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Friction model for single-asperity elastic-plastic contacts
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In this article, we present an analytical model that describes the plowing coefficient of friction for sliding,
elastic-plastic contacts between a conical tip with a spherical extremity and a flat substrate. The model includes the
effects of adhesion and bridges the gap between models which are based solely on dislocation activity and those
based solely on interfacial effects scaling with the contact area. The Derjaguin-Muller-Toporov approximation
for adhesive contact stress is used in our description of the contacts. Our model shows excellent agreement
with large-scale molecular dynamics simulations and atomic force microscopy experiments of nanoscratching on
copper single crystals. One important result of our study is that the model predicts coefficients of friction that are
an order of magnitude higher than typically reported for nanoscale elastic contacts. Furthermore, the coefficients
of friction described by the model are very close to values typical of macroscale sliding contacts.
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I. INTRODUCTION

With the reductionin size of electronic devicesto nanometer
regime, factors such as the increased adhesive interactions,
atomic-scale corrugation, and limitedapplicability of contin-
uum mechanics approaches limit our ability to design new
devices for predictably reliable operation.1 For example,
single-asperity, nanometer-scale friction experiments in the ab-
sence of wear typically show very low friction coefficients.1–3

However, the typical wearless friction coefficients reported
in multiasperity, large-scale sliding experiments are approxi-
mately one order of magnitude higher.4 Interestingly, Bowden
himself suggested that even in the so-called “wearless” regime
in multiasperity sliding experiments, microscopic damage and
plasticity occurs at the length scale of individual asperities.5

However, relatively few studies have focused on the under-
standing of friction in single-asperity sliding contacts when
wear is observed. For such contacts, it has been shown by both
molecular dynamics (MD) simulations6,7 and experiments8,9

that friction forces and specific mechanisms of deformation
are strongly dependent on tip geometry and crystallographic
orientation of the sample surface and sliding direction. At
relatively low loads, wear can occur by removal of individual
atoms from the surface, and atom-by-atom attrition models
have been proposed to explain atomic force microscopy (AFM)
experiments in this early stage of wear.10 While these studies
provide useful insights into friction and wear mechanisms at
very low normal loads, they do not address the question of how
to quantify contributions from plastic deformation to friction
in single-asperity contacts. Fundamental understanding of
single-asperity friction for nanoscale elastic-plastic contacts is
also required for promising nanolithography techniques using
AFM.11 In addition, with the reduction of contact sizes to the
nanometer length scale, adhesive forces between the tip and
sample begin to play an increasingly important role.1 However,
there are currently a lack of analytical models for elastic-plastic
contacts that can describe the interplay between adhesion and
plastic deformation at the sliding interface. Development of
such models and understanding of the underlying phenomena
are at the forefront of tribological research.

There are two general approaches to modeling friction in
the elastic-plastic regime: one based on subsurface dislocation
activity12,13 and the other based on the interfacial contact
area.14,15 Although it is possible to identify the specific
mechanisms of dislocation activity during single-asperity
sliding,16–18 the contact-area-based approaches are particularly
powerful because they are based on geometry of the tip-
sample interface and therefore do not require knowledge of
mechanisms underlying friction, which can be complicated
and are material specific.

In the contact-area-based approach, the total coefficient of
friction (μtotal) is decomposed into two components: shear
(μS) and plowing (μP).14,15 The shear contribution is related to
surface chemistry, whereas the plowing contribution is related
to plastic deformation of the sample. In this paper, we present
an analytical model for predicting the plowing coefficient
of friction for sliding, elastic-plastic contacts that includes
adhesive interactions across the sliding interface and a tip
geometry that closely matches the typical shape of tips used
in AFM experiments. This model is based on our recently
developed formalism for the plowing coefficient of friction
for nonadhesive contacts between a spherical asperity and a
flat substrate.19 Here, we first present the derivation of the
analytical model by calculating friction forces and normal
loads during sliding with elastic and plastic deformation
in Sec. II. We have performed MD simulations and AFM
experiments to compare with the analytical model; the methods
are described in Sec. III. The analytical model is then validated
against MD simulations and AFM scratching experiments on
single-crystal copper samples in Sec. IV.

