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Condensation of electron-hole pairs in a two-layer graphene system: Correlation effects
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Condensation of pairs formed by spatially separated electrons and holes in a system of two isolated graphene
layers is studied beyond the mean-field approximation. Suppression of the screening of the pairing interaction at
large distances, caused by the appearance of the gap, is considered self-consistently. A mutual positive feedback
between the appearance of the gap and the enlargement of the interaction leads to a sharp transition to a correlated
state with a greatly increased gap above some critical value of the coupling strength. At a coupling strength below
the critical value, this correlation effect increases the gap approximately by a factor of 2. The maximal coupling
strength achievable in experiments is close to the critical value. This indicates the importance of correlation
effects in closely spaced graphene bilayers at weak substrate dielectric screening. Another effect beyond the
mean-field approximation considered is the influence of vertex corrections on the pairing, which is shown to be
very weak.
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I. INTRODUCTION

Pairing of spatially separated electrons and holes caused
by their Coulomb attraction was proposed initially as a
possible origin of superfluidity,1 Josephson effects,1–3 and
anomalous electromagnetic phenomena4,5 in coupled semi-
conductor quantum wells. In the case of a dense electron-
hole system, this pairing is similar to Cooper pairing of
electrons in superconductors and to electron-hole pairing in
excitonic insulators.6 Strong Coulomb electron-hole attraction
was supposed to maintain a high critical temperature of
the pairing, while spatial separation of paired electrons and
holes could prevent them from interlayer tunneling, leading
to their recombination and to a condensate phase fixation.
Experimental evidences of a superfluid transition in two-layer
semiconductor structures in a strong magnetic field (pairing
of composite fermions)7 and without magnetic field8–12 were
found several decades later.

Fabrication of graphene, an atomically thin two-
dimensional form of carbon,13,14 makes it possible to realize
electron-hole pair condensation in a system of two graphene
layers isolated from each other (hereafter referred to as a
“graphene bilayer”). Structures consisting of two indepen-
dently gated graphene layers with common contacts and very
small (0.6 nm) separation have been fabricated and studied
experimentally.15,16 A system of two independently contacted
graphene layers separated by a 5-nm-thick SiO2 barrier has
also been made,17 and Coulomb drag has been studied in such
a system. The most promising systems to realize the pairing
could be heterostructures consisting of two graphene layers
separated by an atomic thin boron nitride layer. Considerable
progress in the fabrication of such structures with ultrahigh
mobility encapsulated graphene samples has been achieved
recently.18–22 Measurements of Coulomb drag in these struc-
tures have been reported (see Ref. 23 and references therein).

Theoretical studies of electron-hole pair condensation in
a spatially separated graphene bilayer were presented in
Refs. 24–33. It was shown that both weak and strong cou-
pling regimes of the pairing are achievable experimentally.24

Estimates of the critical temperature Tc at strong coupling25–30

are very dependent on the model and approximations used,
ranging from room temperature, with the unscreened Coulomb
attraction taken as a pairing potential,25,26 to unobservably
small values given by Bardeen-Cooper-Shrieffer (BCS) theory
with screened interaction.27

The pairing in a graphene bilayer at strong coupling was
argued28,29,33 to involve both conduction and valence bands
of electrons and holes, i.e., it is multiband. This is due to the
fact that electrons and holes in graphene are described by an
effective two-dimensional Dirac-type equation for massless
particles,13,14 and thus a gap between the conduction band and
the valence band is absent. It was shown28,29,33 that in this
case, Tc can be much larger than that given by the one-band
BCS-like model.27 A study of the problem, taking into account
the effects of the frequency dependence of the gap and the
pairing potential, was presented in Ref. 30.

