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Excitation, relaxation, and quantum diffusion of CO on copper
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We investigate the effect of intermode coupling and anharmonicity on the excitation and relaxation dynamics
of CO on Cu(100). The nonadiabatic coupling of the adsorbate to the surface is treated perturbatively using a
position-dependent state-resolved transition rate model. Using the potential energy surface of Marquardt et al.
[J. Chem. Phys. 132, 074108 (2010)], which provides an accurate description of intermode interactions, we
propose a four-dimensional model that represents simultaneously the diffusion and the desorption of the adsorbate.
The system is driven by both rational and optimized infrared laser pulses to favor either selective mode and
state excitations or lateral displacement along the diffusion coordinate. The dissipative dynamics is simulated
using the reduced density matrix in its Lindblad form. We show that coupling between the degrees of freedom,
mediated by the creation and annihilation of electron-hole pairs in the metal substrate, significantly affects the
system excitation and relaxation dynamics. In particular, the angular degrees of freedom appear to play an
important role in the energy redistribution among the molecule-surface vibrations. We also show that coherent
excitation using simple IR pulses can achieve population transfer to a specific target to some extent but does not
allow enforcement of the directionality to the diffusion motion.
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I. INTRODUCTION

The activation of adsorbate vibrations represents a major
step in many reactions occurring at metallic surfaces, with
potential application in molecule storage, nanoscale machines,
and catalysis.1–13 In particular, the diffusion motion plays
a fundamental role in the latter process, where the reactive
species move along the surface before meeting their reaction
partner. The motion perpendicular to the surface is also
important to describe, e.g., the release of adsorbates from the
surface.14–18 In some cases, the photoexcitation of selected
modes using infrared laser pulses was shown to favor direct19

and indirect adsorbate desorption.16,18 State-selective vibra-
tional excitation of adsorbed molecules was also proposed as
a candidate for quantum computing, as well as a practical
means of activating catalysts by loading the subsurface with
reactive species.20

Our goal here is to perform infrared excitations of selected
degrees of freedom in an adsorbate at a metal surface to
eventually favor some reactions at the expense of others.21–23

The diffusion and the hopping of the adsorbate, along with
the angles describing its orientation, are of great interest here.
Although their importance is still hotly debated for processes
such as scattering or dissociative adsorption,24–28 nonadiabatic
effects are known to play a major role for reactions occurring
when molecules remain close to metallic surfaces over an
extended period of time.5,13,29,30 In the strong-coupling limit,
it is customary to use the independent electron surface hopping
approach first proposed by Tully and co-workers.31–36 In this
case, classical molecular dynamics simulations are performed
on a large number of potential energy surfaces used to
represent the continuum of electronic states at the metal
surface. The main issues are related to the evaluation of the
coupling between electronic states and to the convergence
of the discretized continuum. In the weak-coupling limit,
fully quantum mechanical simulations can be performed,
where all states of the continuum are included implicitly
in a mean-field treatment of the nonadiabatic couplings.

Many perturbative expressions based on the electron self-
energy,29,37–39 time-dependent density functional theory40,41,
or electronic friction theory25,42,43 were proposed over the
years. To circumvent the limitations of these approaches,
which rely on the local harmonic approximation, we developed
a position-dependent, anharmonic transition rate model.20,44

The derivation relates the electronic friction and self-energy
approaches for the limiting case of a single atom in a
harmonic well and was recently extended to treat polyatomic
molecules.19,45 For studying large-amplitude motions such as
diffusion, anharmonicity, corrugation, and intermode coupling
are bound to play an important role.

In the present paper, we focus our efforts on the vibrational
control of CO on a Cu(100) surface. The system vibrational
states were studied previously,46–49 as were the associated
lifetimes,29,39 its dissipative dynamics,50,51 and the selective
excitation of desired states.52,53 Most of the theoretical work
was done using the potential energy surface of Tully and
co-workers,54 which was shown to describe the anharmonicity
and intermode couplings of the adsorbate vibrations rather
poorly.46,47,50,53 These limitations were improved upon re-
cently by Marquardt et al.,55 who introduced a new global
potential energy surface (PES) for diatomic molecules at
surfaces that allows for more flexibility while retaining a sound
physical interpretation for the fitting parameters. This PES was
shown to well reproduce the diffusion barrier obtained from
periodic density functional theory slab calculations, as well
as other spectroscopic features of the system. In particular,
anharmonic couplings are now much better described,55 which
prove to have a great influence on the selectivity of the coherent
excitations investigated here.

The dissipative dynamics of the CO/Cu(100) system is
studied using the reduced density matrix formalism, in which
the effect of the environment, i.e., the creation and annihilation
of electron-hole pairs in the metallic substrate, are treated
implicitly. Because our simulations proceed on a picosecond
time scale, we choose to neglect the short-term memory of
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the surface and only instantaneous dissipation is included. We
first investigate the relaxation dynamics of the system initially
prepared in a pure state of a given mode. This gives insight
into the strength of the intermode coupling in the system and
the microscopic details of the relaxation mechanisms. Second,
we perform IR-driven selective excitations from the global
ground state of a CO molecule initially localized on top of
a given copper atom. One aim is to tailor a laser pulse to
excite the so-called surface mode, where the hopping of the
molecule on the surface might convert into lateral motion
and help overcome the diffusion barrier. This is done using
rationally designed56 as well as optimized pulses. The latter
are obtained using locally optimal control theory,57–66 where
an objective functional designed to reach a desired target is
optimized. Another goal is to activate directly the diffusion
motion on the surface by using coherent excitations in an
attempt to control the directionality of the motion.

In Sec. II, the vibrational wave functions of the CO/Cu(100)
system are computed and analyzed. A numerical procedure for
localizing the states of the adsorbate is introduced. In Sec. III,
the reduced density matrix formalism and the perturbative
model for describing electron-hole pair coupling are presented.
The relaxation dynamics of chosen states is studied. In Sec. IV,
a model global dipole moment surface is introduced and
used to perform IR-driven excitations of selected targets. The
conclusions are briefly summarized in the last section.

