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Temperature-induced spin density wave in a magnetically doped topological insulator Bi2Se3
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We study the magnetic properties of Bi2Se3 doped with isoelectronic magnetic impurities. We obtain that at
zero temperature the impurities order ferromagnetically, but when raising the temperature the system undergoes
a first-order phase transition to a spin density wave phase before the system reaches the paramagnetic phase. The
origin of this phase is the nontrivial dependence of the spin susceptibility on the momentum. We analyze the
coupling of the nonuniform magnetic phase with the Dirac electronic system that occurs at the surfaces of the
topological insulator.

DOI: 10.1103/PhysRevB.86.045317 PACS number(s): 72.25.Dc, 73.20.−r, 73.50.−h

I. INTRODUCTION

Topological insulators (TIs) are a newly discovered type of
systems which are insulating in the bulk and characterized by
the existence of a robust helical gapless Dirac two-dimensional
electron system at their surface.1–3

TIs are typically band insulators for which strong spin-
orbit coupling produces an inversion of the bulk band gap.
Therefore, in TIs the energy gap is related to the spin-orbit
coupling and that limits its magnitude. The most studied and
more promising topological insulator is Bi2Se3, which is a
three-dimensional TI with a relatively large bulk energy gap
(∼0.3 eV) and with the Dirac point of the surface states located
outside the bulk bands.4,5 Angle resolved spectroscopy4,6 and
scanning tunneling microscopy7 experiments have shown the
Dirac nature of the surface states of Bi2Se3.

The spin and wave vector of the surface states of a TI
are strongly coupled, and the occurrence of a half-quantized
Hall effect when an energy gap opens at the surface has been
predicted.8,9 Due to the protected character of the Dirac states,
a gap at the surface should be opened with a perturbation that
breaks the time reversal symmetry. This can be done by doping
the system with magnetic impurities. At the surface of the
TI, because of the large spin-orbit coupling, the interaction
between the Dirac-like surface states and the impurities
induces a large single ion magnetic anisotropy and polarizes
the spin of the impurities perpendicularly to the surface. This
spin-orbit coupling translates in the opening of an energy gap
at the Dirac point of the surface states.10–19

From the experimental side, angle resolved photoemission
spectroscopy (ARPES) studies on the surface of Fe-doped
Bi2Se3 single crystals have confirmed the opening of an
energy gap at the Dirac point20 and the creation of odd
multiples of Dirac fermions.21 Also, recently, experiments in
thin films of Cr-doped BixSb2−xTe3 have shown a large anoma-
lous Hall conductance in a magnetically doped topological
insulator.22

However, recent experiments23 found that the spins of
Fe ions deposited on Bi2Se3 orient in-plane. Also ARPES
experiments24,25 found Dirac crossing even in the presence of
magnetic impurities in contradiction with earlier experiments
and existing theory. On the other hand, recently the suppression
of the Dirac point spectral weight, both in magnetically
doped and undoped TI, suggesting that the observed gap
at the Dirac point cannot be taken as the sole evidence of

a magnetic gap has been reported.26 In addition, density
functional theory based calculations27 find that Co adatoms
lying in the Bi2Se3 surface exhibit an energetically stable
magnetic moment perpendicular to the surface, whereas for
Co atoms located on the interlayer van der Waals spacing
the momentum is in the plane parallel to the surface. All
these results indicate the complexity of the interpretation of
the ARPES experiments and the possible importance of other
effects not included in the Dirac Hamiltonian, as crystalline
anisotropy or surface reconstruction might play an important
role on the orientation of the magnetic impurities. In this
work we use an effective Hamiltonian for describing Bi2Se3,
which although it does not include microscopic details of the
material, describes appropriately the basic properties of the
Bi2Se3 related to its band structure topology.

In this work we study the phase diagram of magnetically
doped Bi2Se3. Bi2Se3 is a layered material formed by five
atom layers arranged along the z direction. We find that at low
temperatures the magnetic impurities order ferromagnetically
along the z direction. By raising the temperature, the TI
undergoes two transitions. A first-order transition from the
ferromagnetic to the spin density wave phase and at higher
temperatures a second-order transition from the spin density
wave phase to the paramagnetic phase. The spin density
wave phase has both the polarization and the wave vector
parallel to the z direction. We have also studied the effect
of the surface states by calculating the magnetization as
a function of temperature of a slab of Bi2Se3 topological
insulator. Here we find that the surface magnetization survives
to higher temperatures than the bulk spin density wave
phase.

