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We explore the potential application of graphene-based qubits in photonic quantum communications. In
particular, the valley pair qubit in double quantum dots of gapped graphene is investigated as a quantum memory
in the implementation of quantum repeaters. For the application envisioned here, our work extends the recent
study of the qubit [Wu et al., arXiv:1104.0443; Phys. Rev. B 84, 195463 (2011)] to the case where the qubit
is placed in an in-plane magnetic field configuration. It develops, for the configuration, a method of qubit
manipulation, based on a unique ac electric field-induced, valley-orbit interaction-derived mechanism in gapped
graphene. It also studies the optical response of graphene quantum dots in the configuration, in terms of valley
excitation with respect to photonic polarization, and illustrates faithful photon ↔ valley quantum state transfers.
This work suggests the interesting prospect of an all-graphene approach for the solid state components of a
quantum network, e.g., quantum computers and quantum memories in communications.
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I. INTRODUCTION

Quantum bits (qubits) are the fundamental units of quantum
information exchanged in quantum communications (QCs)1,2

or processed in quantum computing.3 Apart from the flying
photon qubit, which plays an essential role in QCs, of particular
interest among the qubits proposed are the static, solid state
ones that utilize the spin4 or valley5 degrees of freedom of
electrons. Such qubits can be used for storage of quantum
information and, moreover, having the structure of gated
devices, may be scalable and electrically manipulated, similar
to semiconductor IC transistors.

The present work focuses on the potential application of
valley-based qubits in QCs, which is based on the unique physi-
cal properties of graphene recently discovered6 and extensively
studied.7 As is well known, graphene is a two-dimensional
material of hexagonal lattice, with a distinctive band structure
characteristic of a Dirac particle. More importantly, there are
two independent energy valleys located, respectively, at K and
K′ of the Brillouin zone. A low-lying charge carrier may sit
in either of the valleys and is endowed with a binary-valued
degree of freedom (d.o.f.) analogous to spin.

It has been conjectured for some time that this valley
d.o.f. is suited to the coding of quantum information,8 and
the conjecture is recently realized in the proposal of Ref. 5
by Wu et al. It is shown that a valley-based qubit (called
valley pair qubit) can be implemented by utilizing two coupled
quantum dots (QDs) in gapped graphene [epitaxially grown
on SiC (see Ref. 9) or BN (see Ref. 10), for example].
As explained in Ref. 5, a valley pair qubit is basically a
two-electron system in the double quantum dots (DQD), with
the state space consisting of “valley singlet/triplet states”
representing, respectively, logical 0/1 values. Reference 5
develops, for the valley pair qubit, a method of quantum state
manipulation suited to the implementation of valley-based
quantum computing. It employs a static tilted magnetic field
configuration, where the in-plane field freezes the electron
spin while the normal field induces an asymmetry between
K and K′ valleys, creating a corresponding “valley Zeeman
splitting.” 11,12 A key element of the method is that the splitting

in each QD of the qubit can be tuned independently (with a
gate voltage) to create across the qubit DQD a differentiation in
the size of splitting, which drives a state transformation for the
qubit manipulation. The physics underlying the electric tuning
of valley splitting involves a unique, relativistic-type physical
mechanism in gapped graphene, namely, the following valley-
orbit interaction (VOI) (τv = +1/ − 1 for K / K′, 2� = band
gap, m∗ = electron effective mass, V = potential energy, p =
momentum operator):

HVOI = τv

h̄

4m∗�
∇V × �p.

The VOI is an analogue of the Rashba mechanism13 of spin-
orbit interaction (SOI). While the SOI has been demonstrated
an effective mechanism for electrical manipulation of spin
qubits in semiconductors,14 the VOI provides an alternative
mechanism in the case of graphene where the SOI strength is
known to be weak.7

The present work belongs to the series of our recent
theoretical investigations of valley pair qubits, and extends
the scope of potential applications for valley pair qubits
from quantum computing to photon-based QCs. In particular,
it examines the issue of photon ↔ valley quantum state
transfer (QST) critical to the application envisioned here, and
discusses the feasibility of valley-based quantum memories in
the implementation of quantum repeaters for photonic QCs.

It is well known that, with the racing speed of light,
photonic QCs hold great promise for quantum networks
or long distance distributions of quantum keys in quantum
cryptography.15 In these applications, it is essential to generate
with photonic signals a long-range quantum entanglement
between two sites. However, due to the exponential decay
of photonic signals in the channel, the entanglement usually
attenuates with distance, making the long-range distribution
of entanglement a challenging task. The quantum repeater
protocol is a strategy that solves the problem of attenuation
by dividing the channel into many segments and distributing
the entanglement in a cascading fashion.2,16 With the protocol,
quantum entanglement is generated in each segment and then
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connected with that in the adjacent segment (by entanglement
swapping17). The same process is applied over and again,
each time with the entanglement range being doubled, until
eventually it is expanded far enough to cover the two parties
(sender and receiver) in the communication. In the protocol,
photons are utilized to carry quantum entanglement (over a
distance less than the light attenuation length), and solid state
qubits are utilized as quantum memories to temporarily store
the entanglements already established in the segments. Since
the entanglements are built in a probabilistic manner, their
storage in solid state qubits is of vital importance in that it
synchronizes the entanglements for swapping.

One of the advantages in using solid state quantum
memories, such as a semiconductor18- or the graphene-based
one envisioned here, lies in the accessibility of quantum state
manipulation via electrical gate control in the above cascading
process. However, important issues arise. For example, an
elementary and frequent operation in quantum repeaters with
graphene-based quantum memories would be the conversion
of a quantum state, from a photonic form to a valley-based one
in graphene and vice versa, and it is crucial to minimize the
quantum distortion resulting from such quantum state transfers
(QSTs). This places a constraint on the working configuration
of valley-based qubits, as well as on the corresponding method
of state manipulation. The work presented below addresses
these important issues.

In the work, we focus primarily on photonic QCs using
the photonic polarization (σ+/σ−) for coding. The constraint
imposed by a faithful QST then requires that the optical
response of graphene QDs be symmetric, in terms of valley
excitation with respect to the photonic polarization. In order
to see how the constraint arises, consider the following
simple example where the valley-based qubit comprises only
a single QD-confined electron, with the quantum information
being encoded in the linear combination of |K〉 and |K′〉
(of the electron state). Although the feasibility of quantum
information processing based on such a simple qubit has
not yet been demonstrated, it provides nonetheless a simple
illustration. In this case, a faithful QST from photon to valley
qubits means

α|σ+〉 + β|σ−〉 → α|K〉 + β|K′〉,
which can occur, if the QD reacts to an incoming photon
symmetrically as follows:

|K(valence)〉 + |σ+〉 → |K(conduction)〉
(with amplitude M),

|K′(valence)〉 + ||σ−〉 → |K′(conduction)〉
(with amplitude M′),

|M| = |M′|. (1)

In fact, in the absence of a normal magnetic field, the optical
excitation in gapped graphene is indeed symmetric, and obeys
the selection rule in Eq. (1) approximately, as pointed out
previously. 19 With Eq. (1), it follows that

α|σ+〉 + β|σ−〉→αeiχ |K(conduction)〉+β|K′(conduction)〉
(eiχ = M/M′),

which is obtained by superposing the two quantum processes
in Eq. (1). A further valley state manipulation can be applied
to annihilate the extra phase χ appearing in the state, thus
achieving a faithful QST from photon to valley qubits. The
criterion of a symmetric optical response demonstrated above
applies as well to the valley pair qubit considered in the work,
as shall soon become clear when we discuss the QST between
photon and valley pair qubits.

While the tilted magnetic field configuration works per-
fectly for quantum computing,5 the presence of the normal
magnetic field component breaks valley symmetry and forbids
a symmetric optical response. A focus of the present work is
to investigate valley pair qubits in the alternative, in-plane
magnetic field configuration, and develop a corresponding
method of qubit manipulation in the case.

