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Slope selection-driven Ostwald ripening in ZnO thin film growth
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The morphology evolution of polycrystalline ZnO films grown by pulsed laser deposition was investigated by
atomic force microscopy and compared with morphologies simulated in 2 + 1 dimensions from a mesoscopic
continuum model of selection of surface slopes. The distinctive feature of such an evolution is that the competition
between grains gives rise to a singular grain coarsening mechanism, which although it matches the fingerprints of
the Ostwald ripening, it remains operative under atypical growth conditions (temperatures as low as 0.28Tmelting

and grains with sizes ranged between 20–500 nm) and is driven by the faceting of the grain faces. The resulting
pyramidal single-crystalline grains from such a coarsening mechanism have been correlated with the enhanced
ultraviolet lasing activity at room temperature of nanostructured ZnO.
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I. INTRODUCTION

In the context of the physics of crystal growth, Ostwald
ripening (OR) is a well-known mechanism of coarsening1 of
surface species and/or grains (entities hereafter), in which
the larger entities grow, drawing atoms from the smaller
ones that shrink by atomic dissociation in order to reduce
the surface energy of the system.2–6 This mechanism, which
can be understood7 as a kind of hierarchical cannibalism
between isolated entities, requires: (i) that the entities ex-
changing adatoms are close together (with entity spacing
� diffusion length) so as the capture rate of the larger
entity influences the rate of decay in size of the smaller one
via local gradients of the adatom density;2–6 (ii) moderate
growth temperatures (typically � 0.5Tmelting for oxides and
nitrides5,8) and low adatom densities (i.e. high-mobility growth
conditions) in order to promote the efficient breaking up of the
smaller entities, which takes place only for dissociation rates
higher than the growth rates induced by the diffusive noise;9

(iii) since OR is a relatively slow mechanism (that involves
series of dissociations10), it is effective for small entities with
sizes of a few tens of nanometers.3,6,9 On the contrary, the
coarsening between larger entities happens mainly through
peer-to-peer coalescence processes and grain growth that in-
volves phenomena of formation and grain boundary migration,
massive rearrangement of atoms (e.g. during grain rotation),
and generation of strains and inner defects with the consequent
formation of noncompact entities (typically; these exhibit per-
colated morphologies).11,12 Unlike the standard coalescence
and grain growth, OR produces typically compact single-
crystal entities with pseudo-equilibrium equiaxed shapes13

since the border diffusion is faster than the dissociation, which
means that the captured adatoms can diffuse along the entity
perimeter and be attached to the nearest kinks before a new
capture takes place.

In this paper, we identify a late OR mechanism involving
large grains (with sizes ranging between 20–500 nm) at
deposition temperatures as low as 0.28Tmelting in ZnO films.
The origin and the main characteristics of such an atypical
mechanism are elucidated by addressing the morphology
evolution of the ZnO films (described in terms of the evolution
of the size and shape of the grains, their surface slopes, and

morphological environments from both average values and
distribution functions) through a mesoscopic continuum model
of slope selection.

II. EXPERIMENT

[0001]-textured ZnO films were pulsed laser deposited
(PLD) on Fe-doped InP(100) substrates using a KrF excimer
laser (λKrF = 248 nm, laser fluence = 4 J/cm2, and pulse
frequency = 10 Hz) focused on ZnO ceramic targets located at
6 cm from the substrate and rotated at 20 rpm. The deposit was
carried out at a high vacuum chamber (with base pressure of
≈8 × 10−7 mbar) in the presence of a highly pure (99.999%)
molecular-oxygen flux (with dynamic pressure of 0.1 mbar) at
a temperature of T = 623 K (0.28 Tmelting). The growth rate
was F = 0.08 nm/s, and deposition times ranged from 0 �
t � 2 × 104 s (i.e. film thicknesses of d = 50–1600 nm).
Afterwards, the film morphologies were investigated ex situ
by atomic force microscopy (AFM),14 operating in contact
mode using ultrasharp silicon tips with a nominal radius of 2
nm and aspect ratios as high as 10 to achieve high-resolution
images. The tip miscut was estimated to be within the range
of 55–60◦ (that corresponds to a cutoff slope of mtip � 0.66)
on calibration samples. The tip effects on measurements by
AFM on flatter morphological features are considered to be
negligible, whereas the slopes detected beyond the cutoff value
are ascribed to tip-induced artifacts.