II. DERIVATION OF THE ANALYTICAL
PLOWING MODEL

For nonadhesive contacts, the plowing friction force and
normal load for a spherical asperity sliding on a flat surface
can be calculated as19

Ffriction P = pmAVtotal, (1)

Fnormal = pmAHtotal, (2)
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FIG. 1. (Color online) Schematic showing (a) the tip-sample
contact interface, (b) vertical projections of contact areas, and (c),
(d) horizontal projections of contact area without and with adhesion,
respectively.

with

AVtotal = AVep + αVAVpileup, (3)

AHtotal = AHep + αHAHpileup. (4)

where AVep and AHep, respectively, are the vertical and horizon-
tal projections of the contact area with elastic recovery and no
pileup. Correspondingly, AVpileup and AHpileup are the vertical
and horizontal projections of the pileup area. Parameters
αH and αV, respectively, are prefactors for horizontal and
vertical projections of the pileup contact area and represent
the distribution of radial stress at the pileup/tip interface.19 pm

is the mean contact pressure at the tip-sample interface. This
pressure is approximated as being equal to the hardness of the
sample for elastic-plastic contacts since the model explicitly
assumes that plasticity in the contact is well developed. AVep,
AHep, AVpileup, and AHpileup are calculated analytically using
the geometry of tip-sample interface and are schematically
shown in Figs. 1(a)–1(d).

The contact area projections Eqs. (3) and (4) are calculated
using two physical parameters: elastic recovery and height of
pileup. The elastic-recovery parameter represents the change
in the contact area projections due to recovery of the elastic
component of deformation in the back of the sliding tip. The
height of the pileup represents the contribution to the contact
area projections from the material displaced to the front of
the sliding tip. For a detailed derivation of the contributions
from these two parameters, see Ref. 19. For calculation of the
tip-pileup contact area, the height of the pileup is approximated
as

hpileup = γ h

(
AVep

AVp

)
, (5)

where h is the depth of cut, γ is a fitting parameter, AVep is
the vertical projection of contact area with elastic recovery,
and AVp is the vertical projection of contact area assuming no
elastic recovery. γ represents the shape of pileup distribution
around the sliding tip. Analytical expressions for the contact

area projections for a conical tip with a spherical extremity are
provided in the Appendix.

We estimate the adhesive interactions between the tip and
sample using the Derjaguin-Muller-Toporov (DMT) model.20

The DMT model assumes that adhesive forces only act
in a ring-shaped region outside the actual contact area
and the adhesive contact stress is given by the Dugdale
approximation21

σ0 = w

h0
, (6)

where w is the work of adhesion and h0 is the range of
adhesive interactions. The Dugdale approximation assumes
a state of constant adhesive stress over a cutoff length h0

at the gap between a contacting asperity and a flat surface.
Figure 1(d) shows the additional ring-shaped region on the
horizontal contact area projection due to adhesive stresses.
The area of adhesive zone Aadh can be calculated based on
geometry of the contact, and a derivation of an analytical
expression is provided in Appendix. The work of adhesion
w used in our model was measured in AFM experiments and
nanoindentation simulations. Specifically, the pull-off force
measured during unloading during a normal force versus
sample displacement measurement is related to the work of
adhesion through

Fpull-off = −2πwR, (7)

where R is the radius of spherical extremity of the conical
tip. The range of adhesive interactions used in the Dugdale
approximation h0 is determined again from nanoindentation
simulations by subtracting the tip displacement at zero load
from the tip displacement at pull-off during retraction. Once
w and h0 are known, adhesive stress σ0 is calculated using
Eq. (6). Using the adhesive stress σ0 and area of the adhesive
zone Aadh, the total normal load acting on the sliding tip can
be written as22,23

Fnormal-adh = pmAHtotal − σ0Aadh. (8)

The plowing coefficient of sliding friction is then calculated
as

μP = Ffriction P

Fnormal-adh
, (9)

where Ffriction P and Fnormal-adh are given by Eqs. (1) and (8),
respectively.

III. METHODS

A. MD simulations

In order to validate our model, we performed large-scale
MD simulations of single-asperity sliding on single-crystal
copper samples. MD is an excellent tool for testing of the
model as the model parameters, such as work of adhesion,
can be explicitly specified for the tip-sample interface. Also,
by calculating the atomic stress distributions on the tip-
sample contact area, plowing contributions to friction can
be calculated explicitly and compared to predictions of the
analytical model. The interaction potential for Cu is taken
from Finnis and Sinclair.24
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FIG. 2. (Color online) Sliding tip used in (a) simulations and (b)
experiments.