II. THE SYSTEM

A. Vibrational states

The full-dimensional Hamiltonian describing the adsorbate
vibrations of a diatomic molecule can be written in orthogonal
coordinates as

Ĥ = − h̄2

2ms

(
∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2

)
− h̄2

2μ

∂2

∂r2

+ h̄2

2μr2
Ĵ 2(θ,φ) + V (X,Y,Z,r,θ,φ), (1)

where the angular momentum operator is given by67

Ĵ 2(θ,φ) = −
(

∂2

∂θ2
+ cot(θ )

∂

∂θ
+ 1

sin2(θ )

∂2

∂φ2

)
. (2)

The coordinates {X,Y,Z} describe the position of its center
of mass and {r,θ,φ} its shape and orientation, as depicted
in Fig. 1, and ms and μ are the total and reduced mass
of the adsorbate, respectively. The surface is assumed to be
rigid. For CO on Cu(100) an accurate, global potential energy
surface V (X,Y,Z,r,θ,φ) based on the Strasbourg-Amsterdam-
Potsdam (SAP) fitting scheme is readily available.55

The diffusion process which we investigate here implies
very large amplitude motion in the plane parallel to the surface.
This renders the calculations tedious and even impracticable
for studying wave packets evolving over multiple unit cells on
the surface. We advocate using a reduced-dimensional model
that captures the physics of the process. By exploiting the
symmetry of the surface, the diffusion is studied along the X

axis and the Y coordinate is kept frozen at its equilibrium value.
Since the r coordinate presents a much higher vibrational
frequency than all other modes (see Table I), it can therefore be

FIG. 1. (Color online) Definition of the coordinates for the CO
on Cu(100) system. Only the copper atoms of the first layer are
represented. A cartoon of the 1D PES along the X axis bisecting the
central copper atoms of three adjacent unit cells is depicted in the
lower panel.

considered adiabatically separable and is neglected here (i.e.,
r = r0), yielding an effective four-dimensional (4D) model

Ĥ4D = − h̄2

2ms

(
∂2

∂X2
+ ∂2

∂Z2

)
+ h̄2

2μr2
0

Ĵ 2(θ,φ)

+V (X,Z,θ,φ; Y0; r0). (3)

The vibrational states of the adsorbate are computed by
solving the time-independent Schrödinger equation, Ĥ4Dψn =
Enψn, in a tensor product of one-dimensional (1D) discrete
variable representation (DVR) functions68–77

ψn =
∑

ix ,iz,iθ ,iφ

C
(n)
ix ,iz,iθ ,iφ

ϕix (X)ϕiz (Z)ϕiθ (θ )ϕiφ (φ), (4)

where ϕj (qj ) is the j th basis function for mode qj . The
X coordinate is represented using 111 plane-wave DVR
points69 on the range [−3.8181,3.8181] Å, covering three
unit cells. This will allow us to study the directionality
of the diffusion process. The Z basis is composed of 25
potential optimized DVR functions72,73 contracted from 100
sinc-DVR functions71 on the range [1.5875,3.1751] Å for
a 1D reference potential obtained by freezing all remaining
coordinates to their equilibrium value (X = Y = θ = φ = 0
and r = 1.154 Å). For the azimuthal angle, a basis of 25
Gauss-Chebyshev-DVR functions on the range ]0,2π [ is used.
Finally, 17 Gauss-Legendre-DVR points on the range ]0,π/6[

TABLE I. Comparison of the vibrational transition energies (in
hc/cm) with the experimental and literature values.

Assignment 4D model Marquardt Experiment

T mode 10.9 16.5 31.8
R mode 288.0 288.0 285.0
S mode 307.8 300.6 345.0
CO stretch – 2052.9 2079.0
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obtained from the contraction of 101 Legendre functions are
used to represent angle θ , avoiding the singularity at θ = 0.

The lowest lying eigenstates of the resulting matrix are
extracted using a coupled two-term Lanczos eigensolver with
full reorthogonalization, which allows us to recover the true
degeneracy of the vibrational states.17,53,78 In order to favor
convergence at low energies, an inexact spectral transform was
used to stretch the desired part of the spectrum and contract the
undesired one. The idea is reminiscent of the MINRES filter
diagonalization method of Yu and co-workers79,80 and of the
preconditioned inexact spectral transform approach of Huang
and Carrington,81–83 where a Lanczos subspace is built from
the operation of a function of the Hamiltonian on a random
starting vector. Specifically, we generate an orthogonal Krylov
subspace using the function

f (Ĥ4D) = tanh(aĤ4D) �
n∑

k=0

CkTk

(
cos

(
Ĥ4D − hc

�H

))
,

(5)

where a = 10−3Eh defines the steepness of the spectral
transform, hc = 250500 hc/cm is the midpoint of the Hamil-
tonian spectrum, and �H = 250 100 hc/cm its norm. As in
Ref. 80 the coefficients Ck are obtained from the approximate
expansion of the function using a discrete number n = 20
of Chebyshev polynomials Tk[k cos(x)]. The eigenvectors
associated with eigenvalues below a user-defined physical
threshold are then assembled and used to compute the
expectation value of the Hamiltonian operator. This method
accelerates considerably the convergence of the targeted
eigenvalues. From a set of 5000 orthogonalized Lanczos
vectors, we recover 1318 eigenfunctions with energy below
1700 hc/cm. By analyzing the nodal structure within a single
unit cell, we can assign the vibrational eigenstates to the
different modes.

Table I shows the comparison of the reduced dimension
model with the six-dimensional (6D) reference value of
Marquardt et al.55 as well as with the experiments.84–86 The
T, R, and S mode labels refer to the frustrated translations
{X,Y }, the frustrated rotations {θ,φ}, and the surface mode
Z. The frequencies are in good agreement with that of the
full-dimensional calculation, although the T mode is slightly
too low, in particular in comparison to the experiment. These
discrepancies are partially due to the limitation of the potential
itself and to the neglect of residual coupling with the frozen
Y and r coordinates. These disparities should only have a
modest influence on the qualitative behavior of the dynamical
simulations reported in the present paper.

B. Localization procedure

The wave functions extracted from the Hamiltonian matrix
are mostly delocalized above the three unit cells spanned by
the basis. Diffusion is intrinsically a local process, where an
initially localized wave function spreads sequentially to the
neighboring unit cells. Within this physical picture, it is neces-
sary to localize the vibrational eigenfunctions obtained from
the Lanczos diagonalization. Since we study the dynamics in
three unit cells along the X axis, we choose to take three
functions within a small energy window (�E = ±20 hc/cm)

and localize them in either the left, central, or right well (see
Fig. 1). The localization is done numerically as follows:

(1) For a given eigenstate α from the list of Lanczos
eigenvalues, select two partners α1 and α2 within the energy
window to form a triplet.