III. RESULTS

Figure 1 outlines the morphology evolution of the ZnO
films. We observe that, for early growth stages [t < 2 × 103 s,
Fig. 1(a)] the morphology is dominated by a high density
of small Gaussian-like shaped grains that often impinge
each other, termed mounds hereafter. For intermediate stages
[2 × 103 s < t < 1 × 104 s, Figs. 1(b)–1(c)], two sets of
grains are distinguishable by their shapes and sizes: large
grains with partially faceted flanks (i.e. formed by vicinal
surfaces with constant slopes) and a sixfold in-plane symmetry
(denominated pyramids hereafter), which are immersed within
the background of mounds whose sizes decrease slightly. The
density of mounds overcomes a fast decrease as the pyramids

045434-11098-0121/2012/86(4)/045434(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.045434
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FIG. 1. (Color online) AFM images of ZnO films for different
deposition times: (a) t = 1.5 × 103 s, (b) 3 × 103 s, (c) 8 × 103

s, and (d) 1.8 × 104 s. The corresponding height scales (in nm) are
included as color bars. Scanned area was 1 × 1 μm2 in (a) and (b)
and 3 × 3 μm2 in (c) and (d). (e) Cross-section profiles taken over
representative grains for each growth regime. Arrow indicates the
direction of faceting propagation, whereas dashed lines (parallel to
the grain flanks) assist in realizing the slope evolution.

coarsen, which indicates that mounds are incorporated into
the pyramid bulks. For late growth stages [1 × 104 s < t ,
Fig. 1(d)], the surface is free of mounds, and it is fully
covered by submicrometric pyramids with well-developed
faceted faces, which impinge each other forming a compact
arrangement of grains. Figure 1(e) highlights the profiles
taken over representative surface features for increasing t ,
showing how the grain faceting starts at the bottom regions
and propagates uphill to give rise to a full transformation
towards pyramidal structures for late stages. The sixfold
in-plane symmetry of pyramids results straightforwardly from
the ZnO[0001]-texture of the films with the c axis of the
hcp cell along the out-of-the-film plane direction.15,16 Similar
morphologies to those presented here have been obtained in
ZnO films grown by other vapor deposition techniques, such
as thermal evaporation, sputtering, and chemical etching.17–19

Figure 2 depicts the time evolution of several statistical
parameters representative of the thin film morphology, namely:
mound and pyramid densities, ρm and ρp, respectively,
computed by direct counting using flooding procedures once
classified the grains according their shapes [Fig. 2(a)]; surface
slope m of the grains (without discerning between grain types)
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FIG. 2. (Color online) Evolution of statistical parameters repre-
sentative of the film morphology, namely: (a) density of mounds
ρm (�) and pyramids ρp (�), (b) surface slopes m (�) with ms

denoting the selected one, (c) grain-size λ (◦), and (d) fractal
dimension ζ (∇). The curves correspond to: [solid ones] fitted and/or
simulated results using single- (1M) or many-mound (nM) conditions;
[dashed] expected and/or simulated behaviors for limit cases and/or
saturation; and [dotted] lines connecting data points to guide to the
eye. Insets in (d) show the percolated and compact-like morphologies
(on the left and right, respectively) that result from solid-on-solid
simulations concerning peer-to-peer coalescence and hierarchical
atomic exchange with edge diffusion similar to OR, respectively.

estimated by means of a polynomial-based image processing
procedure described elsewhere [Fig. 2(b)];20,21 in-plane grain
size λ (just grain size hereafter) estimated from the contour
maps in the AFM images [Fig. 2(c)];20 and fractal dimension
ζ of the grain perimeter [Fig. 2(d)].22 Figure 2(a) reveals that
the increase in ρp takes place simultaneously with the decrease
in ρm, which points out to the transformation of mounds
into pyramids at a ratio—estimated from the corresponding
steady densities—of 102 mounds per each formed pyramid.
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FIG. 3. (Color online) Evolution of the distribution functions N (. . .) of morphological statistical parameters, namely: (a)–(d) grain-size
distributions N (λ), (e)–(h) surface slope distributions N (m),and (i)–(j) environment distributions in terms of numbers of nearest neighboring
grains N (nNN ). The corresponding deposition times are: (a), (e), and (i) t = 420 s; (b) and (f) 1.5 × 103 s; (c) and (g) 8 × 103 s; and (d), (h), and
(j) 1.8 × 104 s. Insets provide complementary information: (a) and (b) classification by size of the grains, (e) and (h) surface-orientation maps
N (m,φ), where φ denotes the azimuthal coordinate providing in-plane information, and (i) and (j) representative morphological environments
of the population of mounds and pyramids. We believe that high-slope green-curve components in (f) and (g), whose means are higher than
the AFM-tip cutoff (mtip ≈ 0.66–0.7), correspond to tip-induced artifacts related to the abrupt changes of the slope on the grain flanks with the
uphill faceting. Note this component disappears in (h) once the faceting has propagated to the whole flanks.

