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Nonlinear transport characteristics of mesoscopic tunnel junctions far from equilibrium

A. Glatz,1 N. M. Chtchelkatchev,2,3 and I. S. Beloborodov4

1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Institute for High Pressure Physics, Russian Academy of Science, Troitsk 142190, Russia

3Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
4Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, USA

(Received 22 April 2012; revised manuscript received 12 June 2012; published 24 July 2012)

We study the tunneling transport through a mesoscopic tunnel junction in the far-from-equilibrium regime
at relatively low temperatures. We show that the current-voltage characteristics are significantly modified as
compared to the usual quasiequilibrium results by lifting the suppression due to the Coulomb blockade. These
effects are important in realistic tunnel junctions. We study the high-impedance case in detail to explain the
underlying physics and construct a more realistic theoretical model for the case of a metallic junction, taking
into account dynamic Coulomb interaction. This dynamic screening further reduces the effect of the Coulomb
blockade.
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I. INTRODUCTION

Great efforts in contemporary materials science research
focus on transport properties of advanced nanomaterials. In
particular in arrays of nanoparticles, the interest is motivated
by the fact that these can be treated as artificial solids with
programmable electronic properties.1 The ease of adjusting
electronic properties of granular materials is one of their most
attractive assets for fundamental studies of disordered solids
and for targeted applications in nanotechnology. The parame-
ters of granular materials are in many ways determined by the
properties of their building blocks: grains and tunnel junctions.
The equilibrium properties of single grains and single junctions
are well understood.2 However, much less is known about the
far-from-equilibrium properties of those systems, by which we
mean that the system properties cannot be described by just
a perturbed equilibrium (or quasiequilibrium) consideration.
The understanding of far-from-equilibrium effects in tunnel
junctions, the building blocks of most advanced nanomaterials,
is especially important for practical applications. This defines
an urgent quest for a quantitative description of far-from-
equilibrium properties of a single tunnel junction.

In this paper we investigate the far-from-equilibrium
current-voltage characteristics of a tunnel junction [see
Fig. 1(a)]. Electron transport in tunnel junctions is ensured
by the energy exchange between the tunneling electrons and
energy reservoirs: since the electronic energy levels at the
leads are unequal, tunneling is only possible if a subsystem of
excitations capable of accommodating this energy difference
exists. At not very high temperatures, where the phonon
density is small, the role of the energy reservoir is played by an
electromagnetic environment comprised of electron-hole pairs
self-generated by the tunneling electrons. Here we concentrate
on this low-temperature situation where phonons (bath) are
irrelevant for the tunneling transport. In our approach the
interaction time between electrons and environment needs to
be much smaller than the one between environment and bath,
in order to have a fully developed environment. In addition, we
assume that the characteristic size of the tunnel barrier does
not exceed the electron energy relaxation length.

II. PHYSICAL DESCRIPTION OF NONEQUILIBRIUM
EFFECTS IN A TUNNEL JUNCTION

We start by expressing the tunneling current through a
single junction as the difference of the electrons going from
the left [L] to the right [R] electrode and the ones traversing
the junction from right to left2,4 [see also Fig. 1(a)]:

I = e[
−→
� (LR) − ←−

� (RL)]. (1)

Here the tunneling current obeys the symmetry I (−V ) =
−I (V ) and

−→
� (LR) [

←−
� (RL)] is the tunneling rate from left (right)

to right (left):

−→
� (LR) = 1

RT

∫ +∞

−∞

∫ +∞

−∞
dεdε′f (L)

ε

(
1 − f

(R)
ε′

)
P (ε − ε′ + eV )

= 1

RT

∫ +∞

−∞
dε (ε − eV )Nε(−eV )P (ε), (2)

where f (L,R)
ε are the electronic distribution functions within

the leads, RT is the tunnel resistance, and V is the voltage
difference across the junction. The terms f (L)

ε and (1 − f
(R)
ε′ )

correspond to the occupied electron state with energy ε in
the left lead and the hole state with energy ε′ in the right lead,
respectively. The function P (ε) determines the probability that
the tunneling electron loses (gains) the energy ε to (from)
environment modes in the junction. In general, both f (L,R)

ε

and P (ε) are out-of-equilibrium functions. In the second line
of Eq. (2) we introduced a bosonic distribution function,
Nε(eV ), which describes electron-hole excitations across the
junction [Fig. 1(b)]. Explicitly it is given by Nε(eV ) ≡
(ε + eV )−1

∫ +∞
−∞ dω f

(L)
ω+(ε+eV )/2(1 − f

(R)
ω−(ε+eV )/2). If the dis-

tribution functions at the electrodes are Fermi functions with
equal temperatures T , then Nε(eV ) = NB(ε + eV,T ), with
NB(ε,T ) being the equilibrium Bose distribution function.