(2) Build and diagonalize the 3 × 3 matrix of overlaps in
the central region:

S(α)
c U(α)

c = U(α)
c σ (α)

c , S
(α)
c,ij =

∫
center

ψ∗
i ψjdτ.

(3) Transform the three vectors to the temporary basis:

( ψ̃1 ψ̃2 ψ̃c ) = U(α)t
c ( ψα ψα1 ψα2 ).

(4) Build and diagonalize the 2 × 2 matrix of the overlaps
in the left region for the two delocalized vectors ψ̃1 and ψ̃2:

S(α)
l U(α)

l = U(α)
l σ

(α)
l , S

(α)
l,ij =

∫
left

ψ̃∗
i ψ̃j dτ.

This yields simultaneously the left and right localized vectors.
The nodal structure of the localized functions should be further
checked by computing their overlap in the left region after
translating the right wave function to the left region.

(5) Form the proper unitary transformation matrix:

U(α) = U(α)
c

(
U(α)

l 0
0 1

)
.

(6) Transform the three vectors {ψα,ψα1 ,ψα2} to the local-
ized basis:

( ψ
(loc)
l ψ (loc)

r ψ (loc)
c

) = U(α)t
(
ψα ψα1 ψα2

)
.

(7) Cycle steps 1–6 for all possible partners α1 and α2

within the energy window to find the triplet that maximizes
the overlaps:

sl =
∫

left
ψ

(loc)∗
l ψ

(loc)
l dτ,sc =

∫
center

ψ (loc)∗
c ψ (loc)

c dτ, and

sr =
∫

right
ψ (loc)∗

r ψ (loc)
r dτ.

The procedure is repeated for another α eigenstate until
all eigenstates have been transformed. From the U(α), we can
build a unitary block matrix to toggle from the localized to the
delocalized basis:

U = U(1) ⊗ U(2) ⊗ . . . ⊗ U(α) ⊗ . . . ⊗ U(nt ), (6)

where nt is the number of triplets. The operators can be
simply transformed from the delocalized representation to the
localized picture:

Ĥloc = Ut Ĥ4DU. (7)

From the 1318 eigenvalues extracted from the Lanczos run,
329 triplets were deemed localizable, i.e., more than 50% of the
wave functions are found in the respective well. The remaining
∼300 functions are located at the top of the calculated
spectrum at energies much higher than the diffusion barrier,
and they were discarded from the basis for the dynamics. The
translation operator was applied to the resulting functions to
confirm that the same nodal structure is found in each well.
The results of the localization procedure are shown in Fig. 2,
for example, for a highly excited state of the T mode. The

045438-3
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FIG. 2. (Color online) Probability density of the 9th excited state of the T mode before localization (left panels) and after localization (right
panels). The 2D profiles are obtained by integrating all remaining coordinates. The dotted lines mark the separation between unit cells.

quantum number refers to the number of nodes along the X

coordinate in a single unit cell. On the left, the wave functions
as obtained from the Lanczos diagonalization are shown.
After the localization procedure, the amplitude in the other
wells is negligible. All triplet wave functions were inspected
individually to ensure an appropriate localization. Higher
excited states are more delocalized among the three wells but
remain mostly localized on top of a single copper atom. The
shortest tunneling time allowed in the present localized basis is
about τtunnel � h̄π

20 cm−1 � 0.8 ps. Note that all low-lying states
are perfectly localized so that, consequently, the tunneling rates
numerically vanish. To simplify later discussions, a compact
notation for the vibrational eigenstates is introduced. The label
|νX,νZ,νθ ,νφ ; i〉 represents the vibrational state located in the
ith well (i = {l,c,r} for the left, center, and right localized
states) with νj quanta along coordinate qj .

III. DISSIPATIVE DYNAMICS

A. Reduced density matrix

The contact of the adsorbate with the surface can lead
to the creation and annihilation of electron-hole pairs in the
metallic substrate and ultimately to energy exchange in the
system. To study the dissipative dynamics of the adsorbate
we advocate using the reduced density matrix formalism. The
system temporal evolution is described by the Liouville–von
Neumann equation

˙̂ρ(t) = − i

h̄
[Ĥ ,ρ̂(t)] + i

h̄

∑
q

Fq(t)[μ̂q,ρ̂(t)] + LDρ̂, (8)

where ρ̂(t) is the reduced density matrix operator, Fq(t) is
an external electric field polarized along the q axis, μ̂q is the
qth component of the dipole moment operator, and LD is the
dissipative superoperator characterizing the interaction of the
adsorbate with its environment. Neglecting memory effects in
the substrate, which is appropriate considering that electron-
hole pairs have a lifetime on the order of the femtosecond in

metallic environments, we can write the dissipative term in the
Lindblad form87

LD =
∑

k

1

2
([Ĉk,ρ̂(t)Ĉ†

k] + [Ĉkρ̂(t),Ĉ†
k]), (9)

where the operator Ĉk represents the kth dissipative channel.
In the basis of the localized eigenfunctions, the equations of
motion in the interaction picture have a particularly compact
appearance, here given in matrix notation:

d

dt
ρ(I )(t) = eiH (loc)t/h̄ ·

{
i

h̄

∑
q

Fq(t)[μ(q),ρ(s)(t)]

+
∑

k

Ckρ
(s)(t)C†

k −
∑

k

1

2
(C†

kCkρ
(s)(t)

+ ρ(s)(t)C†
kCk)

}
· e−iH (loc)t/h̄, (10)

with e±iH (loc)T/h̄ = Ue±iE(deloc)t/h̄U t . The matrices μ(q) contain

the transition dipole elements. The superscripts (I ) and (s)
refer to the interaction and Schrödinger picture, respectively.
Due to the sparsity of the Ck matrices, the reduced density

matrix propagation scales formally as N3
b for a basis of size

Nb. The equations of motion can be efficiently propagated
using a preconditioned Runge-Kutta integrator.65,88,89

B. Relaxation process

The dissipation due to the adsorbate coupling to the surface
will mainly lead to energy relaxation in the system. This can
be characterized by the Lindblad operators

Ĉk → Ĉm→n = γ 1/2
m→n|n〉〈m|, (11)

which transfer the population from state |m〉 to state |n〉
at a rate γm→n. The dominating contribution to the energy
relaxation rates in adsorbate-metal systems is the creation of
electron-hole pairs in the metal. In the weak-coupling limit,
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TABLE II. Inverse of the state-to-state transition rates (lower triangle, in picoseconds) and transition dipole elements along z (upper triangle,
in ea0) for selected 4D vibrational states of the central unit cell. The transition energies are reported in the last column. The zero-point energy
is located at 457.11 hc/cm.

