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Coherent exchange and double beam splitter oscillations in a triple quantum dot
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Recent experiments with an electrostatically gated structure demonstrated coherent oscillations, involving all
three spins of a linear triple dot system. In a combined experimental and theoretical study, we demonstrate
coherent doublet/doublet exchange oscillations, leading to arbitrary rotation on the relevant Bloch sphere, and
we reveal an interplay between exchange and hyperfine-driven “double coherent beam splitter” oscillations.
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The potential applications of a triple quantum dot system
have been outlined in many theoretical papers over the
past decade,1–5 and linear triple dot devices have now been
demonstrated experimentally.6–9 The relevant location within
the triple dot stability diagram for spin qubits is the connected
(2,0,1), (1,1,1) and (1,0,2) regime where the (2,0,1) and (1,0,2)
regions are required for spin-to-charge conversion. Crossing
this space [Fig. 1(c)], the exchange coupling between the
center spin and one edge spin decreases while simultaneously
increasing with the other. This results in two levels, �′

1/2 and
Q3/2, anticrossing twice (due to hyperfine interactions). In
a recent paper,10 we demonstrated coherent Landau-Zener-
Stuckelberg (LZS) oscillations between these two three-spin
levels utilizing each anticrossing as a “beam splitter” for
quantum state preparation in a similar way to that utilized in
double quantum dots.11 In this paper, we analyze, theoretically
and experimentally, the coherent behavior obtained for a pulse
through “both” anticrossings and find an interplay between
hyperfine-driven double beam splitter oscillations and pure
exchange oscillations of the triple dot system (made clear by
varying both pulse detuning and magnetic field). The latter
oscillations are proposed for an exchange-only architecture by
DiVincenzo et al.1 where quantum information is encoded
in triple quantum dot states in a way which allows all
necessary quantum computing operations to be achieved by
local electrostatic gate operations. By comparison with theory,
we show that this triple quantum dot qubit displays the
appropriate coherent behavior associated with universal state
rotation around the Bloch sphere.9

The linear triple dot device6,7,10 is shown in Fig. 1(a).
Charge detection measurements can be performed with either
of the quantum point contacts12 (QPCs) on each side of the
device. The charge state of the device is controlled using gates
1 and 2 in combination to manipulate the tunneling between the
central dot and its neighbors as well as the chemical potentials
of the dots. Gate C primarily tunes the (1,1,1) charge region
width.

A typical charge detection stability diagram obtained under
dc conditions is shown in Fig. 1(b). In this paper, we study
the coherent spin response in a spin qubit regime from the
(NL,NC,NR) = (2,0,1) through the (1,1,1) to near the (1,0,2)
electronic charge configuration, where L, C, and R refer to the
left, center, and right quantum dots, respectively. The charge-
transfer lines between the left and center dots (indicated by
the white arrow and denoted here as ε−), and the right and
center dots (indicated by the blue arrow and denoted here
as ε+) are seen as yellow lines. The white dashed line in

Fig. 1(b) illustrates a typical pulse detuning line ε across the
(1,1,1) region (decreasing V1 and increasing V2). We express
the detuning ε(t) in millivolts along V2 and define the initial
detuning as dV2 relative to the middle of the (1,1,1) region,
i.e., halfway between ε− and ε+.

Figure 1(b) also shows features below the (2,0,1)/(1,1,1)
charge-transfer line that correspond to coherent oscillations
between the spin states of our linear triple dot.10 The
terminology used here to describe these spin states follows that
of Laird et al.9 Based on that formulation, the Hamiltonian for
a system of three electron spins in the presence of a magnetic
field is as follows:

H = JLC
( �SL · �SC − 1

4

) + JRC
( �SR · �SC − 1

4

)

−Ez

(
Sz

L + Sz
C + Sz

R

)
, (1)

where Jij is the exchange interaction between spins in dots
i and j, �Si is the spin in dot i, and EZ is the Zeeman
energy. Effective lever arms α̃LC and α̃RC are calculated from
capacitance ratios and pulse angles in the V1-V2 plane and give
the conversion from detuning in gate voltage units of millivolts
into energy in μeV. From Ref. 9, the three-spin system is
characterized by eight eigenvectors, which are divided into two
subgroups by the exchange energy: four quadruplet states Q

with a total spin S = 3/2 (Sz = ±3/2, ± 1/2) and two pairs
of doublet states � and �′ with a total spin S = 1/2 (Sz =
±1/2).