The presentation is organized as follows. In Sec. II, we pro-
vide a description of valley pair qubits in the in-plane magnetic
field configuration. In Sec. III, we present the Schrodinger-type
equation for electron states in gapped graphene. The equation
incorporates relativistic type corrections (RC), including the
VOI, up to the second order, and is employed to study an ac
electric field-induced VOI-based mechanism. Following the
mechanism, the method of state manipulation is developed for
valley pair qubits in the in-plane magnetic field configuration.
It is shown that the VOI-based mechanism is a second-order
relativistic type effect, and an estimate of the effect gives
the time scale of O(10 ns) for the qubit manipulation. In
Sec. IV, we discuss the optical response of graphene QDs,
and illustrate the faithful QST from photon to valley pair
qubits and vice versa. We also consider the back-to-back QST
such as valley → photon → valley, and show that the QST
is highly faithful. In Sec. V, we summarize our findings. In
Appendix A, we present the derivation of the Schrodinger-
type equation in gapped graphene, with the relativistic-type
corrections included up to the second order. In Appendix B,
we provide the mathematical details involved in the derivation
of the ac electric field-induced VOI-based effect. Finally, in
Appendix C, we estimate the coherence time of valley pair
qubits in the in-plane magnetic field configuration and show
that it can be made long enough for the VOI-based qubit
manipulation developed in Sec. III.

II. VALLEY PAIR QUBITS

The pair of coupled QDs (in the x-y plane) for the qubit may
be formed by spatially modulating graphene energy bands,
e.g., via back gate voltages, to provide a band gap-caused
quantum confinement. As shown in Fig. 1(a), electrical
gates, VL, VR , and Vc, are also placed near the QDs to
further modulate the QD confinement potential. In addition, Vc

controls the potential barrier between the two QDs and, hence,
the corresponding tunneling amplitude td−d, too. The state of
a confined electron is characterized by the following set of
indices, (n, X, τ v , sx). Here, n is the QD energy level index,
X = L or R, denoting the left / right QD, and sx = ± 1

2 being the
electron spin component in the x direction. A static in-plane
magnetic field is applied, which freezes the spin degree of
freedom at, for example, sx = 1

2 , as shown in Fig. 1(b).
The Fermi energy is set at such a level that a population

of two electrons resides in the DQD structure, interacting
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FIG. 1. (Color online) (a) The DQD structure of a valley pair qubit. The QDs are electrostatically defined, for example, by back gates (not
shown in the figure). Gate Vc is used to tune the potential barrier and also generate a linear term (in x) in the QD confinement potential. The
coupling between the two QDs is characterized by the tunneling amplitude td−d , and may be controlled by Vc or the back gates. Gates VL

and VR are ac biases. (b) A static in-plane magnetic field is applied to freeze the electron spin, leaving only the valley degree of freedom for
qubit implementation. (c) Valley singlet (zS) / triplet (zT 0, zT +, zT −) states constitute the low-energy sector of the two-electron states, with the
singlet-triplet splitting being given by J .

with each other with the on-site Coulomb repulsion energy
(U ). The valley pair qubit operates in the low-energy charge
configuration (1L, 1R), where the two electrons are separately
confined in the QDs with the following exchange-type effective
interaction between the electrons:

HJ = 1
4J

⇀
τL · ⇀

τR,

with J ∼ 4t2
d−d/(U − δε) being the exchange integral, and

τL(R) is the “Pauli valley operator” (identical to Pauli spin
operator). δε here refers to the energy detuning between (n =
0, X = L, τ v, sx = 1

2 ) and (n = 0, X = R, τ v, sx = 1
2 ). Note

that J is electrically tunable, through the adjustment of td−d

via Vc, or that of δε via back gate voltages. The eigenstates of
HJ are the following valley singlet/triplet states:

|zS〉 = 1√
2

(c+
KL

c+
K′

R
− c+

KL′ c
+
KR

)|vacuum〉,

|zT0〉 = 1√
2

(c+
KL

c+
K′

R
+ c+

KL
′c

+
KR

)|vacuum〉,

|zT+〉 = c+
KL

c+
KR

|vacuum〉,
|zT−〉 = c+

KL′ c
+
KR′ |vacuum〉.

An exchange splitting (equals J ) exists between the singlet
|zS〉 and the triplet { |zT0〉, |zT+〉, |zT−〉}, as shown in Fig. 1(c).
In the above, KL = (n = 0, L, τ v = 1), and c+

KL
denotes the

corresponding electron creation operator. Other notations are
similarly defined.

The Hilbert space expanded by |zS〉 and |zT0〉 constitutes
the qubit state space (denoted as �v). �v is isomorphic to the
spin-1/2 state space and, hence, can be represented by the
surface of a sphere (i.e., the Bloch sphere). |zT+〉 and |zT−〉
are outside �v and not needed in the application of quantum
computing/communications. Physically, they are coupled to
|zS〉 and |zT0〉 by the intervalley scattering K ↔ K′ and provide

a channel of leakage contributing to qubit decoherence. In
Appendix C, the intervalley scattering of a QD-confined
electron is considered.20

Valley pair qubits can be manipulated all electrically. For
example, if the exchange coupling J is maintained for a
duration of tz, it produces the unitary transformation, Rz(θz),
i.e., a rotation about the z axis of the Bloch sphere with the
angle of rotation θz = J tz/h̄.5 However, in order to manipulate
the qubit to an arbitrary point on the Bloch sphere, we need,
in addition to Rz, a second independent state transformation.
Section III addresses this important issue and shows how to
produce a rotation about the x axis of the Bloch sphere (called
Rx below).

Quantum states of valley pair qubits are analogous to spin
singlet/triplet states in the spin pair scheme.21,22 As such,
valley pair qubits are characterized by the same distinctive
advantages provided in the scheme, e.g., scalability and
decoherence-free state space. The method developed in the
scheme for initialization/readout/two-bit qugate (CPHASE)
operation, as described by Taylor et al.,14 may also be adapted
here. With the method and the single qubit operations Rx and
Rz, universal quantum computing23 can be achieved using
valley-pair qubits.

III. VOI-BASED STATE MANIPULATION

We note that the valley pair states, |x−〉 and |x+〉, defined
as

|x−〉 = 1√
2

(|zT0〉 − |zS〉) = c+
KL′ c

+
KR

|vacuum〉,

|x+〉 = 1√
2

(|zT0〉 + |zS〉) = c+
KL

c+
KR′ |vacuum〉,

correspond to |sx = −1/2〉 and |sx = 1/2〉, respectively, as
implied by the isomorphism between �v and the spin-1/2 state
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space. Comparing the expressions of |x−〉 and |x+〉, one sees
that if one can break the symmetry between K (τv = 1) and
K′ (τv = −1) in one or both of the QDs, then a differentiation
may be created between |x−〉 and |x+〉 leading to the following
contrasting time evolution, namely,

|x−〉 → e−i|x−〉, |x+〉 → ei|x+〉,
i.e., a rotation about the x axis of the Bloch sphere.

There are two approaches to produce the needed valley
asymmetry. Firstly, a normal magnetic field may be applied, as
in the proposal of Wu et al. for quantum computing.5 For QCs,
if the same approach is employed, the field would have to be
switched on and off frequently (e.g., off during the photon ↔
valley QST, in order to achieve a faithful QST, and on when the
valley qubit is being processed in the quantum repeater) at the
same frequency used in sending/receiving the photonic signal,
leading to complications in the application. Or, alternatively,
one may resort to the second approach where an in-plane
magnetic field configuration is employed. In the following,
we consider a QD-confined electron in this configuration, and
show that an ac electric field can replace the normal magnetic
field and induce the required valley asymmetry. This is termed
the ac electric field-induced VOI-based effect, and it enables
a rotation about the x axis of the Bloch sphere.

A. The QD profile

Apart from the ac electric field, the VOI-based ef-
fect depends also on the QD confinement potential.
We describe briefly this dependence here. Let VQD be
the QD confinement potential. Two profiles are consid-
ered. In one case, VQD = V2(x,y) + V3(x), with V2(x,y) =
1/2 m∗w2

0(x2 + s2y2) and V3(x) = 1/3 m∗w2
0k3xx

3. “s” in V2

parameterizes the anisotropy of a generic quadratic potential

and is taken to be of the order of unity. “k3x” in V3 characterizes
the strength of the cubic potential. In the other case, VQD =
V2(x,y) + e εx x + V4(x), involving an electric field (εx) in the
x direction and a quartic potential V4(x) = 1/4m∗w2

0 k4xx
4.

“k4x” in V4 characterizes the strength of the quartic potential,
and εx may be produced by gate Vc in Fig. 1(a). In either
case, in the presence of an ac electric field, the total potential
energy of the electron is taken to be V (x,y) = VQD + Vac, with
Vac = e εy sin(wst) y being the time-dependent potential due
to the ac electric field. Here, the corresponding ac electric field,
εy sin(wst), is taken in the y direction, and may be produced
by gate VL or VR in Fig. 1(a).