Label |0,0,0,0; c〉 |1,0,0,0; c〉 |2,0,0,0; c〉 |3,0,0,0; c〉 |0,0,0,1; c〉 |0,1,0,0; c〉 |0,0,1,0; c〉 Energy

|0,0,0,0; c〉 . . . ∼10−9 0.04603 ∼10−10 ∼10−10 0.01506 0.00128 0.0
|1,0,0,0; c〉 108 . . . ∼10−9 0.06592 0.00273 ∼10−9 ∼10−8 10.9
|2,0,0,0; c〉 34.6 42.7 . . . ∼10−9 ∼10−10 0.00247 0.00057 24.7
|3,0,0,0; c〉 3790 22.9 25.9 . . . 0.00072 ∼10−11 ∼10−8 39.9
|0,0,0,1; c〉 132 2.30 ∼106 ∼104 . . . ∼10−8 ∼10−8 288.0
|0,1,0,0; c〉 82.0 237 71.0 ∼104 169 . . . 0.00248 307.8
|0,0,1,0; c〉 0.862 ∼106 61.9 ∼107 147 92.0 . . . 568.7

this can be treated perturbatively using Fermi’s golden rule,
where the coupling is mediated by the kinetic energy operator
of the adsorbate nuclei. We derived recently a rate expression
based on electronic friction theory that takes into account the
anharmonicity of the vibrational wave functions, as well as the
surface corrugation:

γm→n =
∑

q

γ (q)

∣∣∣∣〈n|ρ1/3
embd

∂

∂q
|m〉

∣∣∣∣
2

. (12)

The embedding density ρembd is the electronic density sur-
rounding the adsorbate and it describes approximately the
position dependence of the nonadiabatic couplings in the
vicinity of the surface. The integrals are performed over all
coordinates to include intermode coupling. The constants are
chosen to reproduce the state-to-state transition rates of a set of
reference states obtained by ab initio calculations for a given
frozen geometry.29,54 Here, the embedding density is obtained
by performing a periodic density functional theory calculation
for the bare copper surface using the PW91 functional,90 as
implemented in VASP.91,92 The total energy of a slab containing
six copper layers for the 1 × 1 unit cell is minimized while
relaxing the position of all atoms. The plane-wave basis used
for the calculation is defined by an energy cutoff of 273.246 eV
and a 15 × 15 × 15 Monkhorst-Pack grid is used for the
k-point sampling.93

The X- and Z-mode contributions are scaled so
that the inverse transition rates associated with the
|1,0,0,0; c〉 → |0,0,0,0; c〉 and |0,1,0,0; c〉 → |0,0,0,0; c〉
transitions reproduce the first-principles lifetimes of 108 and
82 ps, respectively (γ (X) = 3.3204 × 10−6Eha

4
0/h̄ and γ (Z) =

1.3047 × 10−7Eha
4
0/h̄).29 Upon inspection of the integrals

〈n|ρ1/3
embd

d
dθ

|m〉 and 〈n|ρ1/3
embd

d
dφ

|m〉, it became clear that the
φ coordinate does not play an important role in the relaxation
process since the latter matrix elements are almost zero for
all transitions. Hence, the constant γ (φ) is set to zero to avoid
numerical problems upon scaling; i.e., the decay mediated by
φ can be neglected altogether. Further, the relaxation from the
first φ-mode excited state does not appear to decay to the global
ground state, with 〈0,0,0,1; c|ρ1/3

embd
d
dθ

|0,0,0,0; c〉 � 0. Hence,
we scale the decay rate of the R mode to the reference value29,54

of 2.3 ps using the largest contribution to its relaxation, namely
the intermode transition to the first X-excited state mediated
by the θ coordinate (γ (θ) = 2.5268 × 10−6Eha

4
0/h̄). The

relaxation times (τm→n = 1/�m→n) for selected vibrational

states in the central unit cell can be seen in the lower left entries
of Table II. Intermode coupling plays an important role already
at those low frequencies. For example, the S mode decays as
efficiently to the ground state as to the second excited state of
the T mode. Similar observations can be made for the R mode,
where the first φ excited state decays preferentially to the T
mode.

These trends are confirmed by looking at the population
dynamics of selected excited states, as reported in Fig. 3. In
the top right panel, we can see that the energy stored along
the φ coordinate preferentially decays to the T mode; i.e.,
it transfers a large part of its population to the translational
coordinate. As discussed above, this transfer is mediated
mainly by the gradient along θ . The ground state remains
only marginally populated on this time scale. This is not the
case for lower right panel, where the energy is stored in the
first θ state of the R mode. Within about 800 fs, the population
reverts almost quantitatively to the ground state, with residual
population found mostly in the second excited state of the
T mode. Because the initial θ state, the final T-mode state,
the gradient along θ , and the embedding density ρembd are
all totally symmetric around the minimal geometry, it is not
surprising to see that transitions to odd states (e.g., |1,0,0,0; c〉)
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FIG. 3. (Color online) Relaxation dynamics of selected eigen-
states of CO on Cu(100) located in a single unit cell. The initial
states belong to the T mode (|2,0,0,0; c〉, top left panel), the S mode
(|0,1,0,0; c〉, bottom left panel), and the R mode (|0,0,0,1; c〉 and
|0,0,1,0; c〉 in the top and bottom right panels, respectively).
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FIG. 4. (Color online) Contribution of the different dissipative
channels for the energy relaxation of highly excited states of the T
mode. The quantum number m refers to the initial state, |m,0,0,0; c〉.
The inverse transition rates (1/�m→n) for the relaxation from state
|m,0,0,0; c〉 to state |n,0,0,0; c〉 are depicted in red (m − n = 1
quantum), green (m − n = 2 quanta), blue (m − n = 3 quanta), and
black (m − n = 4 quanta), respectively.

are suppressed. In the lower left panel it can be seen that the S
mode also efficiently transfers population to the T mode, again
following the symmetry prescriptions described above.