The mean-field approximation used in most theoretical
works24–30,33 is known to be well-applicable at both the weak
and strong coupling sides of the BCS-BEC (Bose-Einstein
condensate) crossover, taking place in conventional pairing
systems.34 However, little is known about its applicability in
the regime of multiband Cooper pairing, which takes place in
a graphene bilayer at strong coupling instead of the BEC side
of the crossover29,35 (the BEC regime is restored in a graphene
bilayer if a gap is opened in its spectrum).36,37

One of the correlation effects arising beyond the mean-
field approximation is suppression of the screening (and the
consequent enhancement of the electron-hole interaction) due
to the appearance of the gap and the order parameter in the
system. As supposed in Ref. 31, mutual positive feedback
between the onset of the gap and suppression of the screening
can result in the appearance of two solutions of the gap
equation: a small gap at strong screening and a large gap at
weak screening.

Changes in the electron system polarizability caused
by the appearance of a gap in its spectrum have been
studied extensively in the context of collective modes in
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superconductors (see, e.g., Refs. 38 and 39) and phonon
self-energies, acquiring sharp features at frequencies twice as
large as the gap (see Refs. 40 and 41 and references therein).

In systems with electron-hole pairing (proposed initially as
an origin of an excitonic insulator),6 suppression of polariz-
ability due to the pairing can change the pairing interaction
significantly. The self-consistent treatment of pairing and
screening in electron-hole liquids in semiconductors has been
addressed in several works.42–46

Suggested in Ref. 31 for an electron-hole graphene bilayer,
the self-consistent suppression of the screening was considered
in Ref. 32 within the one-band approximation, however
without providing details of the calculations. It was shown that
for a considered range of parameters, this effect is negligible
and the gap equation has only one solution, corresponding to a
very small gap. In the present article, we study this effect within
the model of multiband pairing at strong coupling. Our results
obtained with this model indicate, in contrast to Ref. 32, that
the self-consistent suppression of the screening can drastically
change the characteristics of the pairing at strong enough
coupling, opening up the possibility of the formation of a
very large gap.

The self-consistent suppression of the screening is de-
scribed by a series of Feynman diagrams, involving the screen-
ing of the electron-hole interaction by virtual Bogolyubov
excitations. A considerable part of the remaining diagrams
beyond the mean-field Gor’kov equations can be absorbed
into renormalization of a Coulomb interaction vertex. In the
theory of superconductivity, this renormalization is negligible
at weak coupling due to the Midgal theorem, but it can be
significant at strong coupling, generally increasing critical
temperature.47 Corrections to the Coulomb interaction vertex
in graphene were considered in Refs. 48–51. It was shown that
corrections are large in undoped graphene49 but rather small at
finite doping.50 We calculate numerically the simplest vertex
correction and show that it increases the coupling strength
slightly.

The article is organized as follows. In Sec. II, we introduce
briefly the multiband model of the pairing. In Sec. III, we
consider self-consistent suppression of the screening and its
effect on the pairing at zero temperature. Section IV presents
calculations of the vertex corrections, and Sec. V concludes
the article.

II. MULTIBAND DESCRIPTION OF THE PAIRING

Multiband pairing of electrons and holes in a graphene
bilayer at strong coupling is described in detail
elsewhere.28,29,33 Here we present only the formulas needed
for further calculations.

To describe the pairing, we introduce the Matsubara Green
functions G

(ij )
γ1γ2 (p,τ ) = −〈T c

(i)
pγ1 (τ )c(j )+

pγ2 (0)〉, where c
(1)
pγ ≡

a
(1)
pγ , c

(2)
pγ ≡ a

(2)
p,−γ , and a

(1)
pγ and a

(2)
pγ are destruction operators

of electrons in electron- and hole-doped layers, respectively,
with the momentum p from the conduction (γ = +1) or
valence (γ = −1) band. The bare Green functions for electrons
and holes are G(ii)

γ1γ2
(p,iεn) = δγ1γ2 [iεn − ξ

(i)
pγ1 ]−1, where ξ

(1)
pγ =

−ξ
(2)
pγ ≡ ξpγ = γ vFp − μ are energies of electrons and holes

measured from the chemical potentials μ and −μ in electron-

and hole-doped graphene layers, respectively; vF ≈ 106 m/s
is the Fermi velocity in graphene.