Figures 2(b) and 2(c) display the dynamics of faceting (the
average slope increases up to reach a saturation value of
ms = 0.41) and coarsening (λ ∝ t1.0±0.1) of grains resulting
from such a transformation. The selected slope ms = 0.41,
which corresponds to ZnO{101̄3} facets, is lower than ms ≈
1.8 (ascribed to ZnO{101̄1̄} facets) obtained under nearer-of-
equilibrium conditions (i.e. at higher growth temperatures17).
Additionally, this value is lower than the slope threshold
corresponding to the estimated tip miscut, mtip � 0.66,
which is why tip effects are considered to be negligible
in the determination of the slopes for the surface entities
analyzed here. These arguments allow us to affirm that the
faceting reported here corresponds to a kinetic process that
results from the competition between surface currents rather
than a thermodynamic faceting toward facets with lower
surface energies.23 The fact that the compact grain shapes
are preserved during the growth [note that ζ = 1.9 ± 0.1
remains constant in Fig. 2(d)] for deposition temperatures
as low as 0.28Tmelting indicates that the transformation of
mounds into pyramids takes place preferentially through
atomic exchange by surface currents (i.e. it is an OR-type
process), and thus the phenomena of coalescence and/or grain
boundary migration play a minor role in both the coarsening
and faceting of the pyramid-shaped grains. This statement
is based on the fact that the phenomena of coalescence and
grain boundary migrations involve only the boundary sections
between neighboring grains, such that by randomly removing
these sections, percolated grains are obtained whose fractal
dimensions decrease as the grains coarsen, as plotted by the
dashed curve in Fig. 2(d). Details on the fitted curves to the

experimental data and those simulated for limit cases (solid and
dashed curves, respectively) in Figs. 2(b)–2(c) are provided
below.

In order to provide further information, Fig. 3 plots the
time evolution of the normalized distribution functions N (. . .)
of some statistical parameters: the distribution of grain sizes
normalized by the AFM-scanned area [Figs. 3(a)–3(d)]; the
distribution of surface slopes normalized per the number of
uncorrelated areas in which can be subdivided the AFM image
once interpolated [Figs. 3(e)–3(h)];24 and the distribution of
morphological environments in terms of the number of nearest
neighboring grains nNN [Figs. 3(i)–3(j)]. The corresponding
insets provide insight on the classification by size of the grains,
giving rise to the multimodal λ distribution [Figs. 3(a)–3(b)];
the evolution of the azimuthal φ dependence of the distribution
of surface slopes N (m,φ) (also termed surface orientation
map) [Figs. 3(e) and 3(h)];21 and the representative morpholog-
ical environments of the populations of mounds and pyramids
in which the nearest neighbors of the central grains have been
distinctively colored [Figs. 3(i) and 3(j)]. As a consequence
of the transformation of the mounds into pyramids, a larger
grain-size contribution [which is ascribed to the population
of pyramid-shaped grains, red curve in Fig. 3(b)] emerges
from unimodal distribution displayed in Fig. 3(a) (blue curve)
that corresponds to the mound population. Further atomic
exchange results in a shift of the λ distribution of the pyramids
toward larger sizes (i.e. the pyramids coarsen) from a decay
in the mound population, which disappears for late stages [see
trend in Figs. 3(a)–3(d)]. Once the resulting pyramids become
larger than 100 nm, both the faceting of their flanks toward
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ZnO{101̄3} planes (realized as a shift of the m distribution
toward m → mS ≈ 0.41) and the grain texturing (giving rise
to sixfold in-plane symmetry) take place as shown in the series
of Figs. 3(e)–3(h). Additionally, the data in Figs. 3(i)–3(j)
indicate that the thus-formed pyramids are arrayed in less
compact arrangements than the departing mounds since the
average number of nearest neighboring grains decreases from
n̄m

NN = 5.8 [mounds, Fig. 3(i)] down to n̄
p

NN = 4.5 [pyramids,
Fig. 3(j)]. A fact to stress of these results is that the grain size
and morphological environment distributions of the pyramid
population are broader than those of the mound population,
whereas its surface slope distribution is narrower than the
corresponding one. This suggests that, whereas the differences
of grain size and/or the morphological environments between
mounds rule the intermound and mound-pyramid atomic
exchanges (similar to the typical OR) by selecting which grain
survives and which one perishes such that only small size
and environment deviations are possible, these differences do
not appear to be important for the pyramid faceting. Instead,
our results point out that the difference of the surface slopes
between neighboring pyramids would play here a key role on
the atomic exchange between pyramids.

