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Magneto-photon-phonon interaction in a parabolically confined quantum dot in the presence
of high magnetic fields and intense terahertz radiation fields
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We present a theoretical study on magneto-photon-phonon interaction in a parabolically confined quantum dot
subjected simultaneously to static magnetic field and radiation field. A nonperturbative treatment for electron-
photon interaction is proposed by solving analytically the time-dependent Schrödinger equation in which the
magnetic field and the radiation field are included exactly. We employ the energy-balance equation approach on
the basis of the Boltzmann equation to evaluate the energy transfer rate induced by optical transition events. It is
found that for relatively low radiation levels, two peaks of the cyclotron resonance (CR) appear at two Kohn’s
frequencies ω±, and the strength and the width of the CR increase with radiation intensity. The CR at ω+ is more
prominent than that at ω−. When the radiation become intense, the splitting of the CR peaks can be observed
and the splitting increases with radiation intensity. The physics reasons behind these interesting findings are
discussed. This study is pertinent to the application of intense terahertz radiation sources such as free-electron
lasers in the investigation into low-dimensional semiconductor systems.
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I. INTRODUCTION

With the development of the nanogrowth and nanofabri-
cation techniques, such as molecular beam epitaxy (MBE),
metalorganic vapor phase epitaxy (MOVPE), droplet epitaxy
based on self-assembly, etc., it has become possible to realize
semiconductor-based quantum dot (QD) systems. In a QD
the conducting electrons are confined within the nanometer
distance scale comparable to the de Broglie wavelength so
that the quantum effect can be observed and novel quantum
phenomena can be measured experimentally. Semiconductor-
based QD systems have been widely applied as advanced
electronic and optoelectroic devices such as QD laser,1

quantum cryptography,2 quantum computer,3 and memory
chip,4 to mention but a few. As a result, the theoretical
and experimental investigation into electronic and optical
properties of QDs has been an important and active field of
research in condensed-matter physics, nanoelectronics, and
optoelectronics. In particular, magneto-optical measurement
has been a powerful experimental tool in the study and
characterization of semiconductor QD systems.5–13 When
electrons in a QD are subjected to external magnetic field and
light radiation, the applied fields can couple to the confining
potential of the QD and the fields can couple with each other.
Thus, the modified cyclotron resonance (CR) can be observed
where the frequencies of the CR are comparable to the strength
of the electronic correlations in the device systems. It is known
that the transition energy for the dipole-allowed channels
among the Fock-Darwin energy levels in a parabolically
confined QD in the presence of a normal magnetic field is6,11–13

�E = h̄ω± with ω± =
√

ω2
0 + ω2

c

4
± ωc

2
. (1)

Here ω0 is the characteristic frequency of a parabolically
confined QD and ωc = eB/m∗ is the cyclotron frequency with
B being the strength of the magnetic field and m∗ the electron
effective mass. The accuracy of this analytical expression
has been carefully examined by variety of experiments.5–9 In

addition, published theoretical work12,13 has given a distinct
physical picture behind this simple and useful relation and has
confirmed that two excitation frequencies (ω±) (also called
Kohn’s frequencies) from a parabolically confined QD are
independent of the electron-electron interaction and of the
number of electrons in the system. Hence, the magneto-optical
absorption peaks at ω± observed experimentally have been
widely applied to characterize the QD systems and to measure
the sample parameters such as the electron effective mass m∗
and the strength of the confinement of the QD ω0.

On the other hand, it is known that in the magneto-
optical measurement, generally the sample and material-
related parameters such as the scattering mechanisms14,15

and the spin g factor, etc., affect mainly the amplitude
and width of the magneto-optical absorption spectrum in
an electron gas system. The phonon-assisted CR effect has
been intensively studied in bulk16–18 and two-dimensional
(2D) semiconductor19,20 systems. However, it has been found
experimentally that when the radiation field becomes intense
in the magneto-optical measurements, the splitting of the CR
can be observed in bulk21,22 and 2D23 electron gas systems. In
this study, we would like to see if we can observe the similar
effect in QD systems in the magneto-optical experiments.
At present, the intense terahertz (1012 Hz or THz) laser
radiation can be generated through, for example, free-electron
lasers (FELs).24 The splitting of the CR peaks in GaAs-based
two-dimensional electron gas (2DEG) systems have been
experimentally measured using FELIX FELs.23 Therefore,
it has now become possible to examine how electrons in a
QD response to intense THz laser radiation and quantizing
magnetic field.