The corresponding backward rate in Eq. (1) is
←−
� (RL) =

1
RT

∫
dε dε′(1 − f (L)

ε )f (R)
ε′ P (ε′ − ε − eV ) = 1

RT

∫ +∞
−∞ dε

(eV − ε)N−ε(eV )P (−ε). Here we note, that the bosonic
distribution function Nε(eV ) depends in general on both lead
temperatures; and the bosonic form of the backward rate
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FIG. 1. (Color online) (a) Sketch of the tunnel junction with
two leads. (b) Illustration of the electron-hole environment inside
the tunnel junction. The tunneling electrons together with the
probability to interact with the environmental modes inside the
junction determine the total tunneling current.

←−
� (RL) can be written in this form only if f (L)

ε and f (R)
ε have

the same functional dependence on energy and temperature.
Using the bosonic description of the environment, the

current-voltage characteristics, Eq. (1), can be written explic-
itly as

I = e

∫ +∞

−∞
dε (ε − eV ){Nε(−eV )P (ε) + N−ε(eV )P (−ε)}.

(3)

This expression is general and we only assume that the
electron distribution functions in the contact leads have the
same functional dependence on temperature and energy. In
the out-of-equilibrium situation the tunneling electrons also
interact with the environment inside the junction. This environ-
ment is self-generated by the tunneling electrons and thermal
fluctuations, and its influence on the tunneling transport is
implicitly taken into account through the probability function
P (ε) in Eq. (3). In the case of heat transport, the situation is dif-
ferent, since heat can dissipate inside the junction (see Ref. 5),
and the environment needs to be taken into account explic-
itly, having its own distribution function nenv(ε,eV ) = [(ε −
eV )Nε(−eV ) + (ε + eV )Nε(eV )]/(2ε) (see Refs. 5 and 6).

As mentioned before, if the leads are in equilibrium (which
is mostly the case due to their bulk nature) and in addition
the temperatures at the leads are the same, Nε(eV ) in Eq. (3)
becomes a Bose distribution function. In the following we
assume that this is the case, but emphasize that the junction
environment is always far from equilibrium if a finite voltage
is applied.

Besides the distribution function Nε(eV ), the main distin-
guishing feature of our out-of-equilibrium consideration is the
presence of the probability function P (ε), which takes into
account the interaction with the environment, determining
the probability for the tunneling electrons to exchange the
energy ε, which is the excess energy of the electrons compared
to the potential difference of the leads. It is clear that
this probability should decay for large energies and have
a maximum when the energy matches the energy at which
the environment resonates. A second observation is that at
large voltages this probability should get smeared out and
the current is mostly determined by the distribution function
Nε(eV ) rather than P (ε), which therefore determines only
the resistance of the junction in the ohmic regime. Further-
more, high temperatures also broaden the probability. Both

effects can be conveniently described by the introduction of
an effective electron temperature Te = (eV/2) coth(eV/(2T ))
[derived from Te = limε→0 nenv(ε,eV )], which is equal to T

for small voltages and proportional to eV/2 for eV � T .5–7

Therefore, the probability function P (ε) can be approximated
by a Gaussian function where the electron temperature Te

determines its width in the high-resistance case, which we
discuss in detail in the next section.