IV. DISCUSSION

A. Model

In the first part of the discussion, we analyze the striking
behavior of the slope saturation (faceting) during the formation
of pyramid-shaped grains in terms of the interactions between
the small grains with mound shapes. With this aim, we
employ a continuum mesoscopic model of slope selection.
In this model, the morphology transformation of mounds into
pyramids is attributed to asymmetries between the intra- and
interlayer mass transports caused by the existence of step-edge
barriers.23,25 Such an asymmetry is described in terms of
the balance between the local currents, namely: uphill and
downhill surface currents (denoted as J up and J down, respec-
tively) to what the following mechanisms contribute: J up leads
the fraction of adatoms reflected by the step-edge barriers
and those deposited preferentially on the upper terraces (by
steering) into the ascending steps; whereas J down is given by
the fraction crossing the step-edge barriers (e.g. via atomic ex-
change) plus those deposited downwards (by funneling).25 In
this context, the selected slope ms corresponds to a metastable
state in which the grain shapes (in particular their aspect
ratios) are preserved, which means that ∂tm|ms

∝ J up(ms) −
J down(ms) ≈ 0. For small perturbations around ms , the balance
J up(ms) = J down(ms) shifts to J up < J down for m = ms +
|δm| and J up > J down for m = ms − |δm| in order to stabilize
the morphological slope toward its selected value ms .23,25–30

A generalized equation at mesoscopic scale (where a
continuum approach to the film surface h(

⇀

r,t) is pertinent,
with

⇀

r being a position vector within the film plane) that
describes the kinetics of the phenomenon of slope selection
was proposed by Johnson et al.:26

∂h(	r,t)
∂t

= −α∇
( ∇h(	r,t)

m2
s + [∇h(	r,t)]2

)
+ 
(	r,t) + η(	r,t),

(1)

where α = aF l2
d (1 + e−Ea/kBT ) is a kinetic constant that takes

into account the contribution of the atoms landing within a strip
ld of the surface (with lattice parameter a) around the steps to
the surface currents via diffusion (whose activation energy
Ea depends on the local environment); 
(	r,t) comprises
the relaxation mechanisms identified here with the surface
curvature-driven Mullins–Herring diffusion 
(	r,t) = −κ∇4h

with κ = Dsρ
1
e (λ̄)εs�/kBT [where Ds ∝ e−Ea/kBT , ρ1

e (λ̄),
and εs correspond to the surface diffusion coefficient, the
equilibrium adatom density in a surface with an average
grain size of λ̄, and the surface energy, respectively]; and
η(	r,t) encloses the uncorrelated Gaussian noise generated
by stochastic perturbations of both the growth rate F and
temperature T .25,26,31 kBT /� denotes the thermal energy per
atomic volume � of the system during the process.

The first term in Eq. (1), which can be rewritten as
α[−f1(∇h) + f2(∇h)]∇2h with f1(∇h) = [m2

s + (∇h)2]−1

and f2(∇h) = ∇h · ∂∇hf1(∇h), defines the morphology
evolution towards grain shapes with constant slopes (conical
or pyramidal depending on the system in-plane symmetry)
through the competition between two complementary
mechanisms: (i) a Kuramoto–Sivashinsky-type destabilization
of the surface −α · f1(∇h) · ∇2h (Ref. 32) and (ii) a Edwards–
Wilkison-type surface relaxation α · f2(∇h) · ∇2h.33 The
functions f1(∇h) and f2(∇h) describe the slope modulation
of the faceting kinetics as follows. For very small slopes
(with ∇h → 0), the destabilization mechanism prevails
[−f1(∇h) + f2(∇h)] ≈ −(∇h)2, generating intense uphill
currents that produce an increase in the slope at a decreasing
rate ∝ α/(∇h)2. The intensity of the uphill current decreases
down to vanish for a facet with the selected slope |∇h| = ms ,
in which the equilibrium condition between both mechanisms
[−f1(∇h) + f2(∇h)] = 0 is reached, giving rise to a steady
grain shape h′(⇀

r ) with ∂t [h → h′] → 0. Conversely, for
slopes |∇h| � ms , the capacity of relaxation of the surface
prevails [−f1(∇h) + f2(∇h)] ≈ (∇h)−2 generating a weak
downhill current that leads to a slow recovery of the facet
with selected slope.