The theoretical investigation into magneto-optical proper-
ties of QDs is an old and well-documented problem. However,
in the previous theoretical approaches, the radiation field
has been often taken as a perturbation. When the radiation
field becomes intense, such an approach may not be held.
Thus, there is a need to develop nonperturbative theory to
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study electron interactions with intense radiation fields for
QD structures. In the present study, we intend contributing a
theoretical work in handling magneto-photon-phonon interac-
tion in a parabolically confined QD, in which the radiation
field is included in a more exact way. Such a new approach
is developed in Sec. II. In conjunction with magneto-optical
measurements, in Sec. III we present the numerical results
for magneto-optical properties of GaAs-based QD systems
and discuss the effect of intense THz laser radiation on these
properties. In addition, the main theoretical findings from this
study are summarized in Sec. IV.

II. THEORETICAL APPROACHES

A. Electronic states

In this paper, we consider a typical QD whose growth
direction is taken along the z axis with a confining potential
U (z) and the lateral confining potential in the xy plane
is taken as V (x,y) = (m∗ω2

0/2)(x2 + y2), where ω0 is the
characteristic frequency of a parabolically confined QD and
m∗ is the electron effective mass. A static magnetic field B

and an electromagnetic (EM) field are applied simultaneously
along the z direction of the QD, where the radiation field At is
polarized linearly in the xy plane (taken along the x direction).
Under the usual dipole approximation, the vector potential of
the radiation field is given as At = �(t)(F0/ω)sin(ωt), where
�(x) is the unit-step function and F0 and ω are, respectively,
the electric field strength and the frequency of the applied
EM field. In such a geometry, both vector potentials induced
by the magnetic and radiation fields couple to the lateral
confining potential of the QD and the vector potential of
the radiation field couples to that of the magnetic field. As
a result, the effect of the modified CR is observable in this
configuration. The single-electron Hamiltonian to describe
such a magneto-photon system can be written as

H0(t) = [px − (1 − α)eBy + eAt ]2 + (py + αeBx)2

2m∗

+ σgμBB + m∗

2
ω2

0(x2 + y2) + p2
z

2m∗ + U (z). (2)

Here, px = −ih̄∂ /∂x is the momentum operator along the x

direction, σ = ±1 refers to different spin states, g is the spin g

factor, and μB is the Bohr magneton. To show how the results
depend on the choice of the gauge for the magnetic field, here
we use an arbitrary gauge for the vector potential induced
by the B field, that is, the gauge factor α = [0,1] here. It is
known that in the presence of a linearly polarized EM field,
if the results can be obtained in one particular gauge of the
vector potential induced by the radiation field, the results in
an arbitrary gauge can also be obtained through the gauge
transformation. We find that (see Appendix) the influence of
the magnetic and radiation fields on electron wave function is
mainly achieved through shifting the coordinates and phases
of the wave fucntion. The coordinate shifts do not depend on
the gauge of the B field at all, whereas the phase shifts depend
on what the gauge factor α is taken to be. Most importantly,
it is found that the corresponding Schrödinger equation can
be solved analytically and the time-dependent electron wave

function is obtained as (see Appendix)

|n,ν,t〉 = 	nν(R,t) = 
nν(r,t)ψn(z), (3)

where


nν(r,t) = eimθ

√
2π

RmN (
√

(x + xt )2 + (y + yt )2/l0)

× eim∗[(x+xt )ut+(y+yt )vt ]/h̄e−i[Enν t+
∫ t

dτf (τ )]/h̄.

Here, ν = (σNm) refers to quantum numbers for states in
the xy plane, R = (r,z) = (x,y,z), θ is the angle between
(x + xt ,y + yt ) and the x axis, m = 0,±1,±2, . . ., N =
0,1,2, . . ., and l0 = (h̄/m∗�0)1/2, with �0 =

√
ω2

0 + ω2
c/4

and ωc = eB/m∗ being the cyclotron frequency. The energy
spectrum of the QD is

Enν = [2N + 1 + |m| + m(ωc/2�0)]h̄�0 + σgμBB + εn,

(4)

which is a well-known result when the symmetry gauge α =
1/2 is taken. The wave function ψn(z) and electronic subband
energy εn are determined by a time-independent Schrödinger
equation along the growth direction, which are not affected
directly by the magnetic and radiation fields. In Eq. (3),

RmN (x) = 1

l0

√
2N !