As shall become clear below, in the cubic case, the ac
electric field-induced VOI-based effect scales with k3x (and
thus vanishes in the absence of V3). Therefore, the presence of
V3 in VQD is an important requirement here. In the quartic case,
the electric field εx displaces the electron to a new equilibrium
position (x0 = e εx/m∗w2

0), and a cubic term appears when
VQD is expanded around x0. This also enables the VOI-based
effect.

B. The Schrodinger-type equation with “relativistic correction”
up to the second order

Generally, the two-band model (i.e., the Dirac equation) is
a good description of both the conduction and valence bands in
graphene.7 However, in order to facilitate an analytical study
of the VOI-based effect, we focus here on the regime where
the electron is near the conduction band edge, i.e., E/� � 1,
where E is the electron energy with respect to the band edge.
(The study can easily be extended to near-band-edge valence
band holes.) In this regime, the Dirac equation is reduced to
the Schrodinger-type equation derived in Appendix A. In the
cubic case where VQD = V2(x,y) + V3(x), we have

H (x,y,t)ψ(x,y,t) = ih̄∂tψ(x,y,t), H (x,y,t) = H (0)(x,y,t) + V3(x) + H (1)(x,y,t) + H (2)(x,y,t),

H (0)(x,y,t) = �p2

2m∗ + V2[x,y + y0(t)] − 1

2
m∗w2

0y
2
0 (t),y0(t) = eεy sin wst

m∗w2
0

. (2)

y0(t) here is the time-dependent electron displacement due to the ac electric field.
Equation (2) is correct to O(E/�)2. H (0) in the Hamiltonian describes a standard quantum harmonic oscillator (QHO). We

consider the weak-field limit where |y0| � Y [Y = (h̄/m∗w0)1/2 being the size of the QHO oscillation amplitude] and ignore the
y2

0 term in H (0). This linearization does not affect the discussion below, since as will become clear, the leading order of VOI-based
effect is linear in y0. H (0) + V3 constitutes the “nonrelativistic” part of the Hamiltonian. H (1) and H (2) are, respectively, the first-
and second-order relativistic-type corrections, with ‖H (1)‖/‖H (0) + V3‖ ∼ O(E/�) and ‖H (2)‖/‖H (0) + V3‖ ∼ O(E2/�2).

We separate, in H (1) and H (2), valley-dependent and -independent terms. Specifically, we write

H (1) = H
(1)
0 + H (1)

τ , H
(1)
0 = − �p4

8m∗2�
− 1

8m∗�
( �p2V2) − 1

8m∗�
( �p2V3),

(3)

H (1)
τ = τv

h̄

4m∗�
{∇V2[x,y + y0(t)]} × �p + τv

h̄

4m∗�
(∇V3) × �p(first − orderVOI).

The subscripts “τ”/“0” here label valley-dependent/independent terms. y0(t) is explicitly written where the time dependence
appears. H (1) was previously derived and compared to the first-order relativistic correction (RC) in the standard Schrodinger
equation of electrons.24 For example, the first term in H

(1)
0 is the RC to the kinetic energy, and the second and the third terms in

H
(1)
0 are the Darwin’s term. The second term in H

(1)
0 is a constant and shall be dropped below, with no effect on the treatment.
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H (1)
τ is the first-order valley-orbit interaction, the analogue of spin-orbit interaction. Similarly, for H (2), we write

H (2) = H
(2)
0 + H (2)

τ , H (2)
τ = H

(2)
τ2 + H

(2)
τ3 (second − orderVOI),

(4)

H
(2)
τ2 =−τv

3h̄

32m∗2�2
{∇V2[x,y+y0(t)]× �p �p2 + �p2∇V2[x,y + y0(t)]× �p}, H

(2)
τ3 =−τv

3h̄

32m∗2�2
[∇V3× �p �p2 + �p2∇V3 × �p].

H (2)
τ is the second-order VOI, and has been decomposed

into V2- and V3- erived terms. Expressions underlined are
evaluated first. H

(2)
0 is not given here, as it is irrelevant to

the calculation of the VOI-based effect. See Appendix B.
Note that the linearization of H (x,y,t) in y0 leads to the
approximation that H (x,y,t) ≈ H [x,y + y0(t)], as can be
verified with Eqs. (2)–(4).

The analysis of VOI-based effect is carried out for the
ground state, within the perturbation-theoretical framework
where H (0) in Eq. (2) is treated as the dominant term and
V3, H (1), and H (2) are treated perturbatively. The conditions
required for the perturbative calculation and the various
energy scales involved are summarized below. First of all,
y0 � Y and ‖H (2)‖ � ‖H (1)‖ � ‖H (0)‖, both of which have
already appeared or been assumed above. We further take
‖V3‖ � ‖H (0)‖ in order for H (0) to be the only dominant
term in H. It leads to the following estimate of energy scales,
namely, ||H (0)|| ∼ E ∼ w0 � �,||H (1)|| ∼ O(h̄2w2

0/�), and
||H (2)|| ∼ O(h̄3w3

0/�
2). We also assume the adiabatic condi-

tion, i.e., ws � w0, meaning that the ac field varies slowly
in the time scale of the electron orbital motion. This permits
us to employ the adiabatic perturbation theory to treat the
time-dependence of H(t) due to the ac electric field. We note,
in practical applications, that most of the above conditions
can actually be relaxed, e.g., h̄w0 ∼ �,||H (2)|| ∼ ||H (1)|| ∼
||H (0)||,or||V3|| ∼ ||H (0)||. In such cases, the Dirac equation
and/or numerical work are required in an accurate analysis of
the VOI-based effect, but the analytic calculation and result
presented below can still serve as a useful guidance.

C. Adiabatic perturbation-theoretical treatment

We now perform the quantitative analysis of VOI-based
effect. Specifically, we examine if the ac electric field is able
to induce any valley dependence in the ground state of the
QD-confined electron. We employ the adiabatic perturbation
theory25 and write the ground-state wave function

ψ0(x,y,t) ≈ ϕ0[x,y + y0(t)]e− i
h̄

∫ t
E0(t ′)dt ′e

i
h̄

∫ t
γ0(t ′)dt ′ . (5)

Here, ϕ0(t) and E0(t) are the instantaneous ground state and
energy, respectively, defined in the following:

H [x,y + y0(t)]ϕ0[x,y + y0(t)] = E0(t)ϕ0[x,y + y0(t)]. (6)∫
t
E0(t ′)dt ′/h̄ and

∫
t
γ0(t ′)dt ′/h̄ in Eq. (5) are, respectively,

the dynamical and the geometric phases of the state. Equa-
tion (6) has the following useful symmetry properties. Firstly,
using the expression of H (t) provided in Eqs. (2)–(4), one
can show that H (τv = −1) = H ∗(τv = 1). Therefore, if ϕ0(t)
is an eigenstate solution in Eq. (6) for τ v = 1, then ϕ∗

0 (t)
is an eigenstate for τv = −1, and both states are degenerate
with the same energy E0(t). Accordingly, the ac field does not

generate any valley dependence in E0(t), or in the dynamic
phase. This is basically a consequence of the time-reversal
symmetry for valley states. Secondly, in the case where
V3(x) is absent, we have VQD(x,y) = VQD(−x,y) and hence
H (x,y) = H ∗(−x,y). It follows that ϕ0(x,y) = ϕ∗

0 (−x,y) as
a result of the reflection symmetry. This fact shall be used later.

Substitution of the wave function (5) into the Schrodinger
equation (2) yields γ 0, the rate of change in the geometric
phase,

γ0(t) = ih̄〈ϕ0[x,y + y0(t)]|∂tϕ0[x,y + y0(t)]〉
= −[∂ty0(t)]〈ϕ0(x,y)|pyϕ0(x,y)〉. (7)

Note, in the second line, that y0(t) = 0 in 〈ϕ0(τv)|pyϕ0(τv)〉.
Therefore we have the property (i) γ 0 is linear in y0. Property
(i) justifies the linearization of H in y0, in the analysis of
VOI-based effect. Using the time reversal property ϕ0(τv =
−1) = ϕ∗

0 (τv = 1) in Eq. (7) yields (ii) 〈ϕ0(τv)|pyϕ0(τv)〉 ∝ τv

or γ0 ∝ τv . Condition (ii) shows that being valley dependent,
γ 0 is able to generate a valley-contrasting time evolution
sought in the beginning of the section. Furthermore, in the
case where V3 is absent, the reflection property ϕ0 (x,y) =
ϕ∗

0 (−x,y) mentioned earlier yields γ0 = 0 in Eq. (7). This
implies that (iii) γ0 ∝ k3x . Collecting (i)–(iii), we write

γ0(t) ∝ τv [∂ty0(t)] k3x. (8)

This result serves as a useful guide in the evaluation of γ 0

below.