Here, we consider the positive Sz subset of states,

|Q1/2〉 = 1√
3

(| ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑〉), (2)

|�1/2〉 = 1
√

4�2 + 2�(JLC − 2JRC)
[(JLC − JRC + �)| ↑↑↓〉

+ (JRC − �)| ↑↓↑〉 − JLC| ↓↑↑〉], (3)

|Q3/2〉 = | ↑↑↑〉, (4)

|�′
1/2〉 = 1

√
4�2+2�(2JRC−JLC)

[(−JLC+JRC+�)| ↑↑↓〉

− (JRC + �)| ↑↓↑〉 + JLC| ↓↑↑〉], (5)

where � =
√

J 2
LC + J 2

RC − JLCJRC. These states are plotted
in Fig. 1(c) as a function of the V2 component of the applied
pulse, denoted here as ε(t). JLC [JRC] is the exchange energy
for the left-center [right-center] dot pair. Figure 1(c) does
not include the anticrossings induced by hyperfine nuclear
gradients.11,13,14 In the limits of large |ε|, the �′

1/2(�1/2)
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FIG. 1. (Color online) (a) Electron micrograph of the triple dot
structure. Fast voltage pulses (δV1,δV2) are applied to gates 1 and 2
in addition to dc voltages (V1,V2). Gate C tunes the (1,1,1) region
size. (b) Stability diagram obtained from numerically differentiating
the left QPC detector conductance with respect to V2 at B = 40 mT.
Black is low, red (gray) is medium, and yellow (white) is high. Charge
addition lines appear black, and charge-transfer lines appear yellow
(white).7 A typical detuning line is drawn across the (2,0,1)/(1,1,1)
charge-transfer line (ε−) indicated by the white arrow and reaches a
region close to the (1,0,2)/(1,1,1) charge-transfer line (ε+) indicated
by the blue (gray) arrow. (c) Relevant three-spin state energies in
the absence of hyperfine coupling as a function of the detuning
component along V2. ε− and ε+ denote the positions of charge-transfer
lines along V2. (d) Calculated (line) and experimental (circles)
Gaussian-filtered pulses for pulse duration τ = 16 ns and a rise time
of 6.6 ns.

doublet state evolves to the −D̄′
1/2 (−D̄1/2) and D′

1/2 (D1/2)
states, respectively, of Ref. 9 on the left and right sides of
Fig. 1(c). For example, on the left side of Fig. 1(c), we have

|D̄1/2〉 = −1√
6

(2| ↑↑↓〉 − | ↑↓↑〉 − | ↓↑↑〉), (6)

|D̄′
1/2〉 = 1√

2
(| ↑↓↑〉 − | ↓↑↑〉). (7)

The doublet �′
1/2 state crosses the quadruplet Q3/2 state at

two places indicated by blue circles in Fig. 1(c). The Q3/2/Q1/2

spacing is the Zeeman energy Ez. The �′
1/2/Q3/2 crossings

occur at detunings that vary with magnetic field and map out
the “spin arch” used to characterize the system for modeling
purposes.10 The arch is shown as a dashed line in Figs. 2
and 3. The presence of x,y components of hyperfine field
gradients between the dots causes the �′

1/2/Q3/2 crossings to
become anticrossings.14 Likewise, z components of hyperfine
gradients lead to additional couplings with the Q1/2 state near
the maximum of the spin arch. In this device, we find hyperfine
couplings around 0.1–0.2 μeV.