B. Interpretation of the results in the light of the model

Figure 4 displays the morphology evolution of a single
mound controlled by the slope-selection mechanism described
in (1). The initial mound shape was taken from the experimen-
tal results and fitted to a Gaussian three-dimensional (3D)
function h(r,0) = hm

0 e−(r/2λm
0 )2

[pictured in Fig. 4(a) whose
profile is plotted in Fig. 4(d), blue curve] with λm

0 = 40 nm
[mound size as shown in Fig. 2(c)] and hm

0 = 5 nm [mound
height, from combining Figs. 2(b) and 2(c)]. The 2D + 1
simulation shown in Figs. 4(a)–4(c) is performed for a
coefficient ratio α/κ = 0.07, which is estimated by fitting
the simulated faceting kinetics to the average slope evolution
plotted in Fig. 2(b), and a selected slope of ms = 0.41 (the
experimental saturation slope).34 Both thus obtained α/κ and
ms describe the faceting kinetics well in vicinal surfaces
with moderate step-edge barriers as revealed from the good
agreement with the corresponding parameters computed by
kinetic Monte Carlo simulations.26 The final mound profile is
included in Fig. 4(d) as a red curve for comparison purposes.
As the growth happens, two key features of the morphology
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FIG. 4. (Color online) (a)–(c) Simulated morphology evolution
of a single mound-shaped structure ruled by the slope-selection
mechanism described in (1). As the growth proceeds, a surrounding
depletion zone is observed, as outlined in (c). (d) Cross-section
profiles at different growth stages: (blue curve) initial stage in which
the morphological features of the mound-shaped structure—namely:
size λm

0 , height hm
0 , and the highest slope mm

0 —are depicted; and
(red curve) final stage, which corresponds to the profile of a
conical/pyramidal-shaped structure with constant slope ms along the
flanks. Shaded regions sketch the conservative mass transport through
the balance between J up and J down currents.

evolution are identified: (i) the formation of a trench-like
depletion zone around the mound perimeter and (ii) the
development of sharp apexes at intermediate times. This latter
feature arises as a consequence of the Gaussian 3D function
chosen for modeling the mound shapes having a maximum
value of curvature ∝ −∇2h(	r,t) on mound top, such as the
strength of the Kuramoto–Sivashinsky-type mechanism is
enhanced within theses regions, speeding up the faceting. Once
the slopes within the apex regions reach the selected slope,
the apex shapes remain constant. Note that these sharp apexes
should not be related with those rounded ones on the pyramidal
trunks in Fig. 1(b), whose origin is the uphill propagation
of the faceting. An inspection of the series of simulated
images [Figs. 4(a)–4(c) and no shown intermediate images]

confirms the fact pointed out in Fig. 1(e) that the faceting
kinetics start at the grain bottom and propagate up via uphill
currents that drain material from the depletion zone. For longer
growth times [Fig. 4(c)], the selected slope has propagated
to the whole flank, giving rise to the full transformation of
mounds into conical structures, as revealed by red profile in
Fig. 4(d). The time dependence of both the slope averaged
on the grain flank and the grain size computed from the
simulation for a single mound are included in Figs. 2(b)
and 2(c) (solid curves labeled 1M) to be compared with the
experimental data. From these comparisons, we can conclude
that the single-mound slope-selection model reproduces well
the experimental morphology evolution of the grains [good
agreement in Fig. 2(b)] with regard to the faceting kinetics
giving rise to the shape transformations of isolated mounds
into conical/pyramidal grains; however, this does not explain
the grain coarsening behavior observed experimentally [see
Fig. 2(c)].

Figure 5(a) discloses some relevant aspects of the simulated
morphology evolution for a single mound that play key roles
when several grains are considered. In particular, Fig. 5(a)
provides details of the profiles of the depleted zones generated
around grains with different sizes λ (compare curves A and
B), different selected slopes ms (curves A and C), and kinetic
coefficient ratios κ/α differing in several orders of magnitude
(curves A and D). From the profiles, two characteristic
parameters (which are linked closely to the depletion kinetics)
can be defined: the capture length ξ that corresponds to the
distance beyond the grain perimeter where the depletion is
highest (i.e. where the profile has a minimum), and the capture
rate 1/τ (with τ being the characteristic draining time of
the depletion phenomenon) such that the depth of the profile
minimum (at ξ ) for a given runtime t is ∝ t/τ . The dependence
of these parameters on λ, ms , and κ/α are log-log plotted in
Figs. 5(b)–5(c). Whereas ξ depends only on λ through the
power-law dependence ξ ∝ λβ with β = 1.0 ± 0.2 for wide
ranges of 0.1 � ms � 1.0 and 0.01 � α/κ � 1000 [see the
dataset collapse in Fig. 5(b)]; τ is roughly independent on
both λ and α/κ , exhibiting a power-law dependence only on
ms [Fig. 5(c)]: τ ∝ (ms − m)ϕ with ϕ = 1/3 ± 0.01. In brief,
larger (steeper) pyramidal-shaped grains give rise to wider
(deeper) depletion zones. From these dependencies, we can
throw light on the nature of the depletion phenomenon as well
as on the physical meanings of both ξ and τ . The fact that τ