Simulations of sliding friction were performed on (110)
surface of single-crystal copper using a conical tip with
spherical asperity as shown in Fig. 2(a). The conical half angle
is 12◦ and the radius of spherical extremity R = 10 nm. The tip
is made infinitely rigid and the Cu sample has the dimensions
390 × 350 × 400 Å3. Sliding velocity of 50 m/s is used and
the temperature of the system is maintained at 300 K using
Nose-Hoover thermostat.25 Simulations were carried out at
eight different depths of cut in the range 0.2–3.5 nm. Depth
of cut is defined as the distance between the lowest atom in
the tip and the average height of the sample surface before
deformation.

The pairwise interactions across the tip-sample interface
are given by

Uinterface = S
e−κr

r
− A

r6
, (10)

where Uinterface is the interaction energy for atoms interacting
across the tip-sample interface and r is the distance between
interacting atoms. The first term in Eq. (10) represents
repulsive interactions where S and κ , respectively, control the
magnitude of repulsion and the decay of repulsive interactions.
Values of S = 1000 eV Å and κ = 3.0 are taken from the
study of nonadhesive sliding contacts on Cu.19 This functional
form of repulsive interactions is not unique and it was chosen
for computational efficiency. The second term in Eq. (10)
represents adhesive interactions where A is the coefficient
for adhesive van der Waals forces. Several simulations of
nanoindentation on the Cu sample were performed by varying
the parameters for adhesive interactions in Eq. (10). The largest
value of work of adhesion obtained from the nanoindentation
simulations is w = 1.9 J/m2 when the interaction parameter
for adhesion A = 70 eV Å6. These values of parameters
then determined the tip-sample interactions during sliding
simulations.

To calculate the work of adhesion, separate simulations of
nanoindentation were performed. The work of adhesion w is
calculated by fitting the normal load (Fn) and contact radius
(a) from nanoindentation simulations to the expression20

Fn = 4Era
3

3R
− 2πRw, (11)

where R is the radius of the spherical extremity of the conical
tip. Er is the reduced Young’s modulus for the interface given
by the relation 1/Er = (1 − ν2

s )/Es + (1 − ν2
t )/Et, where Es

and Et are the Young’s moduli for the sample and the tip,
respectively. νs and νt represent Poisson’s ratios for the sample
and tip, respectively. Work of adhesion is w = 1.9 J/m2, as

FIG. 3. (Color online) Schematic showing the tip-sample inter-
face with the distribution of radial stress σrr along with the adhesive
interaction range h0. The area element shows the atomic stress tensor
on the contact area in the spherical coordinate system. The solid
lines show the bounds of interaction without the adhesive forces. The
dashed lines show the adhesive interaction forces acting outside the
tip-sample contact interface.

obtained from nanoindentation simulations, and is used to
obtain adhesive stress (σ0) using Eq. (6).

The plowing components of friction force and normal load
during sliding are calculated directly based on the distribution
of stresses on the contact area in simulations. First, the stress
tensor on the contact surface is calculated in the Cartesian xyz

coordinate system. The tensor is then transformed to spherical
rθφ coordinate system with the origin at the center of the
spherical extremity of the sliding tip, as shown in Fig. 3. In the
spherical coordinate system, contact stresses on the tip-sample
contact area are radial component σrr, which is perpendicular
to the contact interface and shear components τrθ and τrφ ,
which are tangential to the contact interface. The plowing
friction force Ffriction P is calculated by projecting the radial
force Frr onto the cutting direction, where Frr is obtained by
integrating σrr over the entire contact area. The normal load
(Fn) is calculated by projecting Frr along the direction normal
to the undeformed sample surface. The plowing coefficient of
friction μP is then calculated as the ratio of the plowing friction
force and the plowing normal load.

For calculation of shear friction force Ffs, the shear friction
force Fs is projected along the cutting direction where Fs is
calculated as the vector sum of forces obtained by separately
integrating the two shear stresses τrθ and τrφ over the entire
contact area. The shear coefficient of friction μs is calculated
as the ratio of the shear friction force and normal load.