The paper is organized as follows. In Sec. II we define the
Hamiltonian we use for describing the electrical properties of
Bi2Se3. In Sec. III we calculate the wave vector dependent
paramagnetic spin susceptibility of Bi2Se3 and discuss the
interaction between magnetic impurities through the para-
magnetic susceptibility. In Sec. IV we formulate a Landau
theory for describing the magnetic order of magnetically doped
Bi2Se3, and discover the existence of a ferromagnetic to spin
density wave phase transition at finite temperature. In Sec. V
we study the polarization profiles of a magnetically doped
Bi2Se3 slab and analyze the effect that the Dirac-like surface
states have on the magnetic phases. We finish in Sec. VI with
some conclusions and remarks.
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II. HAMILTONIAN

The low energy and long wavelength electronic properties
of Bi2Se3 topological insulators are described by the four bands
k · p Hamiltonian,5

H = E(k) + M(k)τz ⊗ I + A1kzτx ⊗ σz

+A2(kxτx + kyτy) ⊗ σx, (1)

where σν and τν are Pauli matrices, I is the unity ma-
trix, M(k) = M0 − B2(k2

x + k2
y) − B1k

2
z , k± = kx ± iky , and

E(k) = C + D1k
2
z + D2(k2

x + k2
y). The Hamiltonian is written

in the basis |1〉 = |p1+
z ,↑〉, |2〉 = −i|p2−

z ,↑〉, |3〉 = |p1+
z ,↓〉,

|4〉 = i|p2−
z , ↓〉, which are the hybridized states of the Se

p orbital and the Bi p orbital with even (+) and odd (−) parities
and spin up (↑) and down (↓). The Hamiltonian parameters
for Bi2Se3 are28 M0 = 0.28 eV, A1 = 0.22 eV nm, A2 =
0.41 eV nm, B1 = 0.10 eV nm2, B2 = 0.566 eV nm2, C =
−0.0068 eV, D1 = 0.013 eV nm2, and D2 = 0.196 eV nm2.
In this basis the spin operators get the form29 Sz = I ⊗ σz,
Sx = τz ⊗ σx , and Sy = τz ⊗ σy .

III. BULK SPIN SUSCEPTIBILITY

The paramagnetic susceptibility obtained from the
Hamiltonian Eq. (1) has the form

χμμ(q)= 2

�

∑
n′ occ.
n empty

∑
k

|〈n′,k + q|Sμ|n,k〉|2
εn′,k+q − εn,k

. (2)

Here |n,k〉 and εn,k are the eigenfunctions and eigenvalues
of Hamiltonian Eq. (1) and � is the sample volume. In the
case of an insulator, this spin susceptibility is caused by the
coupling of the valence and conduction band induced by
the spin operator.30 The susceptibility is a smooth function
of the wave vector and because the system is an insulator
there are no anomalies associated with Fermi surfaces.
The symmetry of the original Hamiltonian dictates that the
nondiagonal elements of the susceptibility tensor are zero and
χxx = χyy 	= χzz.

In Fig. 1 we plot the χxx and χzz as a function of qz and
qx . The direct coupling A2k±, between atomic orbitals with
opposite parities and opposite z component of the spin, makes
that for k± 	= 0, occupied and empty states are coupled through
Sz. Whereas those states are only connected through Sx when
kz 	= 0. This makes χzz(q) > χxx(q).

The more important contribution to χzz(qz) comes from
regions in the reciprocal space where the matrix elements
〈 n′,k + qz|Sz|n,k〉|, with n occupied and n′ empty, reaches
the maximum value. This happens when M(k) = 0 or M(k +
qz) = 0. For a given kz these conditions define two circular

crowns of radius
√

M0−B1k2
z

B2
and

√
M0−B1(kz+qz)2

B2
and thickness

A2/(2B2). Therefore, the area of the reciprocal space that
contributes appreciably to χzz(qz) increases with qz. For larger
values of qz one of the circular crowns collapses to zero and the
contributions to the integral decrease. This behavior explains
qualitatively the maximum that χzz presents at a wave vector
G ∼ √

M0/B1.
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FIG. 1. (Color online) Spin susceptibility as a function of the
wave vector along the z and the x directions. The arrow indicates the
position of the maximum.