does not depend on ξ (note that both depend on independent
variables) points to a depletion phenomenon driven by drift,
i.e. by biased mass transport rather than by diffusion-limited
aggregation for which τ ∝ ξ 2, as predicted. Thus, the drain of
the captured atoms would take place through biased random
paths that become more ballistic and less random-walk as the
capturing grain is larger. It would addresses the capability
of the larger grains to capture far atoms (at ξ ∝ λ) at the
same rate (as ∂λτ ≈ 0) than the smaller grains capture near
atoms. This conclusion explains also the independence of both
ξ and τ on κ/α as a consequence of the grain sizes are larger
than the space scale (≈√

κ/α) in which the surface diffusion
plays a preponderant role, which means that the diffusion
becomes negligible at intergrain scale. The value range of
κ/α used for the simulations in Fig. 5 was thus chosen on the
basis of previous reports35–38 from which a diffusion length
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FIG. 5. (Color online) (a) Cross-section profiles of simulated
mound-shaped structures after faceting by a slope-selection mecha-
nism. Curve labels and subindexes indicate the sets of used parameters
for simulations: A → {κ/α = 0.01, ms = 0.41, λ = 400}, B →
{κ/α = 0.01, ms = 0.41, λ = 300}, C → {κ/α = 0.01, ms = 1.0,
λ = 400}, and D → {κ/α = 1000, ms = 0.41, λ = 400}. Note that
a break in the height axes has been inserted to assist in realizing
the magnitudes: λ, structure size estimated from the full width at
half maximum of the mound profiles; ξ , capture length defined as
the distance beyond λ/2 where the profile has a minimum; and τ ,
draining time, such as the profile depth at the minimum position
becomes ∝ 1/τ (i.e. t/τ for a given runtime t). Here, λ dependence
of ξ and τ are log-log plotted in (b) and (c), respectively. In both
cases, the used symbols define the sets of parameters for simulations:
(◦) → {κ/α = 1.0, ms = 0.3}, (�) → {κ/α = 1.0, ms = 1.0}, (�) →
{κ/α = 1000.0, ms = 0.41}, and (∇) → {κ/α = 0.01, ms = 0.41}.
Solid lines in (b) and (c) represent the best fit of the simulated data
to scaling dependences based on power-law functions. The inset in
(c) shows the ms dependence of τ for the larger structures.

of ≈100 nm could be estimated for ZnO films at 623 K,
and it is in the same order of magnitude of that employed
in growth simulations of metal surfaces.26 Note that such a
diffusion length is several times shorter than the sizes of the
pyramidal-shaped grains.

Once the main characteristics of the slope-selection model
computed for single mounds have been discussed, a simulation
considering many mounds (which compete with each other at
length scale ξ ) has to be performed in order to address the grain
coarsening behavior, as shown in Fig. 2(c). Figure 6 displays
the simulations for three kinds of grain competitions:

(i) Figure 6(a): Competition in terms of the morphological
environment between grains with similar sizes and similar
surface slopes m � ms so as the grains with a number
of nearest neighboring grains nNN higher than the average
number n̄NN decays [shrinkage of the central mound with
six neighbors, green curve in Fig. 6(d)], whereas those
within rarefied environment coarsen [growth of a no shown
mound with four neighbors, red curve in Fig. 6(d)].6 The
results in Figs. 3(a) and 3(j) showing the narrow grain-size
distribution and the different morphological environments of
the mound population, respectively, suggest that this type of
competition acts as a selection mechanism of a few mounds
(those that coarsen) to become pyramidal/conical grains. This
suggestion is: (a) inspired on the decrease in the average
number of neighbors per resulting pyramid, which cannot be
explained through a model of isotropic/compact depletion;
and (b) supported by the results in Figs. 3(a)–3(d) that reveal
the breakup of the unimodal grain-size distribution into two
populations (blue and red curves), whose average sizes exhibit
dissimilar behaviors (remain slightly constant and increase,
respectively) with the deposition time.