B. AFM scratching experiments

To test the applicability of our analytical model for AFM
experiments of elastic-plastic sliding friction and wear, we
perform wear experiments on oxide-free surfaces of a Cu(100)
single crystal using an AFM in ultrahigh vacuum (UHV).
A diamond-coated AFM tip is used for scratching along the
[100] direction at a velocity of 150 nm/s. A home-built UHV-
AFM was used for all experiments discussed in this paper.26

The AFM operates inside of a commercial UHV chamber
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produced by Omicron Nanotechnology and is maintained
at a pressure of <2 × 10−10 mbar. Atomically flat Cu(100)
surfaces were prepared in the UHV chamber by repeated cycles
of argon-ion sputtering (1 keV) and annealing (725 K) of a
polished (100) face of a Cu single crystal (MaTecK GmbH).
The cleaning process resulted in flat terraces up to several
100 nm in width. A stiff, nanocrystalline diamond-coated lever
with integrated tip (Nanosensors, CDT-NCLR, normal spring
constant ∼20–40 N/m) was used in all experiments. These
tips, once introduced into the vacuum, were heated at 120 ◦C
for 1 h and then sputtered for 1 min with Ar+ ions at 1 keV.
The stiffness of the cantilevers in both the lateral (twisting)
and normal (bending) directions were individually determined
by the beam geometry method,27 using the resonant frequency
of the first normal bending mode to determine the thickness
of the cantilever. Wear scars were created by pressing the
cantilever into the surface at constant load. The tip was then
moved along the surface, perpendicular to the long axis of
the cantilever, for one line in both the forward and reverse
directions. The static bending and twisting signals of the
cantilever were measured at a frequency of 8 kHz during
scratching. The zero-load force was defined as the deflection
measured by the position sensitive detector (PSD) when the tip
was out of contact and the cantilever was not bent. Adhesive
loads are then a result of the cantilever bending towards the
surface, yielding a negative normal force, and compressive
loads are a result of the cantilever being pushed away from
the surface, yielding a positive normal force. Lateral forces
are defined as the measured twisting of the cantilever during
an experiment. Friction force is defined as the average of the
lateral force over forward and backward scans. The surface
topography was examined before and after the creation of a
wear scar using the noncontact/frequency modulation mode.28

Switching between noncontact AFM for imaging and contact
mode for wear production was automated, such that the rest
time of the tip at the beginning and end points of the scratching
experiment was minimized. This technique is described in
Ref. 18. During scratching, the sample was moved in the
direction parallel to the cantilever beam using the scheme
discussed by Cannara et al. to remove displacements of the tip
relative to the surface with changes in the normal force.29 This
displacement is a result of the 12◦ angle of the long axis of
the cantilever with respect to the sample. AFM images were
analyzed with the WSXM software.30

IV. RESULTS

A. Simulation results

Figure 4 shows the coefficients of friction determined from
sliding simulations. The plowing coefficients of friction from
our analytical model (solid line) are calculated using spherical
tip radius R = 10 nm, conical half angle α = 12◦, work
of adhesion w = 1.9 J/m2, hardness of Cu H = 5.2 GPa,
and a range of adhesive interactions h0 = 0.3 nm. The
specific value of hardness is measured directly from MD
and it is determined by the details of MD force field.24

The excellent agreement between the analytical model and
simulation results for plowing coefficients of friction (Fig. 4)
demonstrates the validity of our analytical model for single-

FIG. 4. (Color online) Coefficient of friction as a function of
normal load from simulations. Total coefficients of friction (circles)
and plowing coefficients of friction (triangles) are shown along with
results from analytical model (solid line).

asperity adhesive contacts. It is interesting to note from
Fig. 4 that for normal loads higher than a critical load
(Fn > 160 nN), plowing is the dominant contribution to total
coefficient of friction and μshear � μP. Specifically, we found
that for Fn > 160 nN, μshear = 0.046 ± 0.02. This value for
shear coefficient of friction will be used later to compare
with experimental results from AFM nanoscratching, where
plowing and shear contributions to the coefficient of friction
can not be calculated separately. For normal loads below the
critical load (Fn < 160 nN), deformation is primarily elastic
with a small contribution from plastic deformation and thus the
plowing model, which assumes plasticity to be fully developed,
shows deviations from the simulation results for the plowing
coefficient of friction.

B. Experimental results

Figure 5(a) shows the surface approximately 12 h after
sputter cleaning the surface. Flat terraces of several 100 nm can
be clearly observed, where individual terraces are separated
in height by one atomic layer, or 1.8 Å. A white arrow
marks a reference topographic feature on the surface located
on a large terrace. This area was chosen as the scratching
site due to the low number of defects on this terrace and
the large atomically flat area. Following scratching, a wear
scar is observed in Fig. 5(b), as well as the same reference
topographic feature, highlighted by the white arrow. At the
site where the surface has been scratched, copper has been
displaced. In the copper terraces surrounding the scratch site,
no change in any of the topographic features has occurred.
Therefore, it is likely that subsurface dislocations have been
nucleated, but they have not reached the surface, and are
therefore not visible in topographic images of the scratch.
This result is in contrast to AFM-based indentation studies on
Cu(100) (Ref. 31) and nanoscratching studies of KBr(100),18

where topographic evidence of dislocation activity has been
shown. The lateral force measured during scratching is shown
in Fig. 5(c), indicating its significant frictional dissipation. The
friction coefficient measured in Fig. 5(c) was 0.42 ± 0.06, in
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(a) (b)