(N + |m|)!e
−x2/2x|m|L|m|

N (x2),

obtained by taking the symmetry gauge α = 1/2 with Lm
N (x)

being a Laguerre polynomial. The shifts of the coordinates are

xt = r0cos(ωt) − r+cos(ω+t) − r−cos(ω−t), (4a)

and

yt = r1sin(ωt) − r+sin(ω+t) + r−sin(ω−t), (4b)

which do not depend on the choice of the gauge for the
vector potential of the B field. Here, ω± = �0 ± ωc/2, r0 =
(eF0/m∗)(ω2 − ω2

0)/[(ω2 − ω2
+)(ω2 − ω2

−)], r1 = (eF0/m∗)
ωωc/[(ω2 − ω2

+)(ω2 − ω2
−)], and r± = (eF0/2m∗�0)ω±/

(ω2 − ω2
±). The phase shifts are

ut = −ẋt − (1 − α)ωcyt − (eF0/m∗ω)sin(ωt) (4c)

and

vt = αωcxt − ẏt , (4d)

which depend on the gauge factor α. Furthermore,

f (t) = (m∗/2)
[
ẋ2

t + ẏ2
t + 2ẋtut + 2ẏt vt + ω2

0

(
x2

t + y2
t

)]
(4e)

depends also on the gauge factor α. Here, xt = yt = ut =
vt = 0 at t = 0 have been taken as initial conditions. We note
that although the electron wave function given by Eq. (3)
continues over all R, t , and ω, the coordinate and phase
shifts are divergent when ω → ω±. This implies that due to
the coupling between the vector potentials of the magnetic
and radiation fields and the lateral confinement potential of
the QD, the CR can be achieved with two CR frequencies
ω±, which is independent of the number of electrons in
the dot. Hence, two Kohn’s frequencies ω± = �0 ± ωc/2
are also the CR frequencies for a parabolically confined
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QD subjected to magnetic and radiation fields. In such an
approach, the radiation field can be included exactly within
the time-dependent electron wave function. This can provide a
basis for studying more easily the magneto-optical properties
of a QD system.

B. Magneto-photon-phonon interaction

With time-dependent electron wave function given as
Eq. (3), we can derive the retarded Green’s function for
electrons in the (R,t) representation

G0(R,t ; R′,t ′) = �(t − t ′)
ih̄

∑
n,ν

	∗
nν(R′,t ′)	nν(R,t),

which is a two-time quantity and satisfies

[ih̄∂ /∂t − H0(t)]G0(R,t ; R′,t ′) = δ(R − R′)δ(t − t ′).

Applying the Green’s function approach to the time-dependent
perturbation theory, in the presence of a scattering potential
V (R,t), the first-order contribution to the steady-state elec-
tronic transition rate can be calculated by23

W (λ′; λ) = 1

h̄2 lim
t→+∞

∂|Gλ′λ(t)|2
∂t

, (5)

where λ is the quantum number to describe the system and
Gλ′λ(t) = ∫ t

0 dτ 〈λ′,τ |V (R,τ )|λ,τ 〉 with |λ,t〉 being the time-
dependent electron wave function with regarding to H0(t).

In the present study, we consider polar semiconductor-
based QD structures in which optic-phonon scattering is
the limiting factor to determine the electronic and optical
properties of the sample device at relatively high temperatures.
We assume that the system under study can be separated into
the electrons of interest and the rest of the crystal. For the case
of electron interactions with bulklike phonons in a QD, the
interaction Hamiltonian takes a form

Vep(R,t) =
∑

Q

[VQaQei(Q·R+ωQt) + V ∗
Qa

†
Qe−i(Q·R+ωQt)], (6)

where Q = (q,qz) = (qx,qy,qz) is the phonon wave vector,
(a†

Q,aQ) are the canonical conjugate coordinates of the phonon
system, VQ is the electron-phonon interaction coefficient, and
ωQ is the phonon frequency. After introducing the time-
dependent electron wave function [Eq. (3)] and scattering
potential for electron-phonon coupling [Eq. (6)] into Eq. (5),
the first-order contribution to the steady-state electronic
transition rate induced by magneto-photon-phonon scattering
in a QD is obtained as

W±(n′,ν ′; n,ν)

= 2π

h̄

∑
Q

[
NQ

NQ + 1

]
|VQ|2R2

m′N ′mN (l0q)Gn′n(qz)

×
∞∑

M=−∞
J 2

m1
(γq)J 2

m2
(r+q)J 2

m3
(r−q)δ[En′ν ′ − Enν

∓ h̄ωQ + m1h̄ω + m2h̄ω+ + m3h̄ω−], (7)

which measures the probability for scattering of an electron
from a state |n′,ν ′〉 to a state |n,ν〉 due to electron interactions
with the magnetic and radiation fields and with phonons.

