,{xi}),

where f (E) = 1 − θ (E) is the zero-temperature Fermi func-
tion. For noninteracting electrons the tunneling becomes
elastic, and P (E,{xi}) = δ(E) for every {xi}, thus recovering
the ohmic I -V curve I ∝ V , as it should be. In the semi-
classical approach17,18 the function P gives the probability
of exchanging energy with the electromagnetic environment,
which in the present microscopic theory is replaced by the bath
of elementary excitations of the interacting quantum system.

The average in Eq. (6) can be evaluated by resorting the
open-boundary bosonization method.36–38 It has been shown
that the low-energy properties of the isolated semi-infinite wire
j with open boundary conditions can be described in terms
of (say) right movers only which live in an infinite system
without boundaries and which are related to the left movers by
the relation

ψjL(x) = ψjR(−x). (8)
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In the bosonization language the above relation implies that

φjL(x) = φjR(−x) + const, (9)

where φjα(x) is the boson field such that

ψjα(x) = 1√
2πa

e−2
√

π iεαφjα(x) eiεαkF x, (10)

where kF is the Fermi momentum and a a short-distance cutoff.
The great advantage of the bosonization technique is that the
interacting ground state appearing in Eq. (6) is nothing but
the vacuum of the boson operators bjαq entering in the mode
expansion

φjα(x) = iεα

∑
q>0

e−aq/2

√
2Lq

[Cq+b
†
jαq − Cq−bjᾱq]e−iεaq + H.c.,

(11)

whereL is the length of the wires.39 The coefficients Cq± carry
all the information about the electron-electron interaction and
are given by

Cq± = 1 ± Kq

2
√

Kq

, (12)

with Kq = (1 + Uq

πvF
)−1/2, Uq being the Fourier transform

of U (|x|). The special value K0 ≡ K is the so-called LL
parameter, and, as we shall see below, it governs the power-law
behavior of the observables within the present theory.40

It is worth recalling that a single-channel conductor in series
with a resistance R can mimic23 a LL with an impurity (or
alternatively with a tunnel junction) and K = (1 + R/R0)−1.
Therefore, our theoretical treatment could also serve to
describe mesoscopic resistive systems, see, e.g., the recent
experiment in Ref. 15, in which a LL with K ≈ 1/2 was
simulated.23,41

III. POINTLIKE TUNNELING AND INTERACTION:
CB REGIME

In this section we briefly review the properties of a junction
with pointlike (edge-to-edge) tunneling g(x,y) = δ(x)δ(y) and
pointlike (short-range) interaction U (|x − y|) = Uδ(x − y)
(i.e., Uq = U ). In this case the function W becomes partic-
ularly simple and it is given by

W (t) = 2

K
log

a + ivt

a
, (13)

where v = vF (1 + U
πvF

)1/2 is the renormalized velocity. The
temporal integral in Eq. (6) can be evaluated analytically and
the steady-state current reads

I = 8�2
0 V

πv2�(2/K)

(
aV

v

)2/K−2

. (14)

This is the well-known result originally derived by Kane and
Fisher24 by means of renormalization group arguments. For
an arbitrary weak interaction the system becomes insulating,
with the tunneling current suppressed (at zero temperature) as
a power-law (CB regime). It is important to notice that, despite
the power-law suppression of the current has been observed in
several experiments,7–15 the above formula does not recover

the SO behavior that must hold at large bias. In the following
section we show how this problem has been solved.

IV. FINITE-RANGE INTERACTION AND POINTLIKE
TUNNELING: SO REGIME

As anticipated in the Introduction, this case has been
investigated in Ref. 19. Here we only summarize the main con-
clusions, assuming a screened interaction of the form U (|x −
y|) = U

d
e−|x−y|/d the function g being the same as in the previ-

ous section. We stress, however, that the results do not depend
on the explicit form of the interaction. The finite range of the
interaction is encoded in the momentum-dependent functions

Kq =
[

1 + U

πvF (1 + q2d2)

]−1

,

(15)

v = vF

[
1 + U

πvF (1 + q2d2)

]
,

as well as in the charging energy of the junction
Vd = 2U (0) = 2U/d. A small bias probes the low-energy
(i.e., low-momentum q) excitations of the electron liquid, and,
hence, in this regime, the system behaves as the interaction
was zero range with Kq ≈ K = (1 + U