(c)

FIG. 5. (Color online) AFM topographic images of the Cu(100)
surface (a) directly before scratching and (b) after with the same
Z-height scale. The scratch shown in (b) corresponds to the lowest
normal load, which is 78 nN. Images (a) and (b) were acquired
at a rotation angle of 90◦ to better acquire the topographic image
of the scratch, and have been rotated back to 0◦ in the processed
image shown here. An arrow is pointing to a surface defect near the
beginning point of the scratch in both the before and after images. The
step height between each atomic terrace represents a single atomic
step or 1.8 Å. (c) Lateral force data in the forward (left to right) and
reverse (right to left) sliding directions acquired during scratching.

contrast to the result of Gosvami et al., who measured a friction
coefficient on Cu(100) of 0.004 ± 0.001 before the onset of
wear.32

C. Comparison between experiment and simulation

Figure 6 shows the results of both the AFM scratch
experiments and the analytical model. For the model, we use
R = 12 nm and the AFM conical half angle α = 22◦, measured
from tip images acquired in the scanning electron microscope.
A work of adhesion of w = 3.1 J/m2 is calculated using the
DMT model based on the pull-off force measured in AFM
experiments. Hardness of Cu is taken as H = 3.5 GPa (Ref. 33)
and range of adhesive interactions is h0 = 0.3 nm (the same as
in MD simulations). The total coefficients of friction calculated
from experiments (squares) show an excellent agreement with
our analytical model. It should be noted that the experimental
Cu samples have a lower hardness value than used in the
MD simulations. Consequently, plasticity is well developed
at lower normal loads, where the the MD simulations begin
to deviate. As a result, the analytical model shows agreement
with experimental results even for low normal loads.

Further comparison between simulation and experiment
scratching experiments is provided in Fig. 7. Figures 7(a)
and 7(c) show the surface topography in simulation and
experiment after scratching. Both scratches are performed
at similar normal loads, and show a similar scratch grove
width. Furthermore, the overall shape of the scratch and the
pileup surrounding the scratch is similar in both simulation
and experiment. Closer examination of Figs. 7(b) and 7(d)
show that the depth of the scratch in the experimental results

FIG. 6. (Color online) Total coefficient of friction (filled squares)
from AFM experiments plotted as a function of normal load during
sliding. Also shown are plowing (dashed line) and total (solid line)
coefficients of friction calculated using the model with work of
adhesion = 3.1 J/m2. Shear coefficient of friction is assumed to be
0.05 as calculated from simulations for normal load in the range
160–730 nN. Error bars in the experimental results indicate the
standard deviation of the measured mean friction.

is smaller. One complication of the experimental multimode
approach is determining the scratch depth since the same tip
was used to both scratch the surface and then subsequently
image the scratch. A result of this procedure, there is a
strong tip convolution in topographic images when imaging the
scratched region. In addition, the long-range attractive forces
measured in noncontact AFM imaging28 further complicate
image reconstruction and limit the accuracy of the scratch
depth measurement. The tip convolution effect leads to
an underestimation of the scratch depth and, consequently,
experimental images provide a lower bound for the scratch
depth. On the other hand, the experimental procedure used
in this study provides a good estimate of the pileup height

(a) (b)

(d)

4nm 
4 nm

(c)