Here, the upper (lower) case refers to absorption (emission)
of a phonon, NQ = (eh̄ωQ/kBT − 1)−1 is the phonon occupa-
tion number, Gn′n(qz) = |〈n′|eiqzz|n〉|2 is the form factor for
electron-phonon interaction along the growth direction with
|n〉 being the electron wave function along this direction,
γq = √

(r0qx)2 + (r1qy)2, and JM (x) is a Bessel function.
Furthermore,

Rm′N ′mN (y) = 2

[
N !N ′!

(N + |m|)!(N ′ + |m′|)!
]1/2

×
∫ ∞

0
dxe−x2

x|m|+|m′ |+1L
|m|
N (x2)

×L
|m′|
N ′ (x2)Jm′−m(xy),

which can be further simplified as

Rm′N ′mN (y)

= [N !N ′!(N + |m|)!(N ′ + |m′|)!]1/2
e−y2/4

×
N∑

n=0

N ′∑
n′=0

(−1)n+n′
L

|m′−m|
p (y/2)|m

′−m|+2p!

n!(N − n)!(n+ |m|)!n′!(N ′− n′)!(n′ + |m′|)! ,

where p = (|m| + |m′| − |m − m′|)/2 + n + n′. In the pres-
ence of a radiation field, the electronic transition in a QD
can be accompanied not only by the emission and absorp-
tion of phonons but also by the emission and absorption
of photons and cyclotron excitations. In Eq. (7), m1 > 0,
m1 < 0, and m1 = 0 correspond, respectively, to m1-photon
emission, m1-photon absorption, and elastic-photon scattering.
Similarly, m2 > 0 (m3 > 0), m2 < 0 (m3 < 0), and m2 = 0
(m3 = 0) correspond, respectively, to multicyclotron emission,
absorption, and elastic cyclotron scattering with a transition
energy m2h̄ω+ (m3h̄ω−). The corresponding Bessel functions
in Eq. (7) play the roles in switching different photon and
cyclotron scattering processes. In the absence of the radiation
field (i.e., F0 = 0), due to limx→0 JM (x) = δM,0, we have

W±(n′,ν ′; n,ν) = 2π

h̄

∑
Q

[
NQ

NQ + 1

]
|VQ|2R2

m′N ′mN (l0q)

×Gn′n(qz)δ[En′ν ′ − Enν ∓ h̄ωQ], (8)

which is a well-known result obtained previously for electron-
phonon coupling in a parabolically confined QD system.25,26

As has been implied in the Appendix in Ref. 23, the
electron-phonon interaction is taken as a perturbation in the
present study. It is known that in the absence of the radiation
field, such an approach works quite well for studying the con-
sequences due to electron-phonon coupling in parabolically
confined QD systems in quantizing magnetic fields.25,26 In the
presence of light radiation, because the radiation field has been
included within the Hamiltonian H0(t) in Eq. (2), one would
expect that such a perturbative approach can work even better
in investigating the magneto-optical properties in QDs in the
presence of phonon scattering. In particular, in the presence of
an intense radiation field, a strong electron-photon interaction
can be achieved and, therefore, it is more valid in our approach
to take electron-phonon coupling as a perturbation in deriving
the electronic transition rate induced by phonon scattering.
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C. Magneto-optical absorption

In this study, we employ a semiclassic Boltzmann equation
as the governing transport equation to study the consequences
of a QD subjected simultaneously to the magnetic and
radiation fields. The steady-state Boltzmann equation for
such a magneto-photon-phonon system can be written, for
a degenerate statistics, as

0 =
∑
n′,ν ′

[
Fnν

n′ν ′W (n′,ν ′; n,ν) − Fn′ν ′
nν W (n,ν; n′,ν ′)