πvF
)−1. Accordingly,

for V � Vd , the same behavior I ∝ V 2/K−1 as in Eq. (14)
is found. A large bias, instead, probes high-q excitations, for
which Kq ≈ 1 [see Eq. (15)], like in the noninteracting system.
As a consequence, the SO regime is correctly recovered,
where the effects of correlation manifest in a shift in the I -V
curve I ≈ V/RT − Vd , where RT = 8�2

0/πv2 is the tunneling
resistance of the junction. The crossover between the two
regimes occurs at the critical voltage V = Vd . We would like
to mention that it has been recently shown that the finite-range
interaction is also at the origin of the current suppression
at small V in single-channel quantum dot tunnel junctions,
whereas a point-like U produces an ohmic behavior.42

V. FINITE-RANGE TUNNELING AND POINTLIKE
INTERACTION: ET REGIME

For illustration we consider a linear junction like the one in
Fig. 1(a). However, the explicit choice of the geometry cannot
affect qualitatively the results. The finite-range tunneling
amplitude is in this case g(x,y) = e−(r0+x+y)/r , where r0 is
the spatial separation between the edges of the wires43 and
r is the size of the extended contact. We are aware that
the most accurate form of the spatial-dependent tunneling
amplitude g is probably gaussian, since it is proportional to the
overlap between states from the two sides of the junction.29

Nevertheless, we here prefer to adopt the same exponential
function for both tunneling amplitude and interaction, in order
make direct comparisons (see next section). Since we can
absorb the factor e−r0/r into the value of �0, we take r0 = 0
without loss of generality. In this section we, first, consider
a pointlike interaction Uq = U which makes the calculation
analytically tractable, thus allowing us to get transparent
formulas to disentangle the effects of ET. To simplify the
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FIG. 2. (Color online) Log-log plot of the I -V curve for extended
tunneling with range r = 2 × 105a and pointlike interaction with
U = 6vF (i.e., LL parameter K ≈ 0.6). The dashed lines represent
the two power laws with different exponents holding for V < Vr and
V > Vr (Vr ≈ 1 in this figure). Voltages V and Vr are in units of
10−5vF /a, and the current I is in units of 10−5�2

0/avF .

calculations we approximate the integral in Eq. (6) as

I ≈
(

2�0

πa

)2 ∫ ∞

0
dx e−2x/rj (x), (16)

where j (x) = ∫ ∞
−∞ dt eiV t e−W (t,x) is the steady-state current

of an effective junction in which the tunneling occurs only
between the points at position x in both wires. This means
that we are assuming that the dominant contribution to the
current comes from the tunneling events in which x1 = x2 =
x3 = x4 = x.44 Within this approximation the function j (x)
can be evaluated analytically in the limits of small and large
(compared to scale Vx = v/x) bias.

At small bias V � Vx the function exp[−W (t,x)] is
dominated by the singularities around t = ±2x/v, yielding

j (x) ∝ x1/K−KV 2/K−1 for V � Vx. (17)

In the opposite limit the function exp[−W (t,x)] is instead
dominated by the singularity around t = 0, and the asymptotic
current j is independent on x,

j (x) ∝ V K+1/K−1 for V  Vx. (18)

The crossover between the two regimes occurs at bias V ≈ Vx .
In order to obtain the true tunneling current I , we have to
integrate j (x) according to Eq. (16). The numerical result is
show in Fig. 2, where it is clearly seen that the crossover
is also displayed by I under the replacement x → r/2 and
Vx → Vr = 2v/r . The physical interpretation of this behavior
is the following: For an edge-to-edge tunneling, the current
is suppressed as V 2/K−1 [see Eq. (14)] due to the interaction-
induced depletion of density of states in the proximity of the
boundary;38 allowing electrons to tunnel over the depletion
region, enhances the current according to a power law with
exponent K + 1/K − 1 < 2/K − 1, provided that the energy
supplied by the applied voltage is larger than the tunneling
energy ∼Vr (ET regime). In the next section we will present
the most important part of the paper, in which we consider

the simultaneous effect of extended contacts and screened
interaction. This will allow us to study the competition between
the two energy scales Vd and Vr and see the impact on the CB
scenario.