An important finding is that multiple quanta relaxation is
possible due to inclusion of the wave function anharmonicity,
as evidenced from the relatively fast rates of the |3,0,0,0; c〉 →
|1,0,0,0; c〉 and |2,0,0,0; c〉 → |0,0,0,0; c〉 transitions in Ta-
ble II. This appears also in the relaxation dynamics of the
second excited state of the T mode in the top left panel of
Fig. 3, where the direct relaxation to the ground state provides
competition for the sequential relaxation. As can be seen
from Fig. 4, this trend is confirmed for higher excited states.
As the number of quanta along the T mode increases, other
dissipative channels, such as the three-quanta and four-quanta
relaxation mechanisms, also become competitive. Also, for
low quantum numbers, the even-quanta relaxation mechanisms
seem to play a dominant role. This is probably due to
the wave functions’ symmetry, whereas with the increasing
delocalization of the higher excited states, the overlap between
energetically separated states dwindle and with them the
associated transition probabilities [see Eq. (12)].

A final word must be made concerning the relaxation
between potential wells. At the low energies reported above,
the relaxation remains localized in a single potential well.
For states with energies above and close to the top of
the diffusion barrier (�E‡ ∼ 500 hc/cm), coupling between
states localized in different wells is indeed possible. The usual
approach to calculate relaxation rate of multiwell problems
relies on a simple truncated, local harmonic approximation.
This prohibits relaxation between potential wells. In our
formalism, the extension from a single to multiple potential
wells is straightforward, since the integrals in Eq. (12) are
computed numerically exactly. The effect can be seen in Fig. 5,
where the relaxation dynamics of a highly excited state of the
central well is depicted. The complex nodal structure of the
probability density in the XZ plane of the initial state, for
which a clear assignment remains elusive, is shown in the
inset. The populations of states localized in the left, central,
and right wells are summed and plotted in green, black, and
blue, respectively. Upon relaxation, most of the population
remains in the central well, with about 20% falling in either of
the other minima. The small population discrepancy between
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FIG. 5. (Color online) Relaxation of a highly excited central state.
The 2D density in the XZ plane of the initial state is shown in the
inset. The sum of population of states localized in the left, central,
and right wells are shown in green, black, and blue, respectively.

the left and right wells can be traced back to the imperfect
numerical localization procedure. Provided that the population
of an initially localized adsorbate can reach a state close to the
diffusion barrier, lateral diffusion should be possible.

IV. IR-DRIVEN EXCITATIONS

A. Dipole moment

To steer the adsorbate dynamics we use short and intense
laser pulses. The oscillating electric fields are treated in the
semiclassical dipole approximation, as shown in Eq. (8). A
global dipole moment surface (DMS) is required to evaluate
the transition dipole elements in Eq. (10). The 4D function
available from the literature53 only treats the z component
of μ̂ along the r , Z, θ , and φ coordinates of the adsorbate;
i.e.. the dependency along the diffusion direction is neglected.
To circumvent this limitation, we propose a new model
dipole surface obtained from density functional theory (DFT)
calculations on small copper clusters. The CO adsorbate is here
treated as a classical dipole with orientation {θ,φ}, yielding a
dipole moment vector

	μ(X,Z,θ,φ) =
⎛
⎝μz(X,Z) sin(θ ) cos(φ)

μz(X,Z) sin(θ ) sin(φ)
μz(X,Z) cos(θ )

⎞
⎠ . (13)

The z dependence of the two-dimensional (2D) dipole moment
μz(X,Z) can be simplified by exploiting the periodicity of the
surface:

μz(X,Z) = μtop(Z) cos2

(
πX

L

)
+ μbrg(Z) sin2

(
πX

L

)
,

(14)

where L is the distance between two copper atoms along the
x direction, and the μi(Z) describe the Z dependence of the
dipole moment along the space-fixed z axis for a CO molecule
sitting perpendicularly on top of a copper atom (labeled top)
or between two copper atoms (labeled brg) of the surface. The
trigonometric functions switch the dipole moment from one
symmetric site to the other smoothly along the X axis. The
corrugation of the surface is thus properly included while its
anisotropy, which does not play an important role in the present
case, is neglected.
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FIG. 6. (Color online) Structure of Cu18 clusters used to compute
the dipole moment of CO adsorbed on top (left) and at the bridge
site (right) of a Cu(100) surface. The yellow, orange, and red balls
represent copper, carbon, and oxygen atoms, respectively.

The two 1D dipole functions are obtained by fitting DFT
calculations to Cu18 clusters that have the symmetry at the
sites of interest. Specifically, three-layer clusters with 9-4-5
and 6-6-6 arrangements were used to represent the copper
surface at the top and bridge sites, respectively (see Fig. 6).

The z component of the dipole moment for different Z

positions of the adsorbate are computed using the CAM-
B3LYP functional,94 as implemented in the GAUSSIAN09

program package.95 The LANL2 effective core potential (ECP)
and the associated triple-zeta basis are used for all copper
atoms,96–98 and Dunning’s cc-pVTZ bases were used for the
adsorbate atoms.99 Both curves are fitted to asymmetric Eckart
barriers:

μi(Z) = μi,0 + ai,1

(
e−(Z−ζi )/bi

(1 + e−(Z−ζi )/bi )

)

+ ai,2

(
e−(Z−ζi )/bi

(1 + e−(Z−ζi )/bi )2

)
. (15)

The fit parameters are reported in Table III. The asymptotic
values are then adjusted to the dipole moment of a free-
standing CO molecule (μi,0 = μ

(gas)
CO = 0.0365ea0).

The transition dipole moments along the z direction, μ(z)
mn =

〈m|μz(X,Z) cos(θ )|n〉, between selected states |m〉 and |n〉 are
shown in the upper right part of Table II. It can be seen that
excitation of the S mode (|0,0,0,0; c〉 → |0,1,0,0; c〉, μmn =
0.01506ea0) is about an order of magnitude larger than for the
θ mode (|0,0,0,0; c〉 → |0,0,1,0; c〉, μmn = 0.00128ea0) and
that φ-mode excitations (|0,0,0,0; c〉 → |0,0,0,1; c〉, μmn ∼
10−10ea0) are forbidden. This is consistent with the trends
observed for the transition dipoles obtained using the reference
function from the literature.53,100 In the later case, the absolute

TABLE III. Fit parameters for the z component of the dipole
moment for CO on Cu(100) along the Z coordinate.