The existence of a maximum in χzz(qz) at finite qz is robust
against small changes in the parameters of the four bands
Hamiltonian. In Fig. 2 we plot χzz(qz) for different values of the
TI gap. The position of the maximum decreases continuously
towards q = 0 when M0 decreases and only disappears for
small values of M0. In the normal insulator phase M0 < 0, the
maximum always occurs at q = 0.

A. Coupling between diluted magnetic impurities

Consider now a TI doped with magnetic impurities of spin
S. We assume that the number of electrons in the system does
not change in the presence of the magnetic impurities. That can
be achieved by doping with isoelectronic magnetic dopants or
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FIG. 2. (Color online) Spin magnetic susceptibility χzz for differ-
ent values of M0 as a function of the momentum in the z direction. All
other parameters of the band structure correspond to those of Bi2Se3.
As the value of the mass M0 decreases the position of the maximum of
the susceptibility moves towards small values of qz. At small values
of M0 the maximum occurs at qz = 0. In the normal insulator phase
M0 < 0, the maximum of χzz occurs at qz = 0 for all values of the
mass parameter. The dots indicate the position of the maximum.
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by adding compensating nonmagnetic dopants.31 In this work
we consider the dilute limit, that is, concentration of impurities
smaller than 5%, for which the direct interaction between the
spin of the magnetic impurities can be neglected.

However, the electrons spins have a strong exchange
coupling S

2 J̃ (|r|) with the magnetic impurities spins, which, in
turn, are equally affected by the exchange field of the electrons.
In this form the magnetic impurities in the system interact
mediated by electronic states. We treat this interaction in
second-order perturbation theory32,33 that has proved to be a re-
liable approximation in diluted magnetic semiconductors.33,34

In this approach the effective exchange parameter between two
magnetic impurities separated by a vector R and spins pointing
in the ν direction is

Jν(R) = −S2

4
J 2

eff�
∑

q

χνν(q)eiqR, (3)

where Jeff = ∫
J̃ (|r|)dr is the effective exchange coupling

between the magnetic impurity and the electron spin.
Because χzz > χxx in all range of wave vectors, the system

has an easy axis of magnetization along the z direction and
therefore isoelectronic magnetic impurities in Bi2Se3 will tend
to polarize in the z direction. The maximum that the spin
susceptibility presents at finite wave vector in the z direction
will determine the existence of nonuniform polarization in
magnetically doped TI. We treat the magnetically ordered state
in the virtual crystal approximation,32,33,35,36 and we consider
that the system is invariant in the (x,y) plane, and the polar-
ization only depends on the z direction. In the next section we
obtain the magnetic polarization as a function of temperature
and z coordinate by using a Landau free-energy functional.

IV. LANDAU FREE-ENERGY FUNCTIONAL

We assume that the system is invariant in the (x,y) plane,
and allow the polarization to oscillate with period 2π/G along
the z direction. In consequence we define the normalized
magnetic polarization −1 � m(z,T ) � 1 as

m(z,T ) = m0(T ) + mG(T ) cos(Gz), (4)

where m0 and mG are the order parameters of the uniform
ferromagnetic (FM) phase and the spin density wave phase
(SDW), respectively.

The internal energy per unit volume corresponding to this
magnetization is

E = −J

2
m2

0χzz(0) − J

4
m2

Gχzz(G), (5)

where J = S2

4 J 2
effc, c being the density of magnetic impurities.

In our case, the value of χzz(G) is less than 10% larger than
χzz(0) and the zero temperature ground state is a uniform
FM phase, m(z,T = 0) = 1. However the maximum of the
spin susceptibility at G will modify the spin density at larger
temperatures.