FIG. 7. (Color online) Topographic image of a simulated scratch
(a) on copper. In (a), the surface was scratched at a normal load
of 658 nN. A profile (b) of the section marked by the dashed line
in (a) shows in more detail the depth of the scratch. Experimental
topographic image (c) of a scratch. In (c), the surface was scratched
at a normal load of 587 nN. (d) Line profile of the topographic image
indicated with a black line in (c) with the same scale as (b).
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surrounding the scratch. It is therefore somewhat surprising
that pileup height calculated from experiments and MD exhibit
deviations, as shown in Figs. 7(b) and 7(d). Specifically,
the simulation results show a pileup height of 3–4 copper
atoms (or 5.4–7.2 Å) compared to the typical pileup of
1–2 atoms (1.8–3.6 Å) in experiment. A possible source of
the discrepancy in pileup height may stem from the different
time scales involved in AFM experiments and MD simulations.
In AFM, topographic images are acquired on the time scales
of hours after the scratch has been performed, and in this case
∼0.5 h for the first image to be acquired. It has been reported
that on these time scales a significant diffusion of evaporated
copper atoms on copper surfaces is expected.34 It is likely
that similar high-diffusion rates of the copper atoms in the
pileup may occur after scratching. However, in simulation, the
topographic images are acquired within 25–30 ps of scratching
the site. At this time scale, there is not sufficient time for
diffusion processes to occur. The effect of diffusion is further
visible in the comparison between simulation and experiment
as the pileup in experiments typically extends further laterally
from the scratch site itself in comparison with the simulated
scratch.

V. DISCUSSION

The comparison with experimental and MD results demon-
strates that our analytical model for single-asperity elastic-
plastic sliding can describe the coefficient of plowing friction
in presence of adhesion. It is interesting to note that the
position of the minimum in the μP versus Fn plot (Fig. 6) is
controlled by relative contributions to friction from adhesive
and plowing forces. In the DMT theory,20 used to describe
adhesive interactions in our model, the adhesive zone is a
ring-shaped area outside the tip-sample contact area. As the
normal load decreases, the area of the adhesive zone becomes
larger relative to the total horizontal contact area, and adhesive
forces dominate the contribution to μP. At larger loads, an
increase in the pileup height increases the contribution to
friction from deformation, which eventually becomes the
dominant contribution to μP. Since adhesion controls μP

at low loads, a large value of work of adhesion will shift
the minima to larger loads. This observation is consistent
with our results (Figs. 4 and 6) where a higher value of
work of adhesion in experiments shifts the minima in the
μP versus Fn plot towards higher normal loads as compared
to simulations.

In order to include the effects of pileup and adhesive
interactions on coefficient of friction, the analytical model
introduces two parameters: γ [Eq. (5)] and h0 [Eq. (6)]. The
fitting parameter (γ ) represents the shape of the pileup in
contact with the sliding tip. A large value of γ is obtained
when a significant fraction of the displaced material is in front
of the sliding tip, whereas a small value of γ is obtained when
a large fraction of the displaced material moves to the side
of the sliding tip.19 Thus, γ is a material-specific parameter
and is also dependent on the direction of sliding on crystalline
surfaces.19

The agreement of the analytical model with the experi-
mental results is independent of the choice of the model
parameter h0. The range of adhesive interactions h0 determines

FIG. 8. (Color online) Results of the analytical model for three
different values of h0 along with the results from AFM experiments.
Work of adhesion w = 3.1 J/m2 is used for all three cases.

the adhesive stresses and the area of adhesive zone [given by
Eq. (6)]. A larger value of h0 increases the area of adhesive
contact and decreases the adhesive stress. Thus, the choice of
h0 has a small effect on the final results of the model for a
given work of adhesion value as shown in Fig. 8.

An important observation from Figs. 4 and 6 is that
the coefficients of friction for single-asperity elastic-plastic
contacts are an order of magnitude higher than for elastic
contacts on Cu.3 This increase in the coefficient of friction
due to plastic deformation and wear observed in experiments
confirms findings from our simulations that μS � μP. Inter-
estingly, in the presence of plastic deformation and wear, the
nanoscale coefficients of friction for Cu are comparable to
values typical of macroscale contacts (0.4–0.9).35,36

VI. CONCLUSIONS

We have developed an analytical model for elastic-plastic
friction in the presence of adhesion and for parameters relevant
to AFM experiments. The plowing coefficient of friction is
modeled as the ratio of vertical and horizontal projections of
contact area between a conical tip with a spherical extremity
and a flat surface. The model is validated against the plowing
coefficients of friction calculated from MD simulations of
sliding friction on crystalline Cu. For conditions of fully
developed plasticity under the sliding tip, plowing is shown
to be the dominant contribution to friction and μshear � μP.
The model shows excellent agreement with the coefficients
of friction from AFM nanoscratching experiments on single-
crystal Cu. Our new model is the first analytical model that can
describe the interplay between adhesive forces at the interface
and subsurface plastic deformation for single-asperity sliding
contacts.
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APPENDIX: CONTACT STRESSES AND CONTACT
AREA PROJECTIONS FOR A CONICAL TIP