Parameter Top Bridge

μi,0 −0.0478ea0 −0.006173ea0

ai,1 −0.09305ea0 −0.3343ea0

ai,2 1.0465ea0 0.1966ea0

bi 0.4584a0 0.0718a0

ζi 4.9141a0 4.8154a0

μ
(gas)
CO 0.0365ea0 0.0365ea0

value of the transition dipole moments are about 2–3 times
larger, indicating that the slope of the DMS close to equilibrium
is larger. These discrepancies can be traced back to the
model used to compute the dipole function. Whereas we use
small core ECPs for all 18 copper atoms in our clusters, an
unbalanced description was chosen by Ricart et al.100 There,
a large-core ECP and a minimal basis were used to describe
the four atoms forming the bottom layer of a pyramidal Cu5

cluster. The top layer was formed of a single copper atom
described by a small-core ECP and a larger basis, on which the
CO molecule was adsorbed. The cluster itself thus has a very
large permanent dipole and is also inadequate for representing
adsorption on a bridge site (i.e., between two copper atoms).
We compared our results with perturbative MP2 calculations,
as well as with coupled cluster references. Curves similar to
those for the DFT/CAM-B3LYP case were observed for the
Z dependence of the dipole moment for the top position. We
thus believe that the approach followed here yields a physically
more accurate description of the dipole moment surface.

It is interesting to note that, although the fundamental
excitation of the T mode is forbidden by symmetry, the
totally symmetric first overtone is relatively easy to excite
using a z-polarized field (|0,0,0,0; c〉 → |2,0,0,0; c〉, μmn =
0.04603ea0). This is also the case for all two-quanta transitions
(|1,0,0,0; c〉 → |3,0,0,0; c〉, |2,0,0,0; c〉 → |4,0,0,0; c〉, etc).
This is due to the relatively large x dependence of the dipole
moment, which can be traced back to the strong coupling of
the wave functions in the XZ plane (see Fig. 2). Further, as
was discussed previously elsewhere, the carbon atom ventures
much closer to the surface at the bridge stationary point (2.212
Å versus 2.499 Å for the top position). In the simple Blyholder
picture, the increased back donation to the antibonding orbitals
of the adsorbate weakens the CO bond r , whose length
increases from 1.154 to 1.174 Å. Hence, the dipole moment
at the bridge position is bound to be larger than at the top
position, and with it the z dependency of the dipole moment.

Finally, it must be noted that, although it is not possible
to excite the angular φ mode using a z-polarized field, the
excitation can be performed efficiently using an x-polarized
field. This is due to the relatively large transition dipole
moment along the x direction, μ(x)

mn = 0.01506ea0, which is
otherwise vanishingly small along the z direction. Another
interesting point is that, although the first excited state of
the T mode is also strongly coupled to the ground state
via the x component of the dipole (μ(x)

mn = 0.01034ea0),
the transition to higher excited states is less efficient
(μmn ∼ 0.0060107ea0 for |1,0,0,0; c〉 → |2,0,0,0; c〉, μmn ∼
0.001573ea0 for |2,0,0,0; c〉 → |3,0,0,0; c〉, etc). This is a
sign of great anharmonicity, which renders vibrational ladder
climbing inefficient and proves eventually futile for favoring
lateral motion of the adsorbate.

B. Mode selectivity and quantum diffusion

Using the model DMS and the 4D eigenfunctions obtained
above, we first perform infrared excitations of selected modes
of the adsorbed CO in order to evaluate the controllability of the
system. Since our ultimate goal is to study the directionality
of the diffusion process, we start our simulations from the
ground state of the central well. We perform excitations of
states that have relatively large transition dipole moments
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and that can potentially be used to induce a lateral dis-
placement. These include the direct excitation of the T-mode
overtones, |0,0,0,0; c〉 → |2,0,0,0; c〉 → |4,0,0,0; c〉 → . . .,
the indirect excitation of the θ coordinate via the φ

mode, |0,0,0,0; c〉 → |0,0,0,1; c〉 → |0,0,1,0; c〉, and vibra-
tional ladder climbing along the S mode, |0,0,0,0; c〉 →
|0,1,0,0; c〉 → |0,2,0,0; c〉 → |0,3,0,0; c〉. The latter assign-
ments are a bit loose since intermode coupling is very strong
already for the second S-mode excited state, and the nodal
structure is thus more difficult to determine unambiguously.

The adsorbate is excited using q-polarized π pulses of the
form

Fq(t) = F0,q sin2

(
πt

�T

)
cos(ωt), (16)

which are tailored to completely invert the population in an
isolated two-level system. For a pulse of duration �T , the
field amplitude for the transition from state |m〉 to state |n〉 is
given analytically by F0,q = 2h̄π

|μ(q)
mn|�T

. The population dynamics

driven by z-polarized π pulses tuned at the S-mode transition
frequency can be seen from the top panel of Fig. 7, along
with the sum of the depicted states. Most of the population
(∼75%) is found in the states shown in the figure at the end
of the pulse, with the dominating contribution coming from
the fundamental (∼30%). Note that the combination band
|0,1,0,1; c〉 is also significantly populated—an example of
intermode coupling. The remaining population is found in the
higher harmonics of the S mode but remain centered in the
central well, although already well above the diffusion barrier.
For controlling the excitation while remaining below the
diffusion barrier, the pulse shape and amplitude are optimized
using local optimal control theory. In particular, we use the
algorithm introduced in Ref. 65, in which a variational solution
for the time-local field in a dissipative system is given as a
correction to a reference field F0(t) along a direction q:

Fq(t) = F0(t) + α(t)Tr[μ̂(q)Ĝ(t)Im[ρ̂(t)]], (17)

where α(t) = α0[1 − cos20(πt/tf )] enforces the proper initial
and final conditions, and α0 is a user-defined penalty factor.
The operator Ĝ(t) defines a time-dependent target, which is
here chosen as a sum of projectors on the states of interest
weighted by Gaussians evolving in time, wk(t):

Ĝ(t) =
∑

k

wk(t)|k〉〈k|. (18)

The results of the optimization for α0 = 5 are shown in the
central panel of Fig. 7, along with the Fourier transform of
the field. The reference field F0(t) is chosen as the π pulse
tailored to excite the S mode. Although the excitation yield is
only marginally improved at 40%, the field selectivity is almost
perfect. From the excited population, only a small portion is
now found in the second excited state and almost none in
the third, with the intermode population transfer completely
suppressed. The excitation to state |3,0,0,0; c〉, which could
serve as an intermediate to favor diffusion, is shown in the
bottom panel. Due to the high intensity of the optimized field,
the population of the states depicted represents only about 65%
of the full system dynamics. Since all the pure S-mode states
are shown in the figure, this indicates that many intermode
transitions occurred. In comparison to the π pulse, the target
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FIG. 7. (Color online) Excitation of the S mode using short
z-polarized laser fields. The ground state, the first, second, and third
excited states, as well as the mixed Z-φ state are shown in solid
red, dashed green, dotted magenta, dotted black, and dotted blue,
respectively. The sum of the population of the states depicted is
shown as dashed gray lines (

∑
pi). Top panel: π pulse excitation.