Knowing that for small values of the polarization the
entropy of a classical spin at a given T is (see the Appendix)

−T S = −kBT ln(2) + 3
2kBT m2 + 9

20kBT m4. (6)

We get that in the mean-field approximation and for small
values of magnetic polarization the Landau free energy per

unit volume takes the form

F = −J

2
m2

0χzz(0) − J

4
m2

Gχzz(G)

− 1

β

1

L

∫
dz

[
ln 2 − 3

2
m2(z,T ) − 9

20
m4(z,T ) · · ·

]
,

(7)

where β = 1/kBT and L is the sample dimension in the z

direction. Using expression (4), and in the limit L → ∞,
we get

F = 3
2m2

0kB(T − T0) + 3
4m2

GkB(T − TG)

+ kBT 27
20m2

0m
2
G + kBT 9

20m4
0 + kBT 27

160m4
G, (8)

where T0 and TG are the critical temperatures of the pure FM
and SDW phases, respectively,

kBT0 = J

3
χzz(0) and kBTG = J

3
χzz(G). (9)

The phase diagram of a system described by a free energy as
that of Eq. (8) depends on the relative magnitudes of the fourth-
order potentials.37 In our case the product of the prefactors of
m4

0 and m4
G is smaller than the square of the m2

0m
2
G prefactor

and there is no phase coexistence in the phase diagram. By
increasing the temperature, there is a first-order transition from
the FM phase to the SDW phase at

T ∗ =
√

3T0 − √
2TG√

3 − √
2

. (10)

This is the main result of this work: By heating, a magnetically
doped TI undergoes two phase transitions, a FM to SDW first-
order transition at T ∗ and a SDW to paramagnetic second-order
transition at TG. Although at T = 0 the FM phase has lower
energy than the SDW phase, the FM to SDW transition at finite
T occurs because the entropy of the SDW increases faster with
T than the entropy of the FM phase.

In the next section we analyze how the surface states
existing in topological insulators couple to the bulk magnetic
polarization.

V. SPIN POLARIZATION OF MAGNETICALLY
DOPED TI SLABS

At the surface of a TI there exists a two-dimensional
Dirac electron gas. Because of the chirality of the electron
gas, an exchange field perpendicular to the surface opens a
gap in the spectra. Then, in order to minimize the energy,
a magnetic impurity will polarize perpendicularly to the
surface.10–12,18 In the diluted limit, surface states mediate a
Ruderman-Kittel-Kasuya-Yosid (RKKY) interaction among
the impurities which is always ferromagnetic, whenever
the chemical potential resides near the Dirac point.10,12,18,38

Therefore magnetic impurities at the surface of a TI will order
ferromagnetically perpendicular to the surface.

We are going to study numerically the spin polarization
as a function of temperature and position of a magnetically
doped TI slab. The objective here is first to confirm the results
obtained with the Landau functional where we consider a
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FIG. 3. In the left panel we plot the band structure of a topological
insulator film 30 nm thick. For this thickness there is no coupling
between localized states on opposite surfaces and surface states are
degenerated. Dashed areas denote the bulk band structure. In the right
panel we plot the absolute value of the four components of the wave
function of a surface state with momentum close to zero.

unique Fourier component of χzz(qz) and second to analyze
the coupling between the surface and the bulk magnetization.

We analyze a TI slab of thickness L perpendicular to the z

direction. We expect the electron affinity of Bi2Se3 to be much
larger than its band gap. Therefore, at the surface of the TI we
will neglect the penetration of the electron wave function into
the vacuum. The eigenvalues εn,k and wave functions 
n,k(z)
are obtained by solving Eq. (1) with kz = −i∂z and forcing the
wave function to vanish at z = 0 and z = L. This is satisfied
expanding 
n,k(z) in harmonics,


n,k(z) = eikr

√
A

√
2

L

Nmax∑
l=1

∑
j=1,4

al
n,j (k) sin

(
l

L
πz

)
, (11)

here A is the sample area and we choose Nmax large enough
so that the results do not depend on it.

For L > 10 nm the surfaces of the slab are decoupled and
the band structure is independent of L. In the bulk energy gap
region, some surface states appear which are the benchmark of
the TI. In Fig. 3 we plot the band dispersion and the shape of
the wave function of these states. The results we obtain agree
completely with previous results.3,29

In the slab geometry the momentum in the z direction is not
a good quantum number and the paramagnetic susceptibility
depends on two position indices z and z′. Therefore, in the
virtual crystal approximation and in second-order perturbation
theory, the internal energy of the magnetically doped TI slab is

E = J

2L

∫ L

0

∫ L

0
dzdz′χ̃(z,z′)m(z)m(z′), with (12)

χ̃ (z,z′) = 1

A

∑
n,n′,k

nF (εn,k) − nF (εn′,k)

εn′,k − εn,k

×
∗
n,k(z)Sz
n′,k(z) × 
∗

n′,k(z′)Sz
n,k(z′), (13)

where nF (ε) is the Fermi distribution function. χ̃ (z,z′)
indicates the coupling between uniform polarized (x,y)
planes, located at positions z and z′. The interaction between
magnetic impurities is mediated by electrons in the system,
and because the bulk system is an insulator, the interaction is
very short ranged in the z direction, see Fig. 4.