In the simplest case of s-wave band-diagonal pairing, all
the Green functions G

(ij )
γ1γ2 are nonzero only at γ1 = γ2. The

solution of the Gor’kov equations in the Cooper channel in
this case is

G(11)
γ γ (p,iεn) = u2

pγ

iεn − Epγ

+ v2
pγ

iεn + Epγ

, (1)

and G(22)
γ γ (p,iεn) = −G(11)

γ γ (p, − iεn), G(12)
γ γ (p,iεn) =

G(21)
γ γ (p,iεn). Conventional notations for coherence factors

and Bogolyubov energies are used:

u2
pγ = 1

2

(
1 + ξpγ

Epγ

)
, v2

pγ = 1

2

(
1 − ξpγ

Epγ

)
,

(2)
upγ vpγ = �pγ

2Epγ

, Epγ =
√

ξ 2
pγ + �2

pγ .

Note that in the multiband regime, we have two branches of the
gap functions �p± and Bogolyubov excitation energies Ep±
corresponding to conduction and valence bands.

The gap functions are determined by the equation

�pγ = − T
∑
γ ′iεn

∫
dp′

(2π )2
F

γγ ′
pp′ V (|p − p′|)G(21)

γ ′γ ′ (p′,iεn). (3)

The factor F
γγ ′
pp′ ≡ |〈pγ |p′γ ′〉|2 = (1 + γ γ ′pp′/pp′)/2 arises

as a result of summation over spinor components of the
effective electron wave function in graphene.29 We use here
the static approximation, in which the gap �pγ and the
statically screened interaction V (q) are real and independent of
frequency. Substituting Eqs. (1) and (2) into (3) and performing
summation over εn = πT (2n + 1) and integration over an
angle of p′, we get at T → 0

�pγ =
∑
γ ′

∫ ∞

0

p dp

2π
U

(0)
γ γ ′(p,p′)

�p′γ ′

2Ep′γ ′
, (4)

where U
(0)
γ γ ′(p,p′) = [V0(p,p′) + γ γ ′V1(p,p′)]/2 is a half-

sum of the half-difference of s- and p-wave harmonics of
the potential:

Vl(p,p′) =
∫ 2π

0

dϕ

2π
cos(lϕ)V (

√
p2 + p′2 − 2pp′ cos ϕ).

(5)

At strong coupling, the first harmonic V1 can be neglected.29

In this case, the gap functions in conduction and valence
bands are equal. We will look for an approximate solution of
(4) in a manner similar to that used in Ref. 30: we assume
that �pγ = � × f (p), where f (p) is some trial function,
satisfying the conditions f (pF) = 1, f (p) ∝ 1/p at p → ∞.
Fixing in Eq. (4) p = pF and neglecting V1, we get the
following algebraic equation for the gap � at T = 0:

1 =
∫ ∞

0

p′ dp′

8π
V0(pF,p

′)f (p′)
{

1

Ep′+
+ 1

Ep′−

}
. (6)
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III. SELF-CONSISTENT SUPPRESSION
OF THE SCREENING

The statically screened potential of the electron-hole inter-
action in Eq. (5) in a random phase approximation (the latter
if well-applicable in a graphene bilayer due to a large degree
of electron state degeneracy27,32,52) is1,24,33

V (q) = vqe
−qD

1 − 2vq
0(q) + v2
q


2
0(q)(1 − e−2qD)

. (7)

Here vq = 2πe2/εq is the bare Coulomb attraction, screened
by a surrounding medium with dielectric permittivity ε, 
0(q)
is a static polarizability of a single graphene layer, and D is
the interlayer distance.

The most favorable conditions for the pairing are achieved
at small interlayer separation, when pFD 
 1. In this case, the
behavior of the system is determined only by the dimensionless
parameter rs = e2/εvF ≈ 2.19/ε, which specifies the coupling
strength, while (7) reduces to

V (q) = vq

1 − 2vq
0(q)
. (8)

The static polarization operator of doped graphene, cal-
culated without taking into account electron-hole pairing,
is53,54 
0(q) = gN {−1 + �(q − 2pF)(q/4pF)G<(2pF/q)}.
Here g = 4 is the degeneracy factor, N = μ/2πv2

F is the
density of states (per spin projection and valley) at the
Fermi level, and G<(x) = x

√
1 − x2 − arccos x. The long-

wavelength asymptotics 
0(q) ≈ −gN provides metallic-like
screening at long distances.