Central panel: Locally optimal pulse for the direct excitation
of state |0,1,0,0; c〉 (α0 = 5, fluence: f = 780 mJ/cm2). Bottom
panel: Locally optimal pulse for the sequential excitation of state
|0,3,0,0; c〉; α0 = 5. (α0 = 5, fluence: f = 2.0 J/cm2) The Fourier
transforms of the optimized fields are shown in their respective insets.

state population is doubled (10% versus ∼20%), with the
main population loss coming from the ground and first excited
states. The Fourier transform of the pulse reveals a single
dominant peak centered at the S-mode transition frequency. A
slight asymmetry toward the lower energies can be seen, which
accommodates the anharmonicity along the vibrational ladder.
In contrast, the pulse tailored to achieve excitation of the
fundamental band contains three main components (see inset
in the central panel). The two higher frequencies are centered
at the S-mode overtones and prevent further excitation.
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FIG. 8. (Color online) Excitation of the T mode and of the R mode using short polarized laser fields. The sum of the population of the
states depicted is shown as dashed gray lines (

∑
pi). Top left panel: z-polarized π pulse excitation of the T mode. The ground state (solid red),

as well as the second (dashed green), fourth (dotted blue), sixth (dashed magenta), and eighth (dashed dotted cyan) excited states, are shown.
Bottom left panel: Locally optimal z-polarized pulse for the sequential excitation of state |0,4,0,0; c〉 (α0 = 0.1, fluence: f = 56 mJ/cm2) and
its Fourier transform (see inset). The key is the same as in the top right panel. Top right panel: x-polarized π pulse excitation of the R mode.
States |0,0,0,0; c〉 (solid red), |1,0,0,0; c〉 (dashed magenta), |2,0,0,0; c〉 (dotted black), |0,0,0,1; c〉 (dashed green), |0,0,1,0; c〉 (dotted blue),
|2,0,1,0; c〉 (dashed dotted orange), |0,1,0,2; c〉 (dotted gray), and |0,1,1,0; c〉 (dashed dotted cyan) are depicted. Bottom right panel: Locally
optimal x-polarized pulse for the sequential excitation of state |0,0,1,0; c〉 (α0 = 10, fluence: f = 3.0 J/cm2). The key is the same as in the
top right panel. The Fourier transforms of the optimized fields are shown in their respective insets.

Figure 8 shows the population evolution for the excitation
along the T mode (left panels) and the R mode (right panels)
using, respectively, z and x polarized pulses. The top panels
show the results for π pulses and the bottom panels show those
for locally optimal control pulses. From the top left panel, it can
be seen that the even overtones can be populated efficiently,
as expected from the transition dipole moments. The pulse
was chosen somewhat longer (5 ps) to favor the selectivity
of the transition by reducing dynamical broadening. The long
lifetime of the T mode (108 ps) means that dissipation should
not play a dominant role in the dynamics. Since the fourth
excited state has the largest yield we tailor a pulse to reach
specifically this target, the result of which can be seen from the
bottom left panel. As was the case for the S-mode excitation,
the yield is only marginally improved from ∼42% from
the π pulse to ∼55%, while selectivity is greatly improved.
Dissipation already plays a small role in the dynamics, as can
be seen from the decay after the target population reached a
maximum at about 3.25 ps. According to the harmonic rule,
the fourth excited state has an estimated lifetime of 27 ps,
which is close to our value of 25.9 ps for the associated
inverse transition rate (|4,0,0,0; c〉 → |3,0,0,0; c〉). On the
other hand, anharmonic coupling opens a further dissipation

channel from |4,0,0,0; c〉 to |2,0,0,0; c〉 which dominates the
relaxation dynamics (with an inverse transition rate of 22.9 ps).
Although the estimated lifetime is in good agreement with our
findings, the crude harmonic model gives a qualitatively wrong
microscopic picture of the relaxation mechanism.

The situation is quite similar for the R-mode activation.
Upon excitation using a 1-ps x-polarized π pulse tuned at
the first transition frequency, many combination bands and
other modes are populated (see top right panel of Fig. 8).
These include pure T-mode states, as well as mixed T-mode,
S-mode, and θ states. This is an indicator that most of the
intermode coupling is mediated by the angular degrees of
freedom. Further, only part of the population dynamics could
be illustrated here, as many other states get populated either
by the direct excitation or by subsequent relaxation. To try
favoring the diffusion motion, it would be desirable to excite
the θ state so as to induce a tilting motion. The optimization
result is shown in the bottom right panel of Fig. 8. The field
fluence becomes very large (f = 3.0 J/cm2), which induces
even more undesirable intermode excitation. The population
increase from ∼5% to ∼10% is far from satisfying and is a
consequence of the short lifetime of the θ state, which relaxes
within 862 fs to the ground state. The remaining 50% of the
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FIG. 9. (Color online) Diffusion along the x direction using
xz-polarized laser fields. The sums of populations in the left,
central, and right wells are depicted in cyan, blue, and magenta,
respectively. Top panel: Simultaneous resonant pulses for the S-mode
(z-polarized, with h̄ω = 308 hc/cm and a duration of 1 ps) and
R-mode (x-polarized, with h̄ω = 288 hc/cm and a duration of 4 ps)
excitations. Central panel: Sequential resonant pulses using the same
parameters as above. Bottom panel: Circularly polarized pulse with
energy h̄ω = 308 hc/cm and dephasing ϕ = π/2. The fields’ time
profiles (in MV/cm), along with their projection on the x (Fx , red)
and z (Fz, green) axes, are shown in black in their respective insets.

population is still located in the central well and spread on
many states.