VI. FINITE-RANGE TUNNELING AND INTERACTION:
COMPETITION

We now consider the tunneling amplitude g(x,y) =
e−(x+y)/r and the screened interaction U (|x − y|) =
U
d
e−|x−y|/d . As noticed in Ref. 33 the length scales r and d

are typically of the same order, and, hence, it is important
to treat their effects on the same footing. According to the
results of the previous sections, if the applied bias is smaller
than min{Vr,Vd} the system is certainly in the CB regime,
with the current suppressed as I ∝ V 2/K−1 (see Figs. 3 and 4).
However, at larger bias the response crucially depends on the
interplay between tunneling and screening.

A. Vd < Vr

If Vd < Vr a SO behavior (with offset Va; see Fig. 3) is
expected in the range Vd < V < Vr , since ET effects are still
not significant. But what happens when V > Vr? Tunneling
effects will compete with screening effects, compelling the
system to abandon the ohmic behavior and to crossover
towards the power-law regime I ∼ V K+1/K−1. To understand
the fate of such competition, we have to calculate I numer-
ically. For simplicity, we adopt the same approximation as
in Eq. (16), and the resulting I -V curve is shown in Fig. 3.
We see that for V > Vr no real crossover occurs, and the
current remains ohmic (there is a kink separating two different
SO regimes). The physical reason of this behavior can be
understood as follows: Since the interaction range is finite, for
V > Vd the system behaves as it was noninteracting, where
the effects of interaction are only visible in the Coulomb
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FIG. 3. (Color online) Log-log plot of the I -V curve for extended
tunneling and finite-range interaction for Vd < Vr . We used r =
2 × 103a, d = 106a, U = 6vF (i.e., K0 ≈ 0.6, Vr ≈ 100, and Vd ≈
1.2). The dashed lines represent the three power laws with different
exponents holding for V < Vr , Vr < V < Vd , and V > Vr . Voltages
and current are in the same units as in Fig. 2. In the legend Va and Vb

indicate the different offsets of the two shifted ohmic regimes.
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FIG. 4. (Color online) Log-log plot of the I -V curve for extended
tunneling and finite-range interaction for Vd > Vr . We used r = 2 ×
106a, d = 104a, and U = 6vF (i.e., K0 ≈ 0.6, Vr ≈ 0.1, and Vd ≈
120). The dashed lines represent the three power laws with different
exponents holding for V < Vr , Vr < V < Vd , and V > Vr . Voltages
and current are in the same units as in Fig. 2.

offset of the linear I -V curve; as a consequence, when
V > Vr tunneling effects are felt by a “noncorrelated state”
having K ≈ 1 and, hence, I ∝ V K+1/K−1 ≈ V . Indeed, at
V ≈ Vr , a “transition” between two different ohmic regimes
(characterized by different offests Va and Vb) is observed, see
the green and red dotted lines in Fig. 3. In conclusion for
Vd < Vr the ET regime characterized by I ∝ V K+1/K−1 is
completely suppressed.

B. Vd > Vr

If Vd > Vr , the analysis is simpler, but the scenario is more
intriguing. In this case, there is no real competition between
ET and screening since I ∝ V K+1/K−1 develops in the range
Vr < V < Vd while the SO behavior naturally establishes in
the “noncorrelated” regime at large bias V > Vd . Indeed, in
Fig. 4 we can observe the three different regimes displayed
by the I -V curve which has been calculated numerically.
Remarkably the occurrence of the ET regime before the
occurrence of the SO behavior causes a reduction of the CB
gap, because I is suppressed as V 2/K−1 only for V < Vr

(instead of V < Vd ). Since the K + 1/K − 1 < 2/K − 1
for any repulsive interaction, we conclude that beyond the
threshold V = Vr the current is enhanced according to a
“weakly correlated” power law (although the regime is still
not completely ohmic).