III. TUNNEL JUNCTION WITH HIGH-IMPEDANCE
ENVIRONMENT

We now turn to the experimentally important case of
an environment with a high impedance as compared to the
quantum resistance RQ. In this limit, the tunneling electrons
easily excite the environment modes. The probability function
P (ε) for electron-hole pairs with energy ε to appear in the
junction in Eq. (3) can be written as

P (ε) = (1/
√

2π�2) exp[−(ε − 2Ec)2/2�2]. (4)

Here � = 2(EcTe)1/2 is the characteristic width of the distribu-
tion function with Ec being the Coulomb energy of the tunnel
junction. We note that this form of the probability function
P (ε) in Eq. (4) depends on the electron temperature Te and not
on the lead temperature T , as in the quasiequilibrium case.3

Substituting this function P (ε) into Eq. (3), we obtain
our first main result for the current-voltage characteristics
of a tunnel junction. In particular, Fig. 2 represents the
I -V characteristics at low temperatures (T/Ec = 0.1) for the
equilibrium case “eq.” (red, dashed curve, see also Ref. 3)
and the nonequilibrium case “non-eq.”. It shows a clear
enhancement of the current and reduced suppression due to
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FIG. 2. (Color online) Current-voltage characteristics of tunnel
junctions at low temperatures (T/Ec = 0.1, with Ec being the
Coulomb energy of the tunnel junction) for the equilibrium case “eq.”
(red, dashed curve, see also Ref. 3) and the nonequilibrium case “non-
eq.”, which shows a clear enhancement of the current and reduced
suppression due to Coulomb blockade at low voltages. This is, in
particular, clear in the plot of the ratio δ = Inon-eq.,high imp.(V )/Ieq.(V ) in
the inset. The linear (green, solid) curve shows the high-temperature
ohmic regime, which is independent of non-eq. or eq. considerations.
The two non-eq. curves correspond to the high-impedance case (blue,
solid) and the dynamic Coulomb interaction case (dashed, turquoise);
see text for detailed explanations.
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FIG. 3. (Color online) Far-from-equilibrium current-voltage
characteristics of a tunnel junction depending on voltage and junction
temperature. Here Ec is the Coulomb energy of the junction. One
clearly sees the crossover from the suppressed current at small
voltages and temperatures to the ohmic regime at high temperatures.

Coulomb blockade at low voltages. This is, in particular, clear
in the plot of the ratio δ = Inon-eq.(V )/Ieq.(V ) in the inset. The
(green, solid) linear curve shows the high temperature ohmic
regime, which is independent of non-eq. or eq. considerations.
The full temperature dependence and the voltage dependence
of the current-voltage characteristics of the tunnel junction
are shown in Fig. 3. This figure clearly shows the crossover
from the suppressed current at small voltages (eV 	 Ec)
and temperatures (T 	 Ec) to the ohmic regime at high
temperatures.

IV. TUNNEL JUNCTION WITH DYNAMIC
COULOMB INTERACTION

Next, we discuss the current-voltage characteristics, Eq. (1),
of a tunnel junction comprised of two thin two-dimensional
disordered conductors (leads), taking into account the effect
of Coulomb interaction explicitly. To this end we need to
calculate the distribution function P (ε), appearing in the
tunneling rate, Eq. (2), from first principles.

In general this function can be written as P (ε) =∫ ∞
−∞ dt exp[J (t) + iεt], where the function exp[J (t)] accounts

for the interaction with the Bosonic environment. The far-
from-equilibrium function J (t) can be written as6

J (t)

2
=

∫ ∞

τ−1
e

dω

ω
ρ(ω)[Nωeiωt + (1 + Nω)e−iωt − Bω], (5)

where the terms proportional to Nω and 1 + Nω correspond
to the absorbed and emitted environment excitations, re-
spectively, and Bω = 1 + 2Nω. (Here we concentrate on the
simplest case when the temperature of absorbed and emitted
excitations is the effective electron temperature Te determined
by the environment.) In equilibrium Nω reduces to the Bose
function and the functional P (ω) recovers the result of Ref. 2.
The energy relaxation time τe in the expression for J (t)
determines the low-energy cutoff, since the electrons start

to equilibrate on larger time scales; i.e., the nonequilibrium
description does not hold anymore.