Note that at pFD 
 1, the interaction ceases to depend
on a dielectric permittivity of an insulating spacer between
graphene layers, since the mean in-plane distance between
electrons and holes is much larger than D and thus electric
field lines responsible for their interaction pass mainly through
the external media around the bilayer. In this case, ε should
be taken as a half-sum of dielectric permittivities of the media
astride the bilayer (see, e.g., Ref. 55). In suspended two-layer
graphene structures, ε can be brought down rather close to
unity.

The formation of a condensate of interlayer electron-hole
pairs gives rise to a direct response of charge density in one
layer on the electric field in the other layer, described by
anomalous polarizability 
a. Normal intralayer polarizabil-
ities 
n of each graphene layer also change with respect
to intrinsic polarizabilities 
0 due to the appearance of the
gap in the energy spectrum. The expression for V (q) at
pFD 
 1 takes the same form as (8), but with the replacement

0(q) → 
(q) ≡ 
n(q) + 
a(q).

In the random phase approximation, the normal 
n and
anomalous 
a polarizabilities are calculated as loops consist-
ing of two normal or anomalous Green functions, respectively:


n(q,iωn)

= gT
∑
γ γ ′εk

∫
dp

(2π )2
F

γγ ′
pp′ G(11)

γ γ (p,iεk)G(11)
γ ′γ ′(p′,iεk + iωn),

(9)
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q/pF

-5

-4

-3

-2

-1

0

Π/N

0.01

0.1

0.2

0.5

0.05

FIG. 1. (Color online) The effective static polarizability 
 (in
units of the density of states N ) in a graphene bilayer with the pairing
gap as a function of momentum q at different values of �/μ, indicated
above corresponding curves (solid lines). Dotted line: the intrinsic
static polarizability 
0 at � = 0.


a(q,iωn)

= gT
∑
γ γ ′εk

∫
dp

(2π )2
F

γγ ′
pp′ G(12)

γ γ (p,iεk)G(21)
γ ′γ ′(p′,iεk + iωn),

(10)

where p′ = p + q. Substituting Eq. (1) into (9) and (10), per-
forming frequency summations, and taking a limit T → 0, we
obtain the following expressions for the static polarizabilities

n,a(q) ≡ 
n,a(q,iωn → 0):


n(q) = −g
∑
γ γ ′

∫
dp

(2π )2
F

γγ ′
pp′

u2
pγ v2

p′γ ′ + v2
pγ u2

p′γ ′

Epγ + Ep′γ ′
, (11)


a(q) = g
∑
γ γ ′

∫
dp

(2π )2
F

γγ ′
pp′

2upγ vpγ up′γ ′vp′γ ′

Epγ + Ep′γ ′
. (12)

The sum 
 = 
n + 
a, playing the role of effective
polarizability, is plotted in Fig. 1 as calculated numerically
according to (11) and (12) at different values of �. It is seen
that polarizability of the system with the pairing is suppressed
at small momenta due to the appearance of the gap. The
magnitude and the momentum region of this suppression grow
at increasing �. The long-wavelength asymptotics 
(q) ≈
−gNq2/12p2

F�
2 indicates that the screening at long distances

is absent when � �= 0 and, moreover, the transition from 
(q)
to 
0(q) at � → 0 is not uniformly continuous.

The absence of a long-range screening causes divergence of
the Fermi-surface value V0(pF,pF) of the pairing potential. For
this reason, the usual BCS-like recipe, involving the replace-
ment V0(p,p′) → V0(pF,pF) in the gap equation (4), becomes
inapplicable. However, our approach (6) for approximately
solving the gap equation is applicable even in this case because
the singularity of V0(pF,p

′) at p′ = pF is logarithmic and thus
integrable.