For these experiments, a rectangular voltage pulse of
duration τ (fixed at 16 ns) and amplitude (δV1,δV2) =
(−5.4,6.0) mV is filtered with a rise time of 6.6 ns as
shown in Fig. 1(d). Standard spin-to-charge conversion is
used in the (2,0,1) region (where the pulse starts and ends)
during spin projection measurements to obtain the doublet

FIG. 2. (Color online) (a) Theoretical map of PD̄′
1/2

as a function
of initial detuning dV2 and magnetic field B. Black (white) is low
(high). ε+ − ε− = 4.6 mV along V2. The dashed line is the spin arch.
No z-hyperfine couplings are included. Triangle marks first exchange
fringe corresponding to π rotation around the D̄′

1/2/D̄1/2 Bloch sphere
x axis. Circle indicates conditions for Bloch sphere calculations in
Fig. 4. (b) Same as (a) but including z-hyperfine couplings and charge
noise.

FIG. 3. (Color online) (a) and (c) Experimental derivative of
the left QPC conductance with respect to initial detuning dV2

along V2 as a function of dV2 and magnetic field B for a 16-ns
rectangular pulse Gaussian filtered with a 6.6-ns rise time and
amplitude (δV1,δV2) = (−5.4,6.0) mV to traverse the charge-transfer
line between (2,0,1) and (1,1,1). Black is low, orange (gray) is
medium, and yellow (white) is high transconductance. (b) and (d)
Calculated derivative with respect to detuning of probability PD̄′

1/2
.

Black is low, white is high. ε+ − ε− = 4.6 mV along V2. The dashed
line in (b) is the experimentally extracted spin arch obtained from the
�′

1/2/Q3/2 crossings illustrated with circles in Fig. 1(c) and underpins
the calculations.

045316-2



COHERENT EXCHANGE AND DOUBLE BEAM SPLITTER . . . PHYSICAL REVIEW B 86, 045316 (2012)

occupation probability PD̄′
1/2

.15 Applying a detuning pulse
across a �′

1/2/Q3/2 anticrossing will result in a phase accu-
mulation between the quantum state components. This phase
is related both to the pulse duration and to the detuning
voltage.10,11,16–20

The spin state evolution in response to the pulse is calculated
from the time dependence dρ/dt = i[ρ,H/h̄] of the density
matrix ρ in the Q1/2/D̄1/2/Q3/2/D̄

′
1/2 basis10 starting from an

initial state at large negative detuning where PD̄′
1/2

= 1. This
yields four differential equations solved using the Runge-Kutta
method.

In Fig. 2, we show calculated maps of the probability PD̄′
1/2

of the system returning after the pulse in state PD̄′
1/2

as a func-
tion of initial detuning component dV2 along V2 and magnetic
field B. Figure 2(a) shows the case where we have included
the �′

1/2/Q3/2 (xy)-hyperfine coupling but not the z-hyperfine
coupling that would play a role when the exchange splitting is
small. Multiple oscillations due to the spin arch anticrossings
are clearly seen. These features correspond to a special case of
the tripartite qubit model of Sun et al. describing interference
effects observed due to a state anticrossing with two other
states.21 In our case, the two states are replaced by a dispersing
state (�′

1/2) that crosses a dispersionless state (Q3/2) twice.
Interfering with these magnetic-field-dependent oscillations
defined by the �′

1/2/Q3/2 energy splitting are magnetic-field-
independent oscillations defined by the exchange interaction
(vertical fringes appearing at initial detunings >−6.0 mV).
The first of these, at around −5.4 mV (marked with a triangle),
corresponds to a π rotation around the x axis on the D̄′

1/2/D̄1/2

Bloch sphere. Starting at around −4.9 mV, we see a series of
fringes associated with exchange coupling on the right-hand
side of Fig. 1(c) where JRC is increasing. Due to the strength
of the exchange fringes, any interference between the first
and the second �′