D. γ 0 in the cubic case

In Eq. (7), the adiabatic perturbative calculation has isolated
the time dependence of γ 0, leaving only the time-independent
expectation value, 〈ϕ0|pyϕ0〉|y0=0, to be evaluated, with ϕ0 now
determined by the following (time-independent) equation:

H |y0=0ϕ0(x,y) = E0ϕ0(x,y), H = H (0) + V3 + H ′,
(9)

H ′ = H (1) + H (2).

The notation H ′ is introduced above, and is to be treated
within the time-independent perturbation theory in the evalu-
ation of 〈ϕ0|pyϕ0〉|y0=0. (From now on, the subscript y0 = 0
shall be dropped.)

Utilizing the fact that 〈ϕ0(τv)|pyϕ0(τv)〉 ∝ τv , derived
earlier, we write

〈ϕ0(x,y)|pyϕ0(x,y)〉 ≈ p(1)
y + p(2,1)

y + p(2,2)
y , (10)

which is correct to the second-order RC p(1)
y is the first-order

RC and derived from H (1)
τ in the first-order perturbative

treatment of H ′. p(2,1)
y denotes the first-order RC, derived

from H (1)
τ , in the second-order perturbative treatment of H ′.

p(2,2)
y denotes the second-order RC, derived from H (2)

τ , in the
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first-order perturbative treatment of H ′. We summarize these
perturbative results below:

p(1)
y = 0,

p(2,1)
y = −τv

s

64

[
−2 + 4

s
− 16

3(s + 1)
+ 50

3(s + 2)

]
h̄
h̄2w2

0

�2
k3x,

p(2,2)
y = τv

1

16
h̄
h̄2w2

0

�2
k3x. (11)

For details of the derivation, see Appendix B. Overall, this
gives

γ0(t) = C3τvh̄(∂ty0)
h̄2w2

0

�2
k3x,

(12)

C3 = s

96

[
−3 − 8

s + 1
+ 25

s + 2

]
.

We stress that because p(1)
y = 0, an analysis correct only

to the first-order RC here would have yielded a vanishing γ 0.
The finite result shown in Eq. (12) is basically a second-order
relativistic type effect involving the VOI (Hτ

(1) and Hτ
(2)).

E. γ 0 in the quartic case

We extend the result (12) to the quartic case where VQD =
V2(x,y) + e εx x + V4(x), with V4 (x) = 1/4m∗w2

0k4xx
4. For

k4x < 0, the potential V2(x,y) + V4(x) is a realistic description
of a finite, symmetric confinement potential in the x direction.

In the limit of weak εx (with x0 � Y ), expansion of VQD

around x0 leads to

VQD = V2(x,y) + eεxx + V4(x)
x ′=x+x0≈ V2(x ′,y) + V4(x ′,y) − m∗w2

0k4xx0x
′3.

Here, nonlinear terms of x0 have been dropped. The result
shows that the electric field produces effectively a cubic term
in the potential with the strength k3x = −3k4xx0. In the limit
where |V4| � V2, we substitute the effective k3x into Eq. (12),
yielding

γ0(t) = C4(s)τvh̄(∂ty0)
h̄2w2

0

�2
k4xx0,

(13)

C4(s) = − s

32

[
−3 − 8

s + 1
+ 25

s + 2

]
.

C4 can be optimized, by a choice of the parameter s (i.e.,
the QD shape). We briefly note the following. In the case of
an isotropic potential (s = 1), C4 = −1/24. In the anisotropic
case, C4 varies slowly with s, with

|C4| > 1
24 for s < 1 and |C4| < 1

24 for s > 1.

In practical applications, the conditions, x0 � Y and
|V4| � V2, used in the derivation of Eq. (13), can be relaxed,
e.g., x0 ∼ Y and |V4| ∼ V2.

F. Qubit manipulation

For illustration, we consider the qubit manipulation in the
quartic case. As made clear in the above, a geometric phase
contrast is induced by the ac electric field between valley
states. In half of the ac cycle (−π/2ws, π/2ws), for example,

it evolves as follows:

|K〉 → |K〉ei1/2 , |K′〉 → |K′〉e−i1/2 ,

1/2 = 1

h̄

∫ π/2ws

−π/2ws

γ0(t ′; τv = 1)dt ′ = y
(max)
0

lvo

, (14)

y
(max)
0 = eεy

m∗w2
0

, lvo =
(

2C4
h̄2w2

0

�2
k4xx0

)−1

.

Here, y
(max)
0 is the electron displacement amplitude due to the

ac field, and lvo is called the valley-orbit length.
In the case of a valley pair qubit, the foregoing phase

contrast results in a qubit state transformation as follows.
Let us consider the simple mode of manipulation where the
exchange interaction J between the QDs is turned down when
both QDs (or just one of them) are subject to ac electric
fields. For J/h̄ � ws , it freezes the interdot orbital motion,∣∣KL K′

R
〉 ↔ ∣∣K′

LKR
〉
, and hence the associated J -induced Rz

during the action of the ac fields. Based on Eq. (14), the ac
fields produce the following evolution of valley pair states in
half of the ac cycle:

|KLK′
R〉 → eiθx/2|KLK′

R〉 |x+〉 → eiθx/2|x+〉
, or

|K′
LKR〉 → e−iθx/2|K′

LKR〉 |x〉 → e−iθx/2|x−〉
,

θx

2
= y

(max)
0,L

lvo,L

− y
(max)
0,R

lvo,R

. (15)

Here, y
(max)
0,L(R) is the ac field-induced electron displacement

amplitude in QDL(R), and lvo,L(R) is the valley-orbit length
for QDL(R). Equation (15) represents a state rotation about
the x axis, Rx(θx). Combining Rx(θx) and Rz(θz), one can
manipulate the qubit to an arbitrary point on the Bloch sphere
(see Fig. 2).

We give below a numerical estimate of the time (denoted
as toperation) needed for a typical single qubit manipulation. It
is assumed that a series of alternate Rx(θx)’s and Rz(θz = π )’s
are used in the manipulation, as shown in Fig. 2. We take
π/ws ∼ 0.1 ns. Moreover, J in the range of 1 meV or lower is
achievable.5 Therefore the time (π h̄/J ) spent on each Rz(θz =
π ) can be made much less than or comparable to the time
(π/ws) on each Rx(θx). Accordingly, toperation is determined
primarily by the total time spent on Rx(θx)’s, and it leads to the
estimate that toperation ∼ O[π/wsθx]. Using k4x = L−2(L =
QD size), x0 = 0.3L, s = 1, and h̄w0/� = 0.5, Eq. (14)
gives lvo,L(R) ∼ 120L. For y

(max)
0,L = −y

(max)
0,R = 0.3L, and

π/ws = 0.1 ns, Eq. (15) gives θx = 0.01 and thus toperation ∼
O(10 ns).

IV. OPTICAL RESPONSE AND QUANTUM STATE
TRANSFER

Firstly, we describe the near-band-gap optical response
from a gapped graphene QD. In particular, we consider the
excitation of an electron from a valence band state to the
lowest quantized conduction band state in the QD, as shown
in Fig. 3.