We compute the temperature dependence of the magne-
tization profile in the mean-field approximation. At a given
position z, the magnetization m(z,T ) feels a (in energy units)
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FIG. 4. (Color online) χ̃zz(z,z′) evaluated at the maximum of the
surface wave function, z = 1.2 nm, and at the center of a 20 nm
thick slab, as a function of z′. The first case corresponds to a region
near the surface, where the two-dimensional Dirac electron system
contributes to the response functions. In the latter case the response
function is not affected by the surface and it is the bulk response
function. In both cases the functions are very peaked at z = z′. The
negative values of the coupling in the bulk response function is a
consequence of the maximum that the response function present at
qz = G in the reciprocal space. Near the surfaces, and because of
their metallic character, the magnetic coupling is stronger. This is
reflected in the asymmetry of the dashed line, the interaction between
planes is larger the closer the planes are to the surface.

magnetic field,

B(z) = J

∫ L

0
dz′χ̃ (z,z′)m(z′), (14)

and the magnetization of an isolated impurity in the presence
of the molecular field is

m(z,T ) = coth

[
B(z)

kBT

]
− kBT

B
. (15)

Solving self-consistently Eqs. (14) and (15), we obtain the
magnetization profiles as a function of T .

Because the metallic surface states intermediate a RKKY
coupling10,38 at the surface, the response function χ̃(z,z′) is
larger near the surface than in the bulk, see Fig. 4. Therefore,
as function of T , the absolute value of the magnetization
decreases faster in the bulk region than in the surface.39

However, it is important to note that the surface and the
bulk are part of a unique system and therefore there is only a
unique critical temperature corresponding to the transition of
the paramagnetic phase.

In Fig. 5 we show the magnetization as a function of
temperature for TI slabs of thickness L = 5 nm, L = 10 nm,
and L = 30 nm. We plot the average value of m(z,T ), and the
value of the magnetization on top of the surface states. In Fig. 6
we plot the magnetization profiles for different temperatures
and L = 5 nm, L = 10 nm, and L = 30 nm.

For L = 10 nm and L = 30 nm the surfaces are practically
decoupled and the central part of the slab behaves as bulk.
There is a strong jump in the magnetization at T ∗ that indicates
the first-order FM to SDW transition. In the SDW phase
the oscillating magnetization does not contribute to the total
magnetization and the magnetization for T > T ∗ is due to
surface states. In Figs. 6(b) and 6(c) the abrupt transition
from an uniform magnetization phase to a SDW phase is
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FIG. 5. (Color online) Magnetization as a function of temperature
for TI slabs of thickness (a) L = 5 nm, (b) L = 10 nm, and (c)
L = 30 nm. T0 is the bulk FM critical temperature of the topological
insulator. The small “step” in the middle of the first-order transition
that occurs at L = 30 nm is a consequence of an interference effect
between the surface magnetization and the bulk SDW phase.

apparent at the center of the slab. For smaller thickness of
the slab [Fig. 6(a)] the surface states are coupled and there is
no well-defined bulk region that reflects in the absence of FM
to SDW transition.

The magnetization at the surface is practically not affected
by the FM to SDW transition, and decays with T continuously
to zero. The ferromagnetism at the surface is more robust than
in the central part. For temperatures where m0 and mG are near
zero, the surface of the system can be more than 30% polarized.
These results indicate the possibility that the magnetization at
the surfaces of TIs could be finite at temperatures larger than
the bulk critical temperatures TG and T ∗.39 Because of the
metallic character of the TI surface states, there is a range of
temperatures for which the Dirac-like electron system at the
surface of the TI is gapped, although the bulk part of the system
is practically unpolarized.