]
, (9)

where Fn′ν ′
nν = f (Enν)[1 − f (En′ν ′)] with f (Enν) being the

energy-distribution function (EDF) for an electron at a state
|n,ν〉. It should be noted that the effect of the radiation
field has been included within the electronic transition rate.
Thus, to avoid double counting the force term induced by
the radiation field does not appear on the left-hand side of
the Boltzmann equation. The Boltzmann equation shown as
Eq. (9) with the electronic transition rate given as Eq. (7) is
a complicated equation. Due mainly to the inelastic nature of
phonon and photon scattering and to the energy conservation
law during a scattering event, which can vary the energy
in the EDF for an electron in a final state when electron
energy in the EDF in an initial state is fixed [i.e., both f (x)
and f (x + m1h̄ω + m2h̄ω+ + m3h̄ω− ± h̄ωQ) are present in
one equation], there is no simple and analytical solution for
Eq. (9). One numerical way to solve such an equation may
be through, for example, Monte Carlo simulation (MCS),27

which is very CPU consuming. At present, no result from
MCS has been reported for a QD in the presence of radiation
and magnetic fields. In the present study, we employ the
usual balance-equation approach to solve the problem. The
advantage of the balance-equation approach is that one can
detour the difficulties of solving the Boltzmann equation
directly and the interested physical properties can be calculated
approximately on the basis of the statistical energy-distribution
functions.28 In this study, we consider that the system is under
THz light radiation and the radiation photon energy is far less
than the band gap of the QD. Thus, the presence of the radiation
does not vary the carrier density of the QD system. As a result,
the mass-balance equation (or the rate equation) does not hold.
Because all electronic states in a QD are quantized, there is
no electronic momentum transfer in the system and, therefore,
no momentum-balance equation for a QD. Hence, for the first
moment the energy-balance equation (EBE) can be derived by
multiplying

∑
n,ν Enν to both sides of the Boltzmann equation.

In doing so, we obtain

0 =
∑

n′,ν ′,n,ν

[En′ν ′ − Enν]Fn′ν ′
nν W (n,ν; n′,ν ′)]. (10)

Generally, the energy of a time-dependent state
given as Eq. (3) is time-dependent, which can
be obtained as E(t) = 〈	nv(r,t)|ih̄∂/∂t |	nv(r,t)〉 =
Env + m∗[ẋ2

t + ẏ2
t + ω2

0(x2
t + y2

t )]/2. For a steady-state,
the static energy for an electron in a QD is E =
(ω/2π )

∫ 2π/ω

0 dtE(t) = Env + Es with Es = m∗[r2
±(ω2

± +
ω2

0) + (ω2
0 + ω2)(r2

0 + r2
1 )/2]/2 + m∗r±ω[r0ω±(ω2 + ω2

0) ±
r1ω(ω2

± + ω2
0)] sin(2πω±/ω)/[π (ω2 − ω2

±)] being the energy
shift induced by the radiation and magnetic fields, which is
time independent and does not depend on the electronic state.

Because the energy shift Es does not affect the electronic
transition, the bare energies of the Fock-Darwin states appear
in the EBE given as Eq. (10). The balance equation approach
is a powerful tool for investigating theoretically the transport,
optical, and optoelectronic properties of electronic systems.29

In particular, the energy-balance equation on the basis of the
Boltzmann equation has been widely applied in studying the
electron-energy-loss rate and the electronic energy transfer
rate in electron gas systems.30 Equation (10) results in a
relation

Pop + Pph − Pcr = 0, (11)

where Pj is the electron energy-transfer rate due to different
scattering mechanisms,

Pcr = 2π

h̄

∑
Q,n′,ν ′,n,ν,M

(m2h̄ω+ + m3h̄ω−)

[
NQ

NQ + 1

]
Fn′ν ′

nν

× |VQ|2R2
m′N ′mNGn′n(qz)J

2
m1

(γq)J 2
m2

(r+q)J 2
m3

(r−q)

× δ[En′ν ′ − Enν ∓ h̄ωQ + m1h̄ω + m2h̄ω+ + m3h̄ω−]

(12)

is induced by cyclotron excitation,

Pop = 2π

h̄

∑
Q,n′,ν ′,n,ν,M

(−m1h̄ω)

[
NQ

NQ + 1

]
Fn′ν ′

nν

× |VQ|2R2
m′N ′mNGn′n(qz)J

2
m1

(γq)J 2
m2

(r+q)J 2
m3

(r−q)

× δ[En′ν ′ − Enν ∓ h̄ωQ + m1h̄ω + m2h̄ω+ + m3h̄ω−]