Since the excitation involves both valence and conduction
bands, we return to the two-band model, i.e., the Dirac
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FIG. 2. (Color online) Single qubit manipulation, with the initial qubit state, e.g., |zs〉. One may apply the alternating sequence Rx(θx) →
Rz(θz = π ) → Rx(−θx) → Rz(θz = π ) → . . . Rz(θ

(target)
z + π/2) and manipulate the initial state into a target state (θ (target)

z = target state
longitude).

equation,

(H (0)
D + HA)φD = ih̄∂tφD,

H
(0)
D =

(
� + VQD vF p̂−

vF p̂+ −� + VQD

)
,

HA =
(

0 evF A−
evF A+ 0

)
, φD =

(
ϕA

ϕB

)
,

p̂− = px − iτvpy,p̂+ = px + iτvpy,

A− = Ax − iτvAy,A+ = Ax + iτvAy. (16)

Here, A = (Ax ,Ay) is the vector potential of the radiation field.
H

(0)
D is the QD Hamiltonian in the absence of radiation, and

HA is the light-electron interaction. We describe briefly the
eigenstates of H

(0)
D below. We denote φ

(0,c)
D = (ϕ(0,c)

A , ϕ
(0,c)
B )T

and φ
(0,v)
D = (ϕ(0,v)

A ,ϕ
(0,v)
B )T (T = transpose) as the lowest

quantized conduction band state in the QD and the near-band-
edge valence band state around the QD, respectively, with E

(c)
0

and E
(v)
0 being the corresponding energies. From Eq. (16),(

ϕ
(0,c)
A ,ϕ

(0,c)
B

)∣∣
τv=−1 = (

ϕ
(0,c)∗
A , − ϕ

(0,c)∗
B

)∣∣
τv=1, (17)(

ϕ
(0,v)
A ,ϕ

(0,v)
B

)∣∣
τv=−1 = (

ϕ
(0,v)∗
A , − ϕ

(0,v)∗
B

)∣∣
τv=1,

due to the time reversal symmetry between valley states in
the absence of radiation. Moreover, for electrons near the gap,
|ϕ(0,c)

A | � |ϕ(0,c)
B | and |ϕ(0,v)

A | � |ϕ(0,v)
B | for both τv = ±1. In

FIG. 3. (Color online) Approximate selection rule of optical
excitation in gapped graphene.

fact, it can be verified that∣∣ϕ(0,c)
B

∣∣/∣∣ϕ(0,c)
A

∣∣ ∼ ∣∣ϕ(0,v)
A

∣∣/∣∣ϕ(0,v)
B

∣∣ ∼ O(E/�)1/2. (18)

We consider the near-resonance optical response of the QD
to a normally incident light, in the form of a circularly polarized
(σ+ or σ−) plane wave. The light-electron interaction in the
case is given in the following:

HA|(τv=1,σ+)or(τv=−1,σ−)

= evF A0

[
e−i(kphz−wpht)

(
0 1
0 0

)
+ ei(kphz−wpht)

(
0 0
1 0

)]
,

HA|(τv=−1,σ+)or(τv=1,σ−)

= evF A0

[
ei(kphz−wpht)

(
0 1
0 0

)
+ e−i(kphz−wpht)

(
0 0
1 0

)]
,

where kph is the photon wave vector, wph is the photon
frequency, and A0 is the amplitude of A. HA is treated with
the time-dependent perturbation theory. We take z = 0 in the
graphene plane. Then, near resonance (wph ∼ E

(c)
0 − E

(v)
0 ), the

optical response is governed by the following optical matrix
elements:

M> = evF A0
〈
ϕ

(c)
A

∣∣ϕ(v)
B

〉
, for (τv = 1,σ+) or (τv = −1,σ−),

M< = evF A0
〈
ϕ

(c)
B

∣∣ϕ(v)
A

〉
, for (τv = 1,σ−) or (τv = −1,σ+).

(19)

From the properties of wave functions listed in Eqs. (17)
and (18), we obtain

M>(τy = 1) = −M>(τy = −1)∗,
M<(τy = 1) = −M<(τy = −1)∗, (20)

|M<|/|M>| ∼ O(E/�). (21)

Equation (21) permits us to make the approximation
that M<(τv = ±1) = 0, leading to the approximate selec-
tion rule that |K(valence)〉 + |σ+〉 → |K(conduction)〉 and
|K′(valence)〉 + |σ−〉 → |K′(conduction)〉, mentioned previ-
ously in Sec. I and plotted in Fig. 3. Moreover, although
derived for the band-to-band transition, the above result [see
Eqs. (19)–(21)] applies to excitonic excitations as well, except
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FIG. 4. The quantum state transfer from a photon qubit to a
valley pair qubit. Dashed circles are quantum dots, black dots are
the electrons, and white dots are the holes. Double arrows indicate
resonance between states. For simplicity, in the state 2 plotted here,
we show the approximate polarization only, for the photon emitted
by the exciton, as determined by the approximate selection rule in
Eq. (1).

for an additional enhancement factor in the matrix element in
Eq. (19), due to the sizable overlap of electron and hole wave
functions in the exciton state.26 Below, we denote M>(τv = 1)
simply as M>, and M<(τv = 1) as M<.

Next, we describe a feasible method to transfer the quantum
state from a photon qubit to a valley pair qubit, shown in Fig. 4,
based on the optical response described in Eqs. (19)–(21)
for the QD. To begin, the valley pair qubit is placed in a
photonic cavity, and initialized in the singlet state |KL K′

R〉 −
|K′

L KR〉, with the exchange coupling J turned down after the
initialization, in order to freeze the inter-QD orbital motion
during the QST that follows. We take that the energy levels
in QDL and QDR are detuned (by back gate voltages), and
the cavity photon energy (h̄wcavity) matches only the exciton
binding energy (h̄wexciton) in QDL. As shown in Fig. 4,
the photon signal (with the photon frequency wph = wcavity)
enters the cavity in the polarization state α|σ+〉 + β|σ−〉
carrying the quantum information, and interact with the
electrons in the QDs. Then, due to the light-electron inter-
action, the initial (photon-electron composite) state evolves in
time. According to Eqs. (19)–(21), the following cavity QED
processes take place in QDL, photon absorption:

|0〉 = (|KLK′
R〉 − |K′

LKR〉) × (α|σ+〉 + β|σ−〉)
|1〉 = (−βM∗

> + αM<)|K′
exLKLK′

R〉
− (αM> − βM∗

<)|KexLK′
LKR〉,

photon reemission (→) and reabsorption (←):

|1〉 ↔ |2〉
= (−βM∗

> + αM<)[−M>|σ − KLK′
R〉 + M∗

<)

× |σ + KLK′
R〉] − (αM> − βM∗

<)

× [M∗
>|σ + K′

LKR〉 − M<|σ − K′
LKR〉],

where |0〉 is the initial state, Kex,L (K′
ex,L) is the K (K′)-valley

exciton created by the process of photon absorption in QDL.
Note that the intermediate state |2〉 generated in the above
processes is entangled and the photon state can no longer be
factored out in |2〉. In this entangled state, the information
carried by the photon is shared between photons and valley
electrons. Eventually, the reemitted photon in |2〉 escapes the
cavity, and can be measured for its state of linear polarization,
leaving the valley pair qubit carrying the full information. The
measurement produces the valley pair state

|3x〉 = 〈σx |φ2〉
= (−βM∗

> + αM<)(−M> + M∗
<)|KLK′

R〉
− (αM> − βM∗

<)(M∗
> − M<)|K′

LKR〉, (22)

if x polarization is measured, or the state

|3y〉 = 〈σy2〉
= (−βM∗

> + αM<)(M> + M∗
<)|KLK′

R〉
− (αM> − βM∗

<)(M∗
> − M<)|K′

LKR〉, (23)

if it yields y polarization.
In order to see that the above procedure indeed produces

the desired photon → valley QST, we make the approximation
M< = 0 in Eqs. (22) and (23). Then, we see that

|3x〉 ≈ β|KLK′
R〉 − α|K′

LKR〉, (24)

|3y〉 ≈ β|KLK′
R〉 + α|K′

LKR〉. (25)

Thus the quantum information is successfully transferred to
the valley pair qubit. If desired, one can further manipulate the
qubit state in Eqs. (24) or (25) into the state α|KL K′

R〉 +
β|K′

L KR〉 or α|zS〉 + β|zT O〉, with the VOI-based method
described in Sec. III.

It is noted, in the QST mechanism envisioned above, that
some information distortion [of O(E/�)] appears to occur in
the QST, as reflected in the contrast between Eqs. (22) and
(23) and Eqs. (24) and (25), due to the finite magnitude of
M<. However, the distortion would only turn into a true loss
of fidelity, if the transfer stands alone not being a part of a
series of QSTs. As shall be shown below, in the back-to-back
valley → photon → valley QST, the distortion of information
in one transfer is cancelled by that in the other.