WITH A SPHERICAL EXTREMITY

In order to evaluate the friction force and the normal load
using Eqs. (1)–(8), one needs to calculate the contact area
projections of the tip-sample interface and stress distribution
on the contact area interface. The AFM sliding tip can be
modeled as a conical tip with a spherical extremity as shown
in Fig. 2. The contact stress on the elastic-plastic contact
area projections (AVep and AHep) can be approximated by
hardness of the sample, which is H = 5.2 GPa as obtained
from simulations and is comparable to experimental results
for Cu.33 As shown in Ref. 19, the contact radial stress on the
pileup surface can be approximated as a linear function that
decreases from the value of hardness at the sample surface
to zero on the top of the pileup-tip contact area. For the
calculation of parameters αH and αV for a spherical tip, see
Ref. 19. For the conical part of the tip, αH = 0.5 and αV = 0.5.

For a conical tip with a spherical extremity sliding on a
flat sample, the expressions for contact area projections are
given below. The exact expressions for contact areas depend on
whether the sample surface is in contact with only the spherical
extremity or with both the spherical and conical surfaces of
the sliding tip.

The vertical projection of contact area of elastic-plastic
contact is written as

AVep =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ2 sin-1 (ar/ρ) − ar

√
ρ2 − a2

r if h � hsp,

ρ2 sin-1 (ar/ρ) − ar

√
ρ2 − a2

r

+ (h − hsp)2 tan α if h > hsp,
+ (h − hsp)asp

(A1)

where hsp is the height of the spherical extremity (Fig. 1 in the

main text) and asp =
√

(2Rhsp − h2
sp). h is the depth of cut, α is

the conical half angle, R is the radius of the spherical extremity,
ar = a cos ω, and ω is the elastic recovery angle. ω is the angle
made by the elastically recovered contact area at the back of
the sliding tip. For a detailed derivation of elastic recovery
angle ω using tip geometry and hardness of the sample, see
Ref. 19. In Eq. (A1), ρ and contact radius a can be written as

ρ =
{√

(R2 − a2 sin2 ω) if h � hsp,√(
R2 − a2

sp sin2 ω
)

if h > hsp
(A2)

and

a =
{√

(2Rh − h2) if h � hsp,
asp + (h − hsp) tan α if h > hsp.

(A3)

Horizontal projection of contact area of elastic-plastic contact
can be written as

AHep = 0.5a2[π + 2ω + sin (2ω)], (A4)

where a is calculated using Eq. (A3).
Similarly, as the expressions for AVep and AHep [Eqs. (A1)

and (A4), respectively), the expressions for projections of

tip-pileup contact area depend on whether the pileup in front
of the sliding is in contact with the spherical surface, conical
surface, or both the conical and spherical surfaces of the tip.
If average height of the pileup hpileup (see Ref. 19) is known,
vertical projection of tip-pileup contact area is given by, if
(h + hpileup) � hsp,

AVpileup = R2 sin−1
(
a2

p/R
) − ap

√(
R2 − a2

p

)
−R2 sin−1(a2/R) − a

√
(R2 − a2), (A5)

where ap is the contact radius with pileup given as

ap =
{√

2R(h + hpileup) − (h + hpileup)2 if h � hsp,
asp + (h + hpileup − hsp) tan α if h > hsp,

(A6)

and if h � hsp and (h + hpileup) > hsp,

AVpileup = R2 sin−1
(
a2

ap/R
) − aap

√(
R2 − a2

ap

)
−R2 sin−1(a2/R) − a

√
(R2 − a2)

+ (h + hpileup − hsp)asp

+ (h + hpileup − hsp)2 tan α, (A7)

and if h � hsp,

AVpileup = (h + hpileup − hsp)asp + (h + hpileup − hsp)2 tan α.

(A8)

The horizontal projection of pileup area is written as

AHpileup = 0.5π
(
a2

p − a2
)
, (A9)

where a and ap are given by Eqs. (A3) and (A6), respectively.
Similarly, as the pileup contact areas Eqs. (A5) and (A7)–

(A9), the horizontal projection of adhesive contact area also
depends on whether the sample is in adhesive contact with the
conical or spherical part of the sliding tip. The total adhesive
contact area can be written as

Aadh = Aadh-front + Aadh-back, (A10)

where Aadh-front and Aadh-back, respectively, represent adhesive
contact area in front and back of the sliding tip. For adhesive
interaction range h0, adhesive contact area in front is given as,
if (h + hpileup + h0) � hsp,

Aadh-front = 0.5π
{
2R(h + hpileup + h0)