1/2/Q3/2 beam splitters is masked. Instead,
we see additional diagonal fringes to the right of the figure,
corresponding to interference between the �′

1/2/Q3/2 and the
exchange interactions. In Fig. 2(b), we now include z-hyperfine
couplings between the �′

1/2/Q1/2 and the Q1/2/�1/2 states.
Due to z-hyperfine enhancement during the pulse,10 we take
the z coupling to be twice the xy coupling. This causes the
first exchange fringe near the minimum exchange splitting to
almost disappear but has less impact for fringes to the right
of this point. Hyperfine averaging leads to slight additional
blurring of the exchange fringes. We average over a small
range (about 0.4 mV) of detuning to model charge noise
effects.

In Fig. 3(a), we show an experimental map of the numerical
derivative of the left QPC conductance with respect to initial
detuning component dV2 as a function of dV2 and the
magnetic field. The spin arch is observed for both signs of the
magnetic field. Figure 3(a) shows another experiment focused
slightly to emphasize an interesting region corresponding to
the maximum amplitude of the pulse reaching the right-side
anticrossing. The dominant feature is a pair of B-independent
vertical fringes around an initial detuning of −5.0 mV. These
are due to exchange oscillations and are observed without
recourse to initialization under the z-hyperfine field as in
the paper of Petta et al.13 In addition, these fringes are
crossed by B-dependent fringes corresponding to the beam

FIG. 4. (Color online) (a) and (b) Two views of the D̄′
1/2/D̄1/2

Bloch sphere showing same calculated state vector motion during
the pulse at the point in Fig. 2(a) marked by a circle [(b) shows
the projection on the xz plane]. Point C marks the peak of the
pulse, and point M marks where the pulse has returned to the (2,0,1)
measurement region.

splitter oscillations. These are highlighted with a circle. The
experimental resolution vanishes very quickly in this region
of rapid oscillation, probably due to charge noise effects
as in Fig. 2(b). For comparison, the equivalent theoretical
derivatives of PD̄′

1/2
from Fig. 2(b) are plotted in Figs. 3(b)

and 3(d). We assume that T ∗
2 is infinite here, but a value of

10 ns, consistent with previous analysis,10,22 slightly reduces
the contrast. The far- (right-) side beam splitter modulation
of the exchange oscillations in the experiment corresponds
to the features highlighted by the circle in Fig. 3(d). This is
analogous to an interplay described for the double dot regime22

but corresponds here to spin operations on the far (RC) side of
the dot from the (2,0,1) measurement region.

To confirm the nature of the B-independent fringes, in
Figs. 4(a) and 4(b), we plot two views of the D̄′

1/2/D̄1/2 Bloch
sphere with the motion of the state vector as a function of
pulse time for the detuning/field point marked with a circle
in Fig. 2(a). This fringe is due to JRC exchange rotation
on the right side of Fig. 1(c). The trajectory lies on the
sphere surface since the radial position is normalized to unity
from the sum of the D̄′

1/2 and D̄1/2 diagonal elements in
the density matrix and we have neglected dephasing in this
plot. This basis for this particular Bloch sphere corresponds
to the (2,0,1) (LC) side of the triple dot system where the
pulse starts and ends, and in Fig. 4(b), we have added
the axis corresponding to the D′

1/2/D1/2 states on the far
(RC) side. At the peak of the pulse (C), the state vector
rotates around this axis before returning to rotate around
the polar axis for measurement (we have terminated the
trajectory early). A similar plot (not shown) for the second
vertical fringe has an additional rotation around the D′

1/2/D1/2

axis.
In conclusion, we have studied the coherent behavior

of three interacting spins in a triple quantum dot as the
system evolves through the anticrossings on both sides of
the energy-level diagram. In our experimental and theoretical
results, we find that double beam splitter behavior, driven by
the hyperfine interaction (LZS), interplays with the pure ex-
change oscillations proposed by DiVincenzo et al. as encoded
qubits.1
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