(13)

is induced by electron-photon scattering, and

Pph = P +
ph − P −

ph

is induced by electron-phonon scattering, which is the differ-
ence between phonon emission and absorption, with

P ±
ph = 2π

h̄

∑
Q,n′,ν ′,n,ν,M

h̄ωQ

[
NQ

NQ + 1

]
Fn′ν ′

nν |VQ|2

×R2
m′N ′mN (l0q)Gn′n(qz)J

2
m1

(γq)J 2
m2

(r+q)J 2
m3

(r−q)

× δ[En′ν ′ − Enν ∓ h̄ωQ + m1h̄ω + m2h̄ω+ + m3h̄ω−].

(14)

Equation (11) reflects a fact that in the QD system, the energy
gain induced by optical absorption is balanced by the energy
loss caused by phonon emission and cyclotron excitation.

In the presence of the broadening of the scattering states,
we have

δ(Enν) → �nν/π

E2
nν + �2

nν

= 1

2π

∫ ∞

−∞
dx e−�nν |x|eiEnνx, (15)

with �nν being the broadened width for a state |n,ν〉. Thus,
we can carry out the m1, m2, and m3 summations in the above
Eqs. (12)–(14) easily. In particular, for electron energy transfer
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rate induced by electron-photon interaction, we obtain

Pop = 4
∑

Q,n′,ν ′,n,ν

ωγq

[
NQ

NQ + 1

]
Fn′ν ′

nν |VQ|2Gn′n(qz)

×R2
m′N ′mN (l0q)

∫ ∞

0
dxe−2�nνxI

q
100(x)

× sin
(
Xnν

n′ν ′
)

cos(h̄ωx), (16)

where Xnν
n′ν ′ = 2(En′ν ′ − Enν ∓ h̄ωQ)x and I

q
ijk(x) =

Ji[2γq sin (h̄ωx)]Jj [2r−q sin (h̄ω−x)]Jk[2r+q sin (h̄ω+x)]. In
this study, we use Eq. (16) to calculate the electron energy
transfer rate (or optical energy transition rate) induced by
the electron-photon coupling, which is proportional to the
magneto-optical absorption coefficient.

D. LO-phonon scattering in a QD

For the case of electron interactions with longitudinal
optical (LO) phonons in a polar semiconductor-based QD,
we have (i) ωQ 
 ω

LO
the LO-phonon frequency in the

long-wavelength range; (ii) NQ 
 N0 = (eh̄ω
LO

/kBT − 1)−1;
and (iii) the coupling coefficient is given by the Fröhlich
Hamiltonian so that |VQ|2 = 4πα

LO
L0(h̄ω

LO
)2/Q2, where α

LO

is the electron−LO-phonon coupling constant and L0 =
(h̄/2m∗ω

LO
)1/2 is the polar radius.

At present, an often-used technique to produce
semiconductor-based QDs is through defining the QD in
the 2DEG formed in, for example, an AlGaAs/GaAs
heterojunction.31–33 The lateral confinement in the xy plane
is achieved by applying gate voltages on the quantum point
contacts.31–33 It has been shown experimentally that in such
a QD device, the lateral confining potential in the relatively
low-energy regime is parabolic.33 The situation where only
the lowest electronic subband is occupied by electrons in
the heterojunction along the z direction is taken into con-
sideration. We apply the usual triangular well approximation
to model the confining potential normal to the interface of
the AlGaAs/GaAs heterojunction.34 Thus, the form factor
G00(qz) can be determined analytically. The energy transfer
rate induced by electron-photon interaction in a QD can then
be written as

Pop = α
LO

L0bh̄ω2
LO

π

∫ ∞

0
dxe−2�xcosx

∫ ∞

0
dyX(y)

×Y (2y sin x)J0[2b−y sin (�−x)]J0[2b+y sin (�+x)]

×
∑
ν,ν ′

Fνν ′

[
N0sin(X−

ν ′ν)

(N0 + 1)sin(X+
ν ′ν)

]
R2

m′N ′mN (l0by), (17)

where Fνν ′ = f (E0ν)[1 − f (E0ν ′ )], �ν = �0ν/h̄ω, X∓
ν ′ν =

2(E0ν ′ − E0ν ∓ h̄ω
LO

)x/h̄ω, X(y) = y(8 + 9y + 3y2)/(1 +
y)3, b± = r±b, �± = ω±/ω, Y (x) = ∫ 2π

0 dϕG(ϕ)J1(xG(ϕ))

with G(ϕ) = b

√
r2

0 cos ϕ2 + r2
1 sin ϕ2, and b =

[(48πm∗e2/κh̄2)(Ndepl + 11ne/32)]1/3 defines the thickness
(3/b) of the triangular well with κ the dielectric constant and
Ndepl being the depletion charge density.