The spectral function ρ(ω) in Eq. (5) is the probability of
the electron-environment interaction. We assume that leads
are identical and have the same diffusion coefficients, D(L) =
D(R) ≡ D, and densities of states, ν(L) = ν(R) ≡ ν. For the
dynamic Coulomb interaction the spectral function ρ(ω) can
be found, following Ref. 8, as

ρij(ω) = ω

2π
Im

∑
q

(
2π
L

)2
(2δij − 1)Ũij(q,ω)

(Dq2 − iω)2
, (6)

where i,j = 1,2 are the lead indices for the left and right
sides, respectively, and Ũij(q,ω) are the dynamically screened
Coulomb interactions within (across) the electrodes. The
form of spectral probability ρ(ω) [ρ(ω) = 2ρ12 + ρ11 + ρ22]
depends on the structure of the environmental excitations
spectrum and, thus, on the external bias.

The screened Coulomb interaction in Eq. (6) in Fourier
space has the form Ũ (q,ω) = {[U (0)(q,ω)]−1 + P(q,ω)}−1,
where U (0)(q,ω) = u(q)I + v(q)σx is the bare Coulomb
interaction and P(q,ω) is the polarization matrix, with Pij =
νDq2(Dq2 − ıω)−1δij.

Below we consider quasi-two-dimensional infinite leads
meaning that a < l 	 L, where a is the lead thickness, l the
electron mean free path, and L the lead size in the x and y

directions. In this case the bare Coulomb interaction has the
form

U
(0)
ij (ri − rj ) = e2

∫
dzidzj

δ
(
zi − z

(0)
i

)
δ
(
zj − z

(0)
j

)
|ri − rj | , (7)

with z
(0)
i = (1/2 − δi1)d and d being the junction size (distance

of the contacts), leading to u(q) = 2πe2/q and v(q) =
2πe2e−qd/q. In our consideration, the distance d is smaller
than the electron energy relaxation length such that the junction
is out of equilibrium. This relaxation length is typically of the
order of 0.1 μm.

The dimensionless matrix elements Ũij of the dynamically
screened Coulomb interaction (in units of e2d) are then given
by

Ũii = 4π

q̃

χ (q̃)

χ2(q̃) − coth−2(q̃)
, Ũi 
=j = Ũii

χ (q̃) coth(q̃)
, (8)

where q̃ = dq and ω̃ ≡ ω(d2/D) with the dimensionless
function χ (q̃) ≡ 1 + coth(q̃) + 4παq̃

q̃2−iω̃
and α = e2dν. Using

these notations, we can write Eq. (6) as

ρ(ω̃) = 2e2d

D ω̃ Im
∫ ∞

0
q̃dq̃

Ũ11{1 − [χ (q̃) coth(q̃)]−1}
(q̃2 − iω̃)2

. (9)

The spectral function ρ is plotted in Fig. 4 as a function of
frequency for different values of the dimensionless parameter
α = 1, 10, 50, and 100. Notably, the ρ function depends only
weakly on frequencies in the low-frequency limit and decays
algebraically as ρ ∼ 1/ω1/2 at very high frequencies. Here,
we remark that the parameter α has a typical value of 100 in
the metallic case we are considering here.

Using Eq. (9) we numerically evaluate the behavior of the
J (t) function, Eq. (5), which accounts for the interaction with
the environment. Its behavior for a typical parameter value
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FIG. 4. (Color online) Spectral density function ρ(ω) for different
values of the dimensionless parameter α = 1, 10, 50, and 100 in
double-log representation. The parameter α = e2dν is defined in the
text below Eq. (8). The data are plotted for the case when the Thouless
energy, Eth, is equal to the Coulomb energy, Eth = Ec.

of α = 100 at different electron temperatures is presented in
Fig. 5. The imaginary part of the J function is antisymmetric
and almost voltage independent, while the slope of the real
part is voltage dependent. The imaginary part contributes to
the oscillatory factor in the expression for probability function
P (ε) introduced in the text above Eq. (5). The behavior of the
real part is more important, since it describes the interaction
with the environment and makes the P integral convergent. At
small dimensionless times (tEc 	 1) the real part of the J (t)
function has quadratic behavior (see the insert in Fig. 5), which
corresponds to the high-impedance limit for the environment
discussed in detail before. However, at larger time scales the J

function shows linear behavior, which modifies the probability
function P significantly.