− (h + hpileup + h0)2 − a2
p

}
, (A11)

if (h + hpileup + h0) > hsp and (h + hpileup) < hsp,

Aadh-front = 0.5π
{
[asp + (h + hpileup

+h0 − hsp) tan α]2 − a2
p

}
, (A12)

and if (h + hpileup) � hsp,

Aadh-front = 0.5π{[asp + (h + hpileup + h0 − hsp) tan α]2

− [asp + (h + hpileup − hsp) tan α]2}. (A13)

The adhesive contact area in the back is given as, if (h + h0) �
hsp,

Aadh-back = 0.5(2ω + sin (2ω)){2R(h + h0) − (h + h0)2 − a2},
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if (h + h0) > hsp and h < hsp,

Aadh-back = 0.5(2ω + sin (2ω))

×{[asp + (h + h0 − hsp) tan α]2 − a2}, (A14)

and if h � hsp,

Aadh-back = 0.5(2ω + sin (2ω)){[asp + (h + h0 − hsp) tan α]2

− [asp + (h − hsp) tan α]2}. (A15)
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J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705
(2007).

31T. Filleter and R. Bennewitz, Nanotechnology 18, 044004
(2007).

32N. N. Gosvami, T. Filleter, P. Egberts, and R. Bennewitz, Tribol.
Lett. 39, 19 (2010).

33R.-C. Chang, F.-Y. Chen, and C.-E. Sun, Key Eng. Mater. 326, 357
(2006).

34C. Klünker, J. B. Hannon, M. Giesen, H. Ibach, G. Boisvert, and
L. J. Lewis, Phys. Rev. B 58, 7556 (1998).

35E. Marui and H. Endo, Wear 249, 582 (2001).
36Y. S. Zhang, Z. Han, K. Wang, and K. Lu, Wear 260, 942 (2006).

045452-8

http://dx.doi.org/10.1088/0022-3727/41/12/123001
http://dx.doi.org/10.1088/0022-3727/41/12/123001
http://dx.doi.org/10.1038/nature07748
http://dx.doi.org/10.1038/nature07748
http://dx.doi.org/10.1007/s11249-009-9508-5
http://dx.doi.org/10.1007/s11249-009-9508-5
http://dx.doi.org/10.1098/rspa.1939.0004
http://dx.doi.org/10.1098/rspa.1939.0004
http://dx.doi.org/10.1016/j.apsusc.2008.01.096
http://dx.doi.org/10.1016/j.apsusc.2008.01.096
http://dx.doi.org/10.1016/j.apsusc.2011.04.065
http://dx.doi.org/10.1115/1.2917268
http://dx.doi.org/10.1115/1.2917268
http://dx.doi.org/10.1038/nnano.2010.3
http://dx.doi.org/10.1016/j.nantod.2011.08.003
http://dx.doi.org/10.1007/s11249-010-9629-x
http://dx.doi.org/10.1016/j.actamat.2004.01.038
http://dx.doi.org/10.1007/s11249-006-9018-7
http://dx.doi.org/10.1016/0043-1648(62)90235-1
http://dx.doi.org/10.1557/mrs2008.248
http://dx.doi.org/10.1088/0957-4484/17/8/001
http://dx.doi.org/10.4028/www.scientific.net/AST.64.25
http://dx.doi.org/10.1007/s11249-011-9899-y
http://dx.doi.org/10.1016/0021-9797(75)90018-1
http://dx.doi.org/10.1016/0021-9797(92)90285-T
http://dx.doi.org/10.1115/1.3261575
http://dx.doi.org/10.1016/S0301-679X(02)00046-4
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/10.1063/1.109732
http://dx.doi.org/10.1063/1.1896624
http://dx.doi.org/10.1063/1.1896624
http://dx.doi.org/10.1063/1.2432410
http://dx.doi.org/10.1063/1.2432410
http://dx.doi.org/10.1088/0957-4484/18/4/044004
http://dx.doi.org/10.1088/0957-4484/18/4/044004
http://dx.doi.org/10.1007/s11249-009-9508-5
http://dx.doi.org/10.1007/s11249-009-9508-5
http://dx.doi.org/10.4028/www.scientific.net/KEM.326-328.357
http://dx.doi.org/10.4028/www.scientific.net/KEM.326-328.357
http://dx.doi.org/10.1103/PhysRevB.58.R7556
http://dx.doi.org/10.1016/S0043-1648(01)00684-6
http://dx.doi.org/10.1016/j.wear.2005.06.010