Let us now consider the valley → photon QST. We start
with the following valley pair state in the cavity, α|KL K′

R〉 +
β|K′

L KR〉, carrying quantum information. We send a photon
into the cavity, with the photon initialized in the state |σ+〉 +
|σ−〉, and let it interact with the electrons. The photon-electron
state evolves as follows: photon absorption,

|′
0〉 = (α|KLK′

R∼ n + β|K′
LKR〉) × (|σ+〉 + |σ−〉) →

|′
1〉 = α(M< − M∗

>)|K′
ex,LKLK′

R〉
+β(M> − M∗

<)|Kex,LK′
LKR〉,

and photon reemission (→) and reabsorption (←),

|′
1〉↔|′

2〉
= α(M< − M∗

>)(−M>|σ − KLK′
R〉+ M∗

<|σ + KLK′
R〉)

+β(M>− M∗
<)(M∗

>|σ + K′
LKR〉− M<|σ− K′

LKR〉).
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In |′
2〉, the reemitted photon and the QD electrons are

entangled. The reemitted photon eventually escapes from the
cavity, leaving behind the valley pair. We measure the valley
pair state, producing the following photon state:

|φ′
3S〉 = 〈zS |′

2〉
= [αM∗

<(M< − M∗
>) − βM∗

>(M> − M∗
<)]|σ+〉

+ [−αM>(M< − M∗
>) + βM<(M> − M∗

<)]|σ−〉,
(26)

if the measurement yields the singlet state, or

|φ′
3T0

〉 = 〈zT0 |′
2〉

= [αM∗
<(M< − M∗

>) + βM∗
>(M> − M∗

<)]|σ+〉
+ [−αM>(M< − M∗

>) + βM<(M> − M∗
<)]|σ−〉,

(27)

if the triplet state is measured.
We remark on two points. Firstly, if we set M< = 0 in

Eqs. (26) and (27), we obtain

|′
3S〉 = −β|σ+〉 + α|σ−〉, (28)

|′
3T0

〉 = β|σ+〉 + α|σ−〉, (29)

showing a successful valley → photon QST. Again, because of
the finite magnitude of M<, the quantum information appears
to be distorted in the QST, and would cause true fidelity loss
of O(E/�), if the transfer is not coupled with other QSTs.
Secondly, if we combine the results of Eqs. (22), (23), (26),
and (27), it can be shown that the back-to-back QST is highly
faithful, as expressed in the following diagram:

α|KLK′
R〉 + β|K′

LKR〉
→valley to photon α′|σ+〉 + β ′|σ−〉
→photon manipulation −α′|σ+〉 + β ′|σ−〉
→photon to valley α|KLK′

R〉 + β|K′
LKR〉.

(30)

Here, α′ = αM∗
<eiχ − βM∗

>,β ′ = −αM>eiχ + βM<, and
eiχ = (M< − M∗

>)/(M> − M∗
<). In the diagram, we have

assumed that the singlet state is measured in the valley →
photon QST and that the x polarization is measured in the
photon → valley QST. Faithful QST can also be shown with
different results of measurement.

It is worth noting that, given the highly faithful back-to-back
process shown above, a similar but longer process such as
valley → photon → . . . → valley, which involves valley ↔
photon QST for many times, is obviously, in principle, as
faithful as the back-to-back process. That is, the small quantum
distortion occurring in the single step valley ↔ photon QST
does not accumulate along the way. This is an important feature
of the present valley-based approach for quantum memories,
and is also an essential requirement for any quantum memories
employed in long distance QCs. In reality, there are various
factors which affect the yield and fidelity in the QST envisioned
here, such as cavity Q factor and valley state decoherence.
These important issues shall be studied in a separate work.

V. Summary and conclusion

In summary, we have investigated valley pair qubits in
graphene double quantum dots, in the in-plane magnetic field
configuration, and developed a method of qubit manipulation
for this configuration. The method is based on the second-
order relativistic-type effect in gapped graphene involving the
valley-orbit interaction, and is able to operate in the time
scale of O(10 ns). Moreover, the work has also considered
the optical response of graphene quantum dots, in terms of
valley excitation with respect to photonic polarization, and
illustrated faithful quantum state transfers from photon to
valley pair qubits and vice versa. It shows the potential of
graphene quantum dots in photonic quantum communications,
and in particular, the feasibility of implementing graphene-
based quantum memories for quantum repeaters. Along with
the previous exploration in Ref. 5 of valley pair qubits for
quantum computing, it suggests the interesting prospect of
an all-graphene approach for the solid state components of
a quantum network, i.e., quantum computers and quantum
memories in communications.
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APPENDIX A: THE SCHRODINGER-TYPE EQUATION
IN GAPPED GRAPHENE, INCLUDING THE

SECOND-ORDER RC

We derive the Schrodinger-type equation including the
second-order RC, for near-band-edge electrons/holes in
gapped graphene. Below, we consider only the case of
electrons. (The case of holes can be worked out analogously.)
We begin with the Dirac-type equation in the two-band model,(

V − E vF p̂−
vF p̂+ −2� + V − E

)(
ϕA

ϕB

)
= 0.

Here, V is potential energy, E is the electron energy with
respect to the conduction band edge, and p± = px ± ipy . Or,
equivalently,

ϕB = 1

2� + E − V
vF p̂+ϕA. (A1)

H ′ϕA = EϕA, H ′ = vF p̂−

(
1

2� + E − V
vF p̂+

)
+ V,

(A2)

Equation (A1) is the first-order differential equation
corresponding to the second row of the Dirac equation.
Equation (A2) is a second-order differential equation obtained
by combining the two first-order differential equations in the
Dirac equation and is the primitive form of the Schrodinger
equation to be derived.

We expand the energy denominator in Eq. (A2), up to the
order O(E2/�2), giving

H ′ ≈ vF p̂−

{
1

2�

[
1 − E − V

2�
+

(
E − V

2�

)2
]

vF p̂+

}
+ V

= H (0) + H ′(1) + H ′(2). (A3)
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Here,

H (0) = p2/2m∗ + V (m∗ = �/v2
F ) (A4)

deriving from the first term in [. . .] (and V ), and constituting
the “nonrelativistic” part of the “Schrodinger Hamiltonian.”
H (1)’ derives from the second term in [. . .] and constitutes
the first-order RC. It was already given previously5 and listed
below:

H ′(1) = − 1

4m∗�
�pV · �p − 1

4m∗�
�p2V + τv

h̄

4m∗�
∇V × �p.

(A5)

Here, terms underlined are evaluated first. We focus on the
derivation of H (2) (the second-order RC) below.

There are two contributions to H (2)’, with one coming from
the second term in [. . .] in (A3), and the other from the third
term in [. . .]. We denote them as H

(2)
2 and H (2)3, respectively.

We have

H ′(2) = H
′(2)
2 + H

′(2)
3 , (A6)

H
′(2)
2 ϕA = − 1

2m∗ p̂−

(
E − V

2�

)
p̂+ ϕA|second order

= 1

32m∗3�2
�p6ϕA + 1

16m∗2�2
�p2 �p2V ϕA

+ 1

16m∗2�2
�p2 �pV · �pϕA and

− τv

h̄

16m∗2�2
�p2∇V × �pϕA, (A7)

H
′(2)
3 ϕA = 1

8m∗�2
p̂−[(E − V )2p̂+ϕA] = R

(2)
1 + R

(2)
2 ,

R
(2)
1 = 1

16m∗2�2

(
1

2m∗ �p4ϕA + 2 �pV · �pϕA + �p2V ϕA

)
,

R
(2)
2 = 1

8m∗2�2
( �pV · �p �p2ϕA + �p2V

· �p2ϕA − τvh̄∇V × �p �p2ϕA). (A8)

The ith results of Eqs. (A4), (A5), (A7), and (A8), it
would appear that we have finished the derivation of the
Schrodinger equation. However, it can be verified that several
terms of H ′ as given in Eqs. (A5), (A7), and (A8) are not
Hermitian and, hence, H ′ is not Hermitian. This is tied to
the fact that the wave function ϕA used with the above
Schodinger equation is not normalized, being just one of
the two components in the Dirac wave function. This can
be rectified by a similarity transformation as follows. We
introduce the following transformation:

ϕA → ψ = �ϕA, H ′ → H = �H ′�−1,

� = 1 + �(1) + �(2), �(1) = 1

8m∗�
�p2,

�(2) = −9

128m∗2�2
�p4 + τv

h̄

8m∗�2
∇V

× �p − 1

16m∗�2
�p2V.