In numerical calculations, we use the trial function
f (p) = 1/(|p/pF − 1| + 1) for the gap falling down at
characteristic momenta of the order of pF. For the ef-
fective polarizability we use the following approximation:
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FIG. 2. (Color online) Solid lines: the right-hand side I of the
gap equation (6) I (�) = 1 as a function of � (in logarithmic scale)
at different values of rs, indicated on the right.


(q) ≈ −gNq2/[(12�2/v2
F)2/3 + q4/3]3/2, which is close to

the numerically calculated 
(q) at any � and retains its major
features—the correct asymptotic at smallest q and the tendency
to −gN at larger q.

The right-hand side I of Eq. (6) is plotted as a function of �

at various rs in Fig. 2. The points of intersection I (�) = 1 give
solutions � of the gap equation. In the mean-field approxima-
tion, the dependence I (�) should be monotonously decreasing
[in the BCS model, I = λ ln(2w/�), where λ and w are the
coupling constant and the energy half-width of the pairing
region]. Correlation effects make I (�) nonmonotonous at
rs � 0.2. This can result in the appearance of three solutions
of the gap equation, of which only the one with the largest
�, corresponding to the lowest ground-state energy, will be
established in the system.

The maximal gap � is plotted in Fig. 3 as a function of rs. At
small enough rs, the gap value is approximately twice as large
as the value obtained without taking into account correlation
effects. When rs exceeds some critical value (about 2.35 in

0 1 2 3
rs

Δ /μ
1

10-2

10-4

10-6

10-8

FIG. 3. (Color online) Solid line: the largest value of the gap �

(in logarithmic scale), found from Eq. (6) at different values of rs.
At rs ≈ 2.35, the gap jumps (dashed line) to a much larger value due
to the appearance of three solutions of Eq. (6). Dotted line: the gap,
calculated in the mean-field approximation.

(a)

p′γ′ pγ

p − p′

(b)

p′γ′

p1 − p

pγ

p − p′

p2γ2 p1γ1

FIG. 4. (a) The bare vertex of the electron-electron Coulomb
interaction and (b) the simplest correction to it.

our case), three solutions of (6) appear, and the maximal
gap becomes very large and comparable to the chemical
potential. The critical value of rs depends on the details of
the model used [in particular, on the form of the trial function
f (p)]. In our case, it is rather close to the maximal rs ≈ 2.19
achievable experimentally at ε = 1 when the graphene bilayer
is suspended in vacuum. However, correlation effects can play
an important role in the vicinity of the transition to the strongly
correlated state even for rs smaller than the critical value.

IV. VERTEX CORRECTIONS

The bare vertex of the electron-electron Coulomb interac-
tion in graphene [Fig. 4(a)], entering the Gor’kov equations,
is �

(0)
γ ′γ (p′,p) = 〈p′γ ′|pγ 〉, where the angular factor specific to

graphene chiral electrons is29

〈p′γ ′|pγ 〉 =
{

cos ϕ′−ϕ

2 , γ = γ ′,

i sin ϕ′−ϕ

2 , γ = −γ ′,

where ϕ and ϕ′ are the azimuthal angles of p and p′.
The simplest correction �(1) to �(0) is shown diagram-

matically in Fig. 4(b). We take the bare Green functions
G(0)

γ2γ2
(p2,iε2) and G(0)

γ1γ1
(p1,iε1) as internal electron lines of

this vertex, and the Coulomb interaction as the internal
wavy line. Moreover, we consider only the static vertex,
i.e., the vertex function at zero frequencies: �

(1)
γ ′γ (p′,p) ≡

�
(1)
γ ′γ (p′,iε′ → 0,p,iε → 0). After frequency summation in the

internal loop, we get in a zero-temperature limit T → 0,

�
(1)
γ ′γ (p′,p) =

∑
γ1γ2

∫
dp1

(2π2)
〈p′γ ′|p2γ2〉〈p2γ2|p1γ1〉

×〈p1γ1|pγ 〉V (|p1 − p|)�(ξp1γ1 ) − �(ξp2γ2 )

ξp1γ1 − ξp2γ2

,

(13)

where p2 = p1 + p′ − p and �(x) is a unit step function.
We can use the bare Coulomb interaction 2πe2/εq as V (q)

in Eq. (13), but in this case the integral over p1 diverges at
small momenta. To avoid the divergence, we take the statically
screened interaction (8) as V (q).