This finding may have relevant consequences from the
experimental side, in particular, for what concerns the estimate
of the junction capacitance C. Indeed, C is usually inferred
from the relation 1/2C = �, where � is the observed
Coulomb blockade gap, identified as the high voltage offset
of the I -V curve.7,12 Our results point out that in situations
in which the screening length is smaller than the spatial
extension of the tunneling processes, the relation � ≈ Vd

must be replaced by � ≈ Vr (for an illustration, see Fig. 5).
This means that the observed gap is not simply equal to the

Vr Vd
voltage

cu
rr
en
t

V
2
K 1

VK
1
K 1

V

r
d

FIG. 5. (Color online) Schematic illustration of the renormal-
ization of the Coulomb blockade gap �. (Red line) I -V curve
for a pointlike (end-to-end) tunneling and finite-range interaction,
with usual gap � ≈ Vd ≡ �d . (Blue line) I -V curve for extended
tunneling and finite-range interaction with Vd > Vr . The Coulomb
blockade gap renormalizes as � ≈ Vr ≡ �r < �d .

conventional charging energy, but it is strongly renormalized
by the energy that electrons need to tunnel over an extended
region of size v/�.

The novel regime we propose could be experimentally real-
ized in tunnel junctions involving multiwall carbon nanotubes.
These systems display a manifest LL behavior12,45 and, at the
same time, the screening by nearby gates (or substrate) and
by the different shells renders the interaction short ranged.45,46

Thus, the condition Vd > Vr can be effectively fulfilled, and
extracting the value of the capacitance from the offset of the
I -V curve may provide a result significantly larger than the
correct one.

VII. SPINFUL CASE

So far we have considered spinless electrons. In this section
we introduce the spin degrees of freedom and show that the
above scenario survives also in this case. The formulation is
very similar to the one presented in Sec. II. If the spin is taken
into account, the boson field φjα introduced in Eqs. (9) and
(10) becomes explicitly spin dependent, which we denote by
φjασ , where σ =↑ , ↓ is the spin orientation. If the interaction
does not depend on the spin of the scattering electrons [i.e.,
Uσσ ′(x) = U (x)], it is useful to introduce the charge/spin fields
φjαc/s = (φjα↑ ± φjα↓)/

√
2. In terms of these new fields the

original spinful Hamiltonians separates40 in an interacting part
in the charge sector characterized by LL parameter Kc and
velocity vc (which is equivalent to the one of the interacting
spinless case) and a noninteracting part in the spin sector with
Ks = 1 and vs = vF . The calculation of the current follows the
same line as above, with the only difference being that, in this
case, the interacting ground state |	0〉 is (in the bosonization
language) the product of the vacua of the charge and spin
excitations, respectively. It is straightforward to verify that
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the competition between the ET regime and the SO regimes
takes place as above, but with different power-law exponents:
I ∝ V 1/Kc in the CB regime and I ∝ V (Kc+1/Kc)/2 in the
ET regime. Again it holds 1/Kc > (Kc + 1/Kc)/2 (for any
repulsive interaction), thus ensuring the renormalization of
the CB gap also for spinful electrons. Finally, we have verified
that, in this case, the relevant energy scales are Vd = vc/d

and Vr = vc/r , i.e., both the charging energy and the ET
energy depend only on the velocity of charge excitations, as it
should be.

VIII. SUMMARY AND CONCLUSIONS

We have investigated the zero-temperature nonequilibrium
transport properties of a nanoscopic junction formed by two
single-channel conductors linked by an extended contact.
We have considered the simultaneous effect of finite-range
electron-electron interactions and extended tunneling by pay-
ing special attention to the Coulomb blockade phenomenon.
Correlations have been included within the open-boundary
Luttinger liquid theory, while tunneling processes have been

treated to linear order in the tunneling Hamiltonian. Two
relevant length scales enter into the problem, namely the
screening length d and the size of the extended contact r ,
and different scenarios have been discussed depending on
their relative magnitude. When d and r are comparable, a
competition between screening and tunneling occurs, opening
the possibility of identifying a new regime. In particular, when
d < r , a “weakly correlated” regime at intermediate voltage
V establishes between the well-known Coulomb blockade
regime (holding at small V ) and the shifted ohmic regime
(holding at large V ). This produces an increase of the tunneling
current from the CB suppression I ∼ V 2/K−1 to the enhanced
power law I ∼ V K+1/K−1. As a consequence, the CB gap
shrinks from the “electrostatic” value � ∼ 2U (0) to the
renormalized value v/r , which is not the charging energy of
the junction but rather is the energy that must be supplied
to a single electron to tunnel over an extended region of
size r . Finally, we have shown that the above results are
robust with respect to the introduction of the spin degrees
of freedom, whose effect consists in modification of the
power-law exponents in the CB and ET regimes.
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