III. RESULTS AND DISCUSSIONS

The numerical results of this paper pertain to GaAs-
based QD structures. In the calculations the material pa-
rameters are taken as (i) static dielectric constant κ = 12.9;
(ii) effective-electron-mass ratio m∗/me = 0.0665, with me

being the electron rest mass; (iii) electron−LO-phonon
coupling constant αL0 = 0.068; and (iv) LO-phonon energy
h̄ω

L0 = 36.6 meV. As for sample parameters, (i) the depletion
charge density for an AlxGa1−x/GaAs heterostructure based
QD is taken as Ndepl = 5 × 1014cm−2; (ii) the areal electron
density is taken as ne = 2 × 1011 cm−2; and (iii) the charac-
teristic energy of a parabolically confined QD is taken to be
h̄ω0 = 10 meV.

In this study, the width of the broadened scattering states
is assumed as �nν = γ , which can be evaluated roughly via34

γ = h̄ωc

√
2/πμ0B with μ0 being the electron mobility at

B → 0 and T → 0. μ0 ∼ 100 m2/Vs can be taken from the
experimental data. To our knowledge, at present little is known
about how an intense radiation field affects the broadening
of the scattering states. We therefore assume that the width
of the broadened scattering states is proportional to the width of
the Landau levels (LLs) in an AlGaAs/GaAs heterojunction.
This assumption is made on based on the following. (i) The
QD we are interested in here is defined in the 2DEG in the
heterojunction. (ii) The width of the broadened LLs, namely
γ given above, is induced by intralevel short-range impurity
scattering processes and is calculated via self-consistent Born
approximation.34 Thus, the mobility μ0 ∼ n−1

I is used to
replace the impurity concentration nI . (iii) A similar approach
can be employed to calculate γ for a parabolically confined
QD. Considering that the short-range impurities are in the
2DEG and including only intralevel impurity scattering, a
similar result for γ can be obtained for a QD although slightly
different B-field dependence can be expected due to the
difference between LL energy in a 2DEG and the Fock-Darwin
energy in a parabolically confined QD. The calculation of γ

for a QD requires further theoretical work considerably. We
therefore do not attempt it in the present study.

For model calculations we consider about ten electrons in a
QD and take T = 77 K in all calculations. The Fermi energy of
the system is determined by the condition of electron number
conservation. It should be noted that in a QD defined in a
2DEG and realized by applying gate voltages on the quantum
point contacts, the electron numbers in the QD can be tuned
by the gate voltages.32

The influence of the radiation intensity (I ∼ F 2
0 ) on the

spectrum of electron energy transfer rate (or optical absorption
spectrum) induced by electron-photon scattering at a fixed
magnetic field is shown in Fig. 1. Two resonance peaks
appear at the Kohn’s frequencies ω± when radiation intensity
F0 � 0.2 kV/cm. Such a result is in agreement with previous
theoretical calculations12,13 for low-level light excitations. This
indicates that the Kohn’s frequencies ω± are also the CR
frequencies in this configuration and the presence of electron-
phonon coupling does not affect the CR frequencies in a QD.
Thus, the single-particle model is perfectly enough to describe
magneto-optical absorption spectrum in such a magneto-
photon-phonon system. With increasing radiation intensity,
more interesting features can be observed when ω ∼ ω±. We
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FIG. 1. Electron energy transfer rate per electron as a function of
radiation frequency at a fixed magnetic field for different radiation
intensities. Here the Kohn’s frequencies, ω±, are shown to indicate
the positions of the CR.

notice the following. (i) The amplitude and the width of the
CR spectrum increase significantly with increasing radiation
intensity when F0 � 0.2 kV/cm. Meanwhile, the CR effect is
more prominent at higher resonance frequency ω+ compared
with the lower one at ω−. (ii) When 0.2 < F0 < 1.0 kV/cm,
the splitting of the ω+ CR peak can be seen and the splitting
increases with radiation intensity. However, a similar splitting
at lower resonance frequency ω− cannot be observed. (iii)
More interestingly, when F0 � 2.0 kV/cm, both CR peaks at
ω± are simultaneously split and the splitting increases with
increasing F0.