Substitution of the vertex correction (13) into Gor’kov
equations results in the correction to the potential,

U
(1)
γ γ ′(p,p′) =

∫ 2π

0

dϕ′

2π
〈pγ |p′γ ′〉�(1)

γ ′γ (p′,p), (14)
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0.06

λ(i)
γγ' 

FIG. 5. (Color online) The dimensionless second-order correc-
tion λ

(1)
++ (dotted line) to the coupling constant as a function of rs

in comparison with the first-order intraband λ(0)
γ γ (solid line) and

interband λ
(0)
γ,−γ (dashed line) coupling constants.

added to U
(0)
γ γ ′(p,p′) in the gap equation (4). To estimate the

effect of vertex corrections on the pairing, we compare the
second-order correction to the coupling constant on the Fermi
surface λ

(1)
++ = NU

(1)
++(pF,pF) with its first-order value λ

(0)
γ γ ′ =

NU
(0)
γ γ ′ (pF,pF).

In Fig. 5, the conduction-band component of the correction
λ

(1)
++ is plotted as a function of rs. Its other components (λ(1)

−−
and λ

(1)
γ,−γ ) are very close to it and thus are not shown. For

comparison, the first-order coupling constants in the intraband
(λ(0)

γ γ ) and interband (λ(0)
γ,−γ ) channels are also plotted (these

quantities were studied in detail in Ref. 29). It is seen that
the second-order vertex corrections amount only to about
5% of the first-order coupling constants and thus can be
neglected.

V. CONCLUSIONS

We considered the role of correlation effects in the pairing of
spatially separated electrons and holes in a graphene bilayer in
the multiband regime at strong coupling. The first effect is the
self-consistent suppression of the screening of electron-hole
interaction due to the appearance of the gap and the order
parameter. Its most remarkable consequence is the absence of
screening at long distances at any nonzero gap, which makes

the usual BCS method inapplicable due to the divergence of
the interaction at the Fermi surface.

Therefore, we performed numerical calculations with full
momentum integration to solve the gap equation. We found
that at small coupling strengths, correlations increase the
gap by a factor of 2. However, at a coupling strength above
some threshold, the gap sharply increases by several orders of
magnitude, indicating a transition of the system into a strongly
correlated state.

A quantitative description of this transition requires ex-
tensive calculations, including the momentum and frequency
dependence of the gap functions. Moreover, additional factors
such as renormalization of the chemical potential34 should be
taken into account when the gap turns out to be very large. In
our simple model, the critical value of the coupling strength
is only slightly larger than the maximal value achievable
in experiments. More complicated treatment can lead to
a revision of this critical value. Nevertheless, our results
indicate that the possibility of the transition to the strongly
correlated state with a large gap in realizable conditions is not
excluded. The correlation effects can also manifest themselves
in the vicinity of this transition. Such sharp transition can be
associated with a Cooper pair condensate analog of exciton
liquid formation.46

It should be noted that correlation effects of a similar type
can, in principle, arise in any system with electron-hole pairing.
It can be particularly interesting in the case of thin films of
a topological insulator with asymmetric doping of opposite
surfaces, where the pairing of Dirac electrons and holes
accompanied by the formation of exciton condensate with
unusual superfluid and topological properties can occur.55–57

We have also considered the role of vertex corrections at
strong coupling. The simplest correction to the interaction
vertex was calculated numerically in the static approximation
and was shown to enhance the pairing slightly by about 5%.

Note added. After this article was submitted, we became
aware of Ref. 58, which contains similar results.
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