A similar SDW phase has been also obtained numerically by
Rosenberg and Franz in a slab geometry of Bi2Se3.39 However
these authors interpret the oscillation of the polarization as
spatial fluctuations of the bulk magnetization coupled with
the surface magnetization. From our calculation we attribute
the oscillations in the magnetization reported in Ref. 39 as a
signature of the bulk SDW phase.

VI. FINAL REMARKS AND CONCLUSIONS

In this work we study the phase diagram of magnetically
doped Bi2Se3. At low temperatures the magnetic impurities
order ferromagnetically along the z direction. By raising the
temperature, the TI undergoes two transitions. A first-order
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FIG. 6. (Color online) Magnetic polarizations as a function of
the position across the topological insulator slab z for different layer
thickness and temperatures.

transition from the ferromagnetic to the spin density wave
phase and at higher temperatures a second-order transition
from the spin density wave phase to the paramagnetic phase.
This result could explain recent experimental results40 that
suggest the existence, as function of the temperature, of two
different magnetic phases in Fe doped Bi2Se3.

We have also studied the effect of the surface states by
calculating the magnetization as a function of temperature of
a slab of Bi2Se3 topological insulator. Here we find that the
surface magnetization survives to higher temperatures than
the bulk spin density wave phase. The existence of a range
of temperatures for which the bulk magnetization practically
vanishes, whereas a finite magnetization exits at the surface,
could explain some experimental results that observe a gap at
the surface of Bi2Se3 but not bulk magnetism.20,21

It is important to analyze the behavior of the phase diagram
as a function of the gap parameter M0. In Fig. 7 we show
the phase diagram of a magnetically doped thick TI slab as a
function of M0. For M0 < 0 the system is a normal insulator
and there are no surface states. Also the spin-orbit coupling
is small and the SDW phase does not exist. For M0 > 0 the
system is a TI and the gap increases with M0. TI with larger
gaps have more metallic surface states and the FM order at the
surface is therefore more robust. Also the effective spin-orbit
coupling is stronger and both T ∗ and TG increase with M0. The
results of Fig. 7 show that the range of temperatures where the
SDW phase exists increases with M0.
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FIG. 7. (Color online) Phase diagram of a thick magnetic doped
TI as a function of the mass parameter M0.

Finally we make an estimation of the critical temperature.
From the band structure parameters of Bi2Se3, choosing
the density of the magnetic impurities to be 5×1020 cm−3,
the total angular momentum of a single magnetic ion
to be S = 3/2, and the effective exchange coupling
Jeff = 250 meV nm3 (Ref. 12) we obtain T bulk

G ≈ 18 K. These
values can change by factors of 2 by changing the magnetic
ions or the density of impurities. It is well known that the
mean-field approximations tend to overestimate the transition
temperature due to the neglect of the fluctuations. In diluted
magnetic semiconductors thermal fluctuations reduce the
value of the Curie temperature in near 30%,33 and we expect
a similar reduction in topological insulators.
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APPENDIX: MEAN-FIELD EXPRESSION
FOR THE ENTROPY

In this Appendix we obtain an expression for the entropy
of a system of classical spins of magnetization m that are
coupled with the topological insulator through a general
term E[m].

The free energy of a system of classical spins of magnitude
unity in an external magnetic field h is

F = − 1

β
ln

[
2

sinh(βh)

βh

]
, (A1)

from where the magnetization can be calculated as

m ≡ 〈m〉 = −∂F
∂h

= 1

tanh(βh)
− 1

βh
. (A2)

The entropy of the spin system is then

−T S = F − mh = 1

β

{
− ln

[
2

sinh(βh)

βh

]
− mβh

}
. (A3)

The total energy of the system is

F total = E[m]−T S = E[m]− 1

β

{
ln

[
2

sinh(βh)

βh

]
+mβh

}
,

(A4)

where E[m] is the change in the electronic energy of the system
because of the polarization of the magnetic impurities.

To obtain h we minimize the total free energy with respect
to h, ∂F total/∂h = 0. In the limit of small h,

ln

[
2

sinh(βh)

βh

]
� ln(2) + (βh)2

6
− (βh)4

180
+ · · · . (A5)

In this limit the minimization condition gives βh = −3m −
3
5m3 + · · ·, and the entropy gets the form

−T S = −kBT ln(2) + 3

2
kBT m2 + 9

20
kBT m4. (A6)
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