The behavior of the P (ε) function is crucial for calculation
of current-voltage characteristics in Eq. (1). We present the
normalized probability function P (ε) versus dimensionless
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FIG. 5. (Color online) Far-from-equilibrium phase function J (t),
Eq. (5), at different voltages of eV/Ec = 0, 0.5, and 1 for the dynamic
Coulomb interaction case. The temperature is T/Ec = 0.1 and α =
100, where the parameter α = e2dν is defined in the text following
Eq. (8) and Ec is the Coulomb energy of the junction. The real and
imaginary parts are plotted separately and the inset shows the behavior
of the real part of function J (t) for small times (in the zero voltage
case). The latter demonstrates that the high-impedance expansion
works in this regime.
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FIG. 6. (Color online) Far-from-equilibrium probability function
P (ε) at different voltages of eV/Ec = 0, 0.5, and 1 for both the
high-impedance and the dynamic Coulomb interaction cases. The
temperature is T/Ec = 0.1 and α = 100, where the parameter α =
e2dν is defined in the text following Eq. (8). Here Ec is the Coulomb
energy of the junction.

energy in Fig. 6. In the case of dynamic Coulomb interaction,
the P function has two distinct features: (i) a peak at low
energies and (ii) a long tail at high energies. The first feature
is related to the fact that in the limit of dynamic Coulomb
interaction the screening effects are very pronounced and thus
the original bare interaction Ec is completely screened. This
is in contrast to the behavior of the P (ε) function in the
high-impedance environment, which has a peak at energies of
the order of the Coulomb energy Ec; see Fig. 6 for comparison.
The second feature ofthe probability function P (ε), the appear-
ance of a long tail, increases the number of available states
for energy absorption/emission of the environment, enhancing
the overall tunneling probability through the junction. This in
combination with the screening effect results in a significant
enhancement of the current at low voltages as compared to
the high-impedance case for the metallic value of α = 100. If
parameter α is decreased, i.e., the density of states is lower, the
Coulomb blockade gets restored, but also the resistance in the
ohmic regime increases. The current-voltage characteristics
for α = 50 are plotted in Fig. 2 (dashed, turquoise), showing
the enhancement of the current at low voltages compared to
the high-impedance case.

V. DISCUSSION

Here we discuss the behavior of the probability function
P (ε) in Eq. (4) and comment on the validity of our approach
at low temperatures. From Eq. (4) it follows that the probability
function P (ε) for zero temperature is proportional to the
δ function, P (ε) ∼ δ(ε − 2Ec), meaning that no electron
transport is possible below the Coulomb threshold. This
is a consequence of our consideration of the tunneling
transport in Eq. (1) being described in the lowest order in
the tunneling Hamiltonian. In this approximation higher-order
effects like electron cotunneling9,10 are not taken into account.
Cotunneling, introduced in Ref. 11, provides a conduction
channel at low applied biases and temperatures, where oth-
erwise the Coulomb blockade arising from electron-electron
repulsion would suppress the current flow. The essence of
a cotunneling process is that an electron tunnels via virtual
states thus bypassing the huge Coulomb barrier. There are two
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mechanisms of cotunneling processes, elastic and inelastic. At
very low temperatures only elastic cotunneling exists, meaning
that electrons propagate through all virtual states without
emitting/absorbing energy.

In this paper we only consider low (but not very low)
temperatures where a bath (phonons) is inefficient (the typical
validity temperature range would be between 1 K and 100 K).
Therefore our approach is valid when the interaction time
between electrons and many-body excitations (environment)
is much smaller than the one between the environment and the
bath, which is the case at not very high temperatures where
the number of phonons is small. If the environment interacts
strongly with the bath, relaxation is provided by phonons
(bath) and P (ε) = δ(ε). In that case Eq. (1) reproduces
Ohm’s law.

Last, we mention that transport through a mesoscopic
quantum material can be reduced to the single junction
problem with an effective medium that plays also the role of a
thermostat. This work is currently in progress, but requires, in

contrast to the single junction, one to also consider the heating
effects of the medium.5

In conclusion, we studied the tunneling transport through a
mesoscopic tunnel junction in the far-from-equilibrium regime
at relatively low temperatures. We showed that the current-
voltage characteristics are significantly modified as compared
to the usual quasiequilibrium results and demonstrated this
for two cases: the high-impedance case and the dynamic
Coulomb interaction case. One can expect that our results will
be important for electron transport in junction arrays, which
will be the subject of a forthcoming work.
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