All the above excitations were performed within a single
potential energy well along the X coordinate using the
localized basis described in Sec. II B. Since the vertical
excitations could not favor diffusion we resort to combination
of pulses polarized along the x and z directions. Figure 9
shows the time evolution of the sum of populations in the
different wells for simultaneous (“xz resonant,” top panel) and
sequential (“xz sequential,” central panel) pulses. To enhance
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FIG. 10. (Color online) Population of the states localized on top of
the central copper atom excited simultaneously by a 1-ps z-polarized
pulse and a 4-ps x-polarized pulse. The z-polarized pulse is tuned
to the S-mode frequency (h̄ω = 308 hc/cm). The frequency of the
x-polarized pulse is chosen as h̄ωu = 269 hc/cm (“undertuned,”
red), h̄ωres = 288 hc/cm (“resonant,” green), and h̄ωo = 310 hc/cm
(“overtuned,” blue).

the bouncing motion on top of the central copper atom, a
z-polarized π pulse of duration 1 ps tuned at the S-mode
frequency (h̄ω = 308 hc/cm) is used. An x-polarized pulse
of duration 4 ps and amplitude F0,x = 100 MV/cm tuned at
the R-mode frequency (h̄ω = 288 hc/cm) is used to enforce
lateral motion and promote the lateral displacement. The
resulting fields (black line), as well as their projections on
the z (green) and x (red) axes, are shown in the insets. At
the end of the simultaneous pulse, about the same population
coming from the central well (i.e., adsorbed on top of the
central copper atom) is transferred to either the left (29.8%) or
right (28.9%) wells. The situation is similar for the sequential
pulse, where 28.8% and 28.5% of the population are found,
respectively, in the left and right wells. By taking into
account the numerical errors associated with the localization
procedure, the differences concerning the preferred direction
of the diffusion cannot be considered significant. Still, it
remains that the dephasing between the two pulses plays a
small role in favoring diffusion. As can be seen by comparing
the left and right well populations at around 1 ps, the major
contribution to diffusion comes from excitation of the R mode
using an x-polarized pulse. Only a small population transfer to
the side wells (about 5%) is observed at the end of the “pure”
z-polarized pulse (see central panel), whereas it appears as a
shoulder on the curve obtained for the simultaneous pulses.
This is partially due to the larger amplitude of the field along
the x direction.

Detuning the frequency of the x-polarized pulse up to about
±10% around the resonance energy did not influence greatly
the excitation selectivity, while it affects somewhat the transfer
yields. This can be taken from Fig. 10, where the population in
the central well is shown for three sample frequencies. Since
the field with higher frequency performs better, a simpler field
containing two components tuned at the S-mode excitation
energy could be used to favor diffusion. The bottom panel
of Fig. 9 shows the population evolution of the three wells
driven by a circularly polarized field of the form (in Cartesian
representation)

	F (t) = F0U (t)

⎛
⎝ cos(ω0t)

0
cos(ω0t + ϕ)

⎞
⎠ . (19)
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Here, U (t) = 1 − cos20( πt
�T

) is the pulse shape, F0 is its
amplitude, and h̄ω0 = 308 hc/cm is its frequency. The phase
shift between the x and z components is set to ϕ = π/2.
The resulting field and the associated projections are depicted
in the inset. One can see that the circularly polarized pulse
performs better than the sequential and simultaneous pulses
proposed above. At the end of the propagation, a statistical
mixture of populations in all three wells is obtained. The
improved diffusion is partly due to the overtuning of the z

component of the field with respect to the resonant frequency,
but it is also due to the larger field amplitude along the z axis.
Again, no preferred direction was found for the diffusion.
It appears that directionality cannot be implemented using
such simple rational pulses. Other control strategies, such
as position-dependent heating and cooling cycles or coherent
wave packet control, could potentially perform better but were
not further investigated here.

V. CONCLUSION

In conclusion, we have investigated the excitation and
relaxation dynamics of CO on Cu(100) within the reduced
density matrix formalism in its Lindblad form. A model
4D Hamiltonian for studying local excitations and diffusion
along the x axis was proposed. The wave functions were
computed variationally using a new variant of the inexact
spectral transform Lanczos method to favor convergence of
the lowest lying eigenstates. A novel numerical scheme for
the localization of sets of three delocalized wave functions was
proposed and applied to the 4D eigenstates of the CO/Cu(100)
system, yielding a physically sound basis set of localized
functions to study diffusion at the surface. The relaxation rate
due to electron-hole pair coupling was computed using an
anharmonic perturbative rate approach. The corrugation and
the intermode coupling were taken into account by including
the position dependence of the nonadiabatic interactions.

From the relaxation dynamics it can be seen that intermode
coupling plays an important role in the energy redistribution
among the molecular vibrations at the surface. It appears that
the θ angle is particularly important for mediating the energy
redistribution. This is not what would be expected from the

single-mode harmonic picture usually used to compute state-
resolved transition rates. Further, a rigorous assignment of
the quantum numbers of the different modes is necessary for
the latter model, which is not possible here due to the strong
anharmonic coupling of the 4D vibrational wave functions.
The simplistic picture is bound to provide a false depiction
of the microscopic relaxation dynamics, whereas our model
proposes a more complete and balanced description.

Surprisingly, the direct relaxation of angular φ states
to the ground state is not found to be the dominating
dissipative channel, but rather the conversion to the frustrated
translation mode dominates. The relaxation of the latter is
strongly affected by anharmonicity to the unforeseen extent
that multiple-quanta deexcitation even dominates for higher
T-mode excited states. Relaxation between different wells was
also observed for states well above the diffusion barrier but
was not significant for strongly localized states.

The dissipative dynamics was driven by short, intense
laser fields. Using a new global model dipole moment
surface, we demonstrated that selective excitation of the modes
perpendicular and parallel to the surface could be achieved,
while state selectivity could be attained with partial success
using time-local control theory. Various polarized pulses were
tailored to transfer population from one adsorption site to the
others along the diffusion coordinate with partial success.
It was even possible to create a statistical mixture using a
slightly detuned field polarized in the xz plane. Efforts to
enforce directionality to the diffusion motion were in vain,
most probably due to the surface symmetry. Other types of
control scenarios, which will be the subject of future work,
could produce better results.
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