It can be shown that the transformed wave function
ψ is normalized to the second-order RC. With the above

transformation, we obtain the Schrodinger equation:

Hψ = Eψ, H = H (0) + H (1) + H (2),

H (1) = − �p4

8m∗2�
− 1

8m∗�
�p2V + τv

h̄

4m∗�
∇V × �p,

H (2) = �p6

16m∗3�
− 1

64m∗2�2
�p2V �p2 + 3

64m∗2�2
{ �p2V , �p2}+

+ 1

128m∗2�2
{ �p4,V }+ − τv

3h̄

32m∗2�2
{∇V × �p, �p2}+.

(A9)

In Eq. (A9), it is easy to verify that H (0) and H (1) are both
Hermitian. Moreover, each {. . .}+ in H (2) is the symmetrized
product of two Hermitian operators and, consequently, H (2) is
Hermitian. Altogether, it gives a Hermitian Hamiltonian H .

APPENDIX B: GEOMETRIC PHASE RATE OF CHANGE
(γ0) DUE TO THE ALTERNATING CURRENT ELECTRIC

FIELD-INDUCED VOI-BASED EFFECT

We provide the perturbative evaluation of γ 0 due to the ac
electric field-induced VOI-based effect. According to Sec. III,
the rate of change in the geometric phase [see Eq. (7)] is

γ0(t) = − (∂ty0(t)) 〈ϕ0(x,y)|pyϕ0(x,y)〉,
with y0(t) = 0 in 〈ϕ0|pyϕ0〉. Here,y0(t) = eεy sin wst

m∗w2
0

is the

ac field-induced displacement, and ϕ0 is determined by
the following time-independent Schrodinger-type equation
including up to the second-order RC, derived in Appendix A
and presented in Sec. III:

H |y0=0 ϕ0(x,y) = E0ϕ0(x,y), H = H (0) + V3(x) + H ′,

H ′ = H (1) + H (2), V3(x) = 1

3
k3xm

∗w2
0x

3,

(B1)

H (0)(x,y,t) = �p2

2m∗ + V2(x,y),

V2(x,y) = 1

2
m∗w2

0(x2 + s2y2), (B2)

H (1) = H
(1)
0 + H (1)

τ ,

H (1)
τ = τv

h̄

4m∗�
[∇(V2 + V3)] × �p (first − order VOI),

H
(1)
0 = − �p4

8m∗2�
− 1

8m∗�
( �p2V2) − 1

8m∗�
( �p2V3)

→ H
(1)
02 + H

(1)
03

H
(1)
02 = − p4

8m∗2�
, H

(1)
03 = − 1

8m∗�
( �p2V3), (B3)

H (2) = H
(2)
0 + H (2)

τ ,

H (2)
τ = H

(2)
τ2 + H

(2)
τ3 (second − order VOI),

H
(2)
τ2 = −τv

3h̄

32m∗2�2
[∇V2 × �p �p2 + �p2∇V2 × �p],

H
(2)
τ3 = −τv

3h̄

32m∗2�2
[∇V3 × �p �p2 + �p2∇V3 × �p]. (B4)

Note that in Eq. (3) the term 1
8m∗� ( �p2V2) in H

(1)
0 has been

dropped, being only a constant. According to Sec. III, we
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write

〈ϕ0(x,y)|pyϕ0(x,y)〉 ≈ p(1)
y + p(2,1)

y + p(2,2)
y ∝ τvk3x,

(B5)

which is correct to the second-order RC, where p(1)
y is the first-

order RC and derives from H (1)
τ in the first-order perturbative

treatment of H ′. p(2,1)
y denotes the second-order RC, deriving

from H (1)
τ , in the second-order perturbative treatment of H ′.

p(2,2)
y denotes the second-order RC, deriving from H (2)

τ , in the
first-order perturbative treatment of H ′. We calculate the three
foregoing momentum matrix elements below.

Firstly, we show that p(1)
y = 0. Because p(1)

y is first order in
RC, it simplifies by writing

p(1)
y = 〈ϕ′

0|pyϕ
′
0〉,(H (0) + V3 + H

(1)
0 + H (1)

τ )ϕ′
0 = E′

0ϕ
′
0,

where ϕ0 in p(1)
y has been replaced by ϕ′

0, the ground-state
solution correct only to the first-order RC. Note that it suffices
to evaluate ϕ0’ here with the first-order perturbation theory
treating H

(1)
0 and H (1)

τ as the perturbation.
Since p(1)

y ∝ τv , only the perturbative correction due to H (1)
τ

contributes to p(1)
y . We thus drop H0

(1) in the Schrodinger
equation and rewrite

p(1)
y = 〈ϕ′

0|pyϕ
′
0〉,(H (0) + V3 + H (1)

τ )ϕ′
0 = E′

0ϕ
′
0.

(The same notation ϕ′
0 shall be used repeatedly where it

causes no confusion.) Applying Ehrenfest’s theorem to the
following expectation value involving the last ϕ′

0,

0 = d〈ϕ′
0|y|ϕ′

0〉
dt

= − i

h̄
〈ϕ′

0|
(
y,H (0) + V3 + H (1)

τ

) |ϕ′
0〉,

we obtain

p(1)
y = −τv

h̄

4�
〈ϕ′

0|∂xV23|ϕ′
0〉,

where V23 = V2 + V3. The above procedure has extracted out
an order of RC and provided a new expression of expectation
value (〈ϕ′

0|∂xV23|ϕ′
0〉 here), which can be evaluated at a lower

order of RC. With this, we can further simplify p(1)
y , while still

keeping it correct to the first-order RC, by writing

p(1)
y = −τv

h̄

4�
〈ϕ′

0|∂xV23|ϕ′
0〉,(H (0) + V3)ϕ′

0 = E′
0ϕ

′
0,

where the wave equation now includes no RC at all. Then,
applying again Ehrenfest’s theorem,

0 = d〈ϕ′
0|px|ϕ′

0〉
dt

= − i

h̄
〈ϕ′

0|[px,H
(0) + V3|ϕ′

0〉,
one obtains

p(1)
y ∝ 〈ϕ′

0|∂xV23|ϕ′
0〉 = 0.

With p(1)
y = 0 as just shown, we rewrite Eq. (B5),

〈ϕ0(x,y)|pyϕ0(x,y)〉 ≈ p(2,1)
y + p(2,2)

y ∝ τvk3x

(
h̄w0

�

)2

,

(B6)

expressing explicitly that the momentum matrix element and,
hence, γ 0 as well are finite only at the second-order RC.

Before we move on to calculate the momentum matrix
elements remaining in Eq. (B6), we summarize the useful

trick employed above in the derivation of p(1)
y , since it is to

be utilized again in the evaluation of these matrix elements.
Namely, we utilize Ehrenfest’s theorem to extract out τ v , k3x ,
and the order of RC as well, from the expectation value being
evaluated, and then proceed with the perturbation theory at a
lower order to calculate the new expectation value appearing
after the extraction.

We calculate p(2,1)
y in Eq. (B6) now. Because p(2,1)

y derives
from H (1)

τ , in the second-order perturbative treatment of H ′
(or, rather, the part of H (1) only), we write

p(2,1)
y = 〈ϕ′

0|py |ϕ′
0〉,(H (0) + V3 + H (1))ϕ′

0 = E′
0ϕ

′
0.

In addition, being linear in k3x , p(2,1)
y is first order in V3.

Altogether, the calculation of p(2,1)
y would be a third-order per-

turbative treatment, if one calculates p(2,1)
y straightforwardly

using the eigenstates of H0 (which are harmonic oscillator
wave functions) and treating both V3 and H (1) as perturbations.
We have evaluated p(2,1)

y in this lengthy way. On the other
hand, an alternative calculation has been developed which
agrees with the lengthy one but reduces the treatment to
a second-order perturbative calculation, based on the trick
summarized earlier. Below, we present the second method.
We apply the trick and write

〈ϕ′
0|py |ϕ′

0〉 (Ehrenfest′s theorem : 0 = d〈ϕ′
0|y|ϕ′

0〉
dt

= −m∗

ih̄
〈ϕ′

0|[y,H (1)]|ϕ′
0〉 = 〈ϕ′

0|[y,H(0) + V3 + H(1)]|ϕ′
0〉.)