(ii) Figure 6(b): Competition between two grains with
different sizes and similar surface slopes m � ms . Once the
average sizes of the two grain populations differ significantly,
the competition becomes ruled by the grain sizes λ through the
capture length ξ . As a consequence of the λ dependence of ξ

[Fig. 5(b)], a lot of mounds are within the depletion zones of
the pyramidal/conical grains, while only a few of these latter
are affected partially by the capture of so-close mounds. Thus,
the grain-size-based competition would be responsible for the
decay in the density of mounds [as shown in Fig. 2(a)] and the
coarsening of the pyramidal/conical grains [Fig. 2(c)].

On the basis of our results in Figs. 2(a) and 3(a)–3(d),
we can assume that many small mounds dissociate slowly
(which implies ∂tρ

m � ∂tλ
m, i.e. the mound density drops

faster than the mound shrinkage), proving the adatom flux
for the quick growth of a few conical/pyramidal grains
(∂tρ

p � ∂tλ
p). This assumption is supported by the fact

that the ratio between the corresponding steady densities is
ρm

t→0/ρ
p
t→∞ ∼ 102 [Fig. 2(a)], which means that a single

pyramidal grain results from the dissociation of 102 mounds
in average. For conservative systems (like that analyzed here
where the re-evaporation of the adatoms generated from
the mound dissociation is neglected), the mass-conservation
condition ∂tχ

p = −∂tχ
m is satisfied in terms of the densities of

adatoms χm = π
4�

hm(λm)2ρm and χp =
√

3
16�

m
p

0 (λp)3ρp that
compose the mounds and the pyramidal grains, respectively.
By rewriting the mass-conservation condition from the as-
sumption described above, we get an expression to calculate
the coarsening rate of the pyramidal grains:

∂

∂t
λp ≈ − 4π

3
√

3

hm

msρ
p
t→∞

(
λm

λp

)2
∂

∂t
ρm. (2)
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FIG. 6. (Color online) Simulated grain coarsening by competitive growth based on: (a) different morphological environments (same-sized
grains with m � ms and nNN = 6 for the central grain), (b) grain-size differences (dissimilar-sized grains with m � ms), and (c) surface-slope
differences (same grain size with m’s ≈ ms and � ms for the left- and right-hand grains, respectively). The arrows point to the involved grains
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∑
grain population.

At this point, ∂tρ
m is estimated from the scaling dependence

in Fig. 5 that indicates that the mound population is depleted
beyond the pyramidal-grain perimeter ∝ λp by a capture
length ξ ∼ (λp)β at a rate of 1/τ ∼ (ms − m)−ϕ such that
∂tρ

m ∝ −ρ
p
t→∞ρm

t→0λ
pξ/τ ∼ (λp)1+β . This estimation leads

to a power-law coarsening dependence:

λp ∼= � · t1/(2−β) (3)

with � = 2−β

√
ρm

t→0/16�(2 − β)
√

κ/27α. By substituting

β = 1.0 ± 0.2 in Eq. (3), we get λp ∼ t1.0±0.2, which is in
good agreement with the experimental coarsening rate found
in Fig. 2(c) that shows the pyramids growing as λp ∼ t1.0±0.1.
Note this agreement proves the fact that the capture and drain
within the depletion zones take place through biased mass
transport, as discussed above, to address the independence
on ξ of τ . Otherwise, by assuming a hypothetical scaling
dependence τ ∝ (ξ )ψ ∼ (λp)ψβ(where ψ = 2 for the case

of random-walk diffusion), ∂tρ
m ∼ (λp)1+β(1−ψ) and so λp ∼

t1/[2−β(1−ψ)] that would be in accordance with the experimental
results in Fig. 2(c) only for ψ ≈ 0.0 ± 0.2.

(iii) Figure 6(c): Competition between faceted grains with
surface slopes close to ms . Under these conditions, the small
currents between neighboring grains are insufficient to alter
both the grain density and/or the morphological environments,
especially when the grains are large enough. This competition
that operates between the pyramidal-shaped grains would
stabilize the surface slopes toward their saturation value
that corresponds with the selected slope [in agreement with
Fig. 2(b)] and would preserve by mass-conservation the
average size of the pyramid population [Fig. 2(c)]. Once
the local grain slopes are stabilized, the surface of regular
pyramidal structures becomes steady.

Figures 7(a)–7(c) display the morphology evolution of
a many-mound surface controlled by the slope-selection
mechanism described in Eq. (1). The initial morphology is
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FIG. 7. (Color online) (a)–(c) Simulated morphology evolution
of a many-mound surface ruled by the slope-selection mechanism
described in (1) to be compared with the top-view AFM-images in
(d)–(e). The direct comparison takes place with the outlined local
environments, whose cross-section views are in the corresponding
insets. Scanned area by AFM was 500 × 500 nm2 in (d) and (e)
and 2 × 2 μm2 in (f). Height scales (bottom color bars) are in nm.
Note that the sixfold in-plane symmetry of the resulting pyramids
are a consequence of the ZnO[0001]-texture of the films, which is
irrelevant for our study that deals with the intergrain competitive
growth rather than intragrain recrystallization.

formed initially by an array of uniform-sized mounds, in which
the different morphological environments are considered by
locating the mounds at random positions. Periodic boundary
conditions are assumed in order to avoid finite-sized artifacts.
The series shown in Figs. 7(a)–7(c) correspond to successive
growth stages generated by competitive growth illustrated
in Fig. 6. The thus-simulated surfaces are directly com-
pared with local environments observed in the corresponding
AFM-imaged morphologies, as depicted in Figs. 7(d)–7(f)
and the corresponding insets.39 The qualitative agreement
between the simulated morphologies and AFM-imaged ones is
apparent, and so it supports the soundness of the investigated
model.

The slope-selection mechanism reported here is classified
as an OR-type process on account of the following fingerprints.
The grain coarsening results from the atomic exchange
via surface currents between isolates entities giving rise
to compact grains with pseudo-equilibrium shapes; whereas
(as predicted by the SZM model40) potential phenomena of
bulk recrystallization involving grain-boundary migration are

suppressed at the used deposition temperatures (0.28Tmelting).
Nevertheless this classification, the slope-selection mechanism
corresponds to an atypical OR regarding both the driving force
for the atomic exchange between the involved entities and the
scenario in which this mechanism remains alive (it continues
being operative between moderately large grains with λ =
20–500 nm at deposition temperatures as low as 0.28Tmelting).
Unlike the typical OR, where the exchange is driven by
grain-size and/or environment difference, the exchange for the
slope-selection mechanism is ruled by the kinetic stabilization
of certain crystalline facets on the grain faces (i.e. by kinetic
faceting). This difference in the driving forces (in which
underlies the atypical nature of the operation conditions) has
the following implications: (a) a grain with surface slopes
lower than the selected slope cannot reach an equilibrium
state with the surrounding flat surface independently of the
adatom density on it because, rather than an equilibrium
adatom density (like in the typical OR), in this case, there
is an equilibrium grain shape for which the downhill current
becomes high enough to compensate the surface adatom
depletion produced by the uphill current. (b) In the absence of
surrounding flat surface for compact arrangement of grains,
the exchange is driven by the slope differences between
neighboring grains. (c) In the case of that the slopes of the
neighboring grains are far below the selected one, the exchange
driven by slope difference can be interpreted straightforwardly
in terms of exchange driven by grain size and/or environment
difference from the grain-size dependence of the depletion
range. It means that for early growth stages, the coarsening
behavior produced by the slope-selection mechanism would
be similar to that generated by a typical OR. On the basis of
these arguments, we refer to the slope-selection mechanism as
a late slope-selection driven OR. Although they have been
investigated in an independent manner so far, the results
presented here allow us to conclude that both the OR and
slope-selection mechanisms belong to the same universal class
of processes.

At this point, it deserves to be mentioned that this mech-
anism is responsible for the nanostructuring of the film into
arrangements of pyramidal/conical single-crystalline grains,
which has been correlated recently to the enhanced lasing
activity of nanostructured ZnO.41,42 The pyramidal/conical
single-crystalline grains would play a double role in this effect:
they act like a gain medium (since the large binding energy,
≈60 meV, of ZnO exciton) as well as a resonant Fabry–Perot
cavity (since the shapes and grain coupling42) to produce
excitonic UV laser emission at room temperature.

V. CONCLUSIONS

In this paper, we report experimental findings concerning
the grain coarsening on the surface of PLD-grown ZnO[0001]
films and interpret them through a comprehensive meso-
scopic model of slope selection. From the evolution of
the shapes and morphological environments of the grains
studied by AFM, which was successfully compared with
morphological features of surfaces simulated numerically; a
late slope-selection-driven OR mechanism operating under
atypical conditions is identified and their main characteristics
addressed.
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