= −m∗〈ϕ′
0|∂py

H (1)|ϕ′
0〉 = p

(2,1)
3 + p(2,1)

τ + p
(2,1)
0 ,

p
(2,1)
3 = −m∗〈ϕ′

0|∂py
H

(1)
03 |ϕ′

0〉 = 0,

p(2,1)
τ = −m∗〈ϕ′

0|∂py
H (1)

τ |ϕ′
0〉 = −τv

h̄

4�
〈ϕ′

0|∂xV23|ϕ′
0〉,

p
(2,1)
2 = −m∗〈ϕ′

0|∂py
H

(1)
02 |ϕ′

0〉. (B7)

We focus now on the last two matrix elements introduced
in Eq. (B7). Firstly, we reduce p(2,1)

τ by writing

p(2,1)
τ = −τv

h̄

4�
〈ϕ′

0|∂xV23|ϕ′
0〉,

(H (0) + V3 + H
(1)
02 + H

(1)
03 )ϕ′

0 = E′
0ϕ

′
0.

Utilizing Ehrenfest’s theorem, we have

p(2,1)
τ = −τv

h̄

4�
〈ϕ′

0|∂xV23|ϕ′
0〉

= τv

h̄

4�
〈ϕ′

0|∂xH
(1)
03 |ϕ′

0〉 = −τv

h̄

16

h̄2w2
0

�2
k3x. (B8)

We turn to the calculation of p
(2,1)
2 in Eq. (B7). We start by

reducing p
(2,1)
2 ,

p
(2,1)
2 = −m∗〈ϕ′

0|∂py
H

(1)
02 |ϕ′

0〉,
(H (0) + V3 + H (1)

τ
)ϕ′

0 = E′
0ϕ

′
0.

Note that ϕ0’ here needs to be evaluated only to the second
order in the perturbation V3 + H (1)

τ . This can be carried out,
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yielding

p
(2,1)
2 = −τv

s

64

[
−2 − 16

3(s + 1)
+ 50

3(s + 2)

]
h̄
h̄2w2

0

�2
k3x.

(B9)

Collecting the results in Eqs. (B7)–(B9), we obtain

p(2,1)
y = −τv

s

64

[
−2 + 4

s
− 16

3(s + 1)
+ 50

3(s + 2)

]
h̄
h̄2w2

0

�2
k3x.

(B10)

Last, we evaluate py
(2,2) in Eq. (B6). Because it derives

from Hτ
(2) in the first-order perturbative treatment of H ′, we

write

p(2,2)
y = 〈ϕ′

0|py |ϕ′
0〉,(H (0) + V3 + H (2)

τ )ϕ′
0 = E′

0ϕ
′
0.

Utilizing Ehrenfest’s theorem, we write

p(2,2)
y = −m∗〈ϕ′

0|∂py
H (2)

τ |ϕ′
0〉 = p

(2,2)
2 + p

(2,2)
3 ,

p
(2,2)
2 = −m∗〈ϕ′

02|∂py
H

(2)
τ2 |ϕ′′

02〉,
(H (0) + V3)ϕ′

02 = E′
02ϕ

′
02,

p
(2,2)
3 = −m∗〈ϕ′

03|∂py
H

(2)
τ3 |ϕ′

03〉,
H (0)ϕ′

03 = E′
03ϕ

′
03. (B11)

Two matrix elements, p2
(2,2) and p3

(2,2), have been in-
troduced here. p2

(2,2) can be calculated with ϕ02’ evaluated
perturbatively to the first order of V3, yielding

p
(2,2)
2 = τv

(9s + 1)

64
h̄
h̄2w2

0

�2
k3x. (B12)

As for p3
(2,2), with ϕ03’ being the ground-state harmonic

oscillator wave function, it can be calculated straightforwardly,
yielding

p
(2,2)
3 = −τv

3(3s − 1)

64
h̄
h̄2w2

0

�2
k3x. (B13)

Collecting the results in Eqs. (B11)–(B13), we obtain

p(2,2)
y = τv

1

16
h̄
h̄2w2

0

�2
k3x. (B14)

In summary, we have derived and listed in Eqs. (B6), (B10),
and (B14) all the momentum matrix elements appearing in
Eq. (7) for the evaluation of the geometric phase rate of change
(γ 0).

APPENDIX C: COHERENCE TIME OF VALLEY PAIR
QUBIT IN THE IN-PLANE MAGNETIC FIELD

CONFIGURATION

We estimate the coherence time of valley pair qubits. In
the absence of a normal magnetic field, the valley states are
degenerate, and the qubit decoherence derives primarily from
the elastic intervalley scattering K ↔ K′ in each QD. Accord-
ingly, the coherence time is determined by the following valley
flip rate:

h̄

τK↔K′
≈ O(VK↔K′ ). (C1)

Here, τK↔K ′ is the valley flip time and

VK↔K′ = intervalleycoupling = 〈KD|VQD|K′
D〉, (C2)

KD and KD’ being the quantized valley states in the QD. We
write

|KD〉 = φK(�r)ei �K·�ruK, |KD〉 = φK′(�r)ei �K ′ ·�ruK′ , (C3)

where φK and φK′ are envelope functions, and uK and uK′

are the Bloch cell-periodic functions at K and K′ points,
respectively. Equations (C1) and (C2) show that τK↔K′ depends
on the profile of VQD, which provides in the intervalley
scattering the large wave vector difference (δk) between |KD〉
and |K′

D〉 [with δk ∼ O(|K − K′|) ∼ O(A−1)].
In the following, we consider the regime where δk L � 1

(L = QD size) and estimate VK↔K′ in Eq. (C2) with three
profiles of VQD. We take L (QD size) ∼300 Å and potential
depth V0 ∼ 0.1 eV, for typical applications of valley pair
qubits.5 We employ the following approximation:

VK↔K′ = 〈K′
D|VQD|KD〉 ≈ O

(
1

L2

∫
r�L

VQD(�r)e−iδk·�rd2r

)
,

−→
δk = EK − EK′, (C4)

where the envelope functions φK and φK′ in Eq. (C4) are taken
approximately to be constant for r < L and zero for r > L.
Equation (C4) is basically the Fourier transform of VQD at δk
and suffices for the order-of-magnitude estimate of VK↔K′ .

Firstly, we consider (a) an ideal square well, with barrier
height V0. This is the worst case scenario, since the abrupt
change in the potential leads to sizable Fourier components at
large wave vectors and causes frequent intervalley scattering,
resulting in short τK↔K′ . A brief dimensional analysis with
Eq. (C4) in the case shows that

VK↔K′ ≈ O

[
V0

(Lδk)2

]
≈ O(μeV) or τK↔K′ ≈ O(10ns).

(C5)

The coherence time is close to the time needed for VOI-based
manipulation of qubits [∼O(10 ns)].

Next, we consider (b) a realistic square well, with
a transition region between well and barrier. For the
convenience of analysis, we simulate VQD in this
case with a factorizable form, such that the integral
in (C-4) can be decomposed into the product of
two independent one-dimensional integrals. We take
VQD = V1/2(x)V1/2(y),V1/2(x) = (V0)1/2 for −L′ < x < L′;
V1/2(x) = (V0)1/2(x + L)/(L−L′) for −L<x <−L′; V (x) =
(V0)1/2(L − x)/(L − L′), for L′ < x < L; and V (x) = 0
elsewhere. V1/2(y) = −V1/2(x)|x→y . We also take
O(L′) ∼ O(L) and the transition layer thickness
δL(= L − L′) ∼ 0.1L. With this factorizable potential,
we obtain

VK↔K′ = −(V 1/2)2, V 1/2 = O

[
1

L

∫ L

−L

V1/2(x)e−iδk·xx̂dx

]
.
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Analysis of the one-dimensional integral appearing here
gives

V 1/2 ≈ O

[
V

1/2
0

(Lδk)(δLδk)

]
,

VK↔K′ ≈ O

[
V0

(Lδk)2(δLδk)2

]
≈ O(1neV),

or τK↔K′ ≈ O(0.5μs). (C6)

The valley flip time here is long enough for qubit manipulation.

Last, we consider (c) a parabolic potential, VQD =
1/2m

∗w2
0r

2, with h̄w0 ∼ O (V0). In this case, we obtain

VK↔K′ ≈ O

[
V0

(Lδk)4

]
≈ O(0.01neV) or τK↔K′ ≈ O(50μs).

(C7)

It provides a very long coherence time for the qubit
manipulation. Comparing the results in Eqs. (C5)–(C7), we
see that the qubit coherence time can be increased significantly
with a QD profile engineering that is able to create a smooth
QD confinement potential.
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