Figure 2 shows the electron energy transfer rate as a
function of magnetic field at a fixed radiation frequency
for different radiation intensities. As can be seen, only one
CR peak can been observed with varying B at a fixed ω.
From the Kohn’s frequencies ω± and when ω ∼ ω±, we
have ωc = ±(ω2 − ω2

0)/ω. Therefore, when fixing radiation
frequency only one positive magnetic field corresponds to the
CR peak. With increasing radiation intensity, the splitting of
the CR peak can also be observed while varying the magnetic
field.

Using Eq. (13), we can study the contribution from different
optical transition channels to the total optical energy transfer
rate (or optical absorption coefficient) for a QD in the presence
of magnetic and radiation fields (see Figs. 3 and 4). In Fig. 3, we
show contributions from m1 = ±1 and ±2 processes to optical

FIG. 2. Optical energy transfer rate per electron versus magnetic
field at a fixed radiation frequency for different radiation intensities
F0, as indicated. Here the resonant frequency is at ωc = |ω2 − ω2

0|/ω.

FIG. 3. Contributions from different photon emission (m1 < 0)
and absorption (m1 > 0) channels to optical energy transfer rate per
electron as a function of radiation frequency at the fixed radiation
intensity F0 and magnetic field B, as indicated. The total energy
transfer rate is presented with the solid curve. The frequencies, ω±,
are shown to indicate the positions of the CR.

energy transfer rate as a function of radiation frequency at a
fixed radiation intensity and a fixed magnetic field. We note
that m1 > 0 and m1 < 0 correspond respectively to m1-photon
absorption and m1-photon emission channels. As can be seen,
in the vicinity of resonant frequencies ω±, the contribution to
the optical energy transfer rate can be achieved by electronic
transitions via multiphoton absorption and emission channels.
One can find that the contribution due to photon absorption
channels (i.e., those associated with m1 > 0) to optical energy
transfer rate is much larger than that from photon emission
channels (i.e., those with m1 < 0). Away from the resonant
regions, the optical transition is achieved mainly through one-
photon absorption process. Furthermore, the optical energy
transfer rate induced by the interaction with LO-phonons via
photon emission (m < 0) is negative. A negative optical energy
transfer rate means that the electrons in the system can gain
the energy from the corresponding electronic transitions.

In addition, the dependence of the total electron energy
transfer rate on the number of electrons in the QD is shown
in Fig. 5. It has been demonstrated experimentally that in a
QD defined in an AlGaAs/GaAs heterojunction and realized
by applying the gate voltages on the quantum point contacts,

FIG. 4. Contributions from different photon absorption (m1 > 0)
and emission (m1 < 0) channels to electron energy transfer rate per
electron as a function of magnetic field at the fixed radiation frequency
and intensity. The total energy transfer rate is shown with the solid
curve. Here the resonant frequency is at ωc.
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FIG. 5. Electron energy transfer rate as a function of radiation
frequency at the fixed magnetic field and radiation intensity for
different numbers of electrons in the QD, as indicated. The solid,
dashed, dotted, and dash-dotted curves are for, respectively, 13, 10,
8, and 6 electrons in the QD. Here ω± indicate the positions of the
CR frequencies.

the electron numbers in the dot can be controlled by the gate
voltages.32 As can be seen, the positions of two peaks for
magneto-optical absorption at the Kohn’s frequencies ω± do
not change with varying the number of electrons in the QD.
This confirms that the Kohn’s frequencies are independent
of the interactions among electrons and of the number of
electrons in the QD, in line with the generalization of Kohn’s
theorem.12,13 The number of electrons in the QD affects only
the amplitude and width of the resonant peaks.

Now we discuss the physics reasons behind above-
mentioned interesting and important features for a QD sub-
jected to magnetic and radiation fields. (1) At relatively low
radiation levels, that is, when F0 � 0.2 kV/cm, the electrons
in a QD can gain energy from the radiation field via photon
absorption process. Because all energy states in a QD are
quantized, photon absorption can lead to excitation of electrons
from lower energy states below the Fermi level to higher
energy levels above the Fermi level. In such a case, the
excited electrons can lose the energy via emission of phonons
and thus bring the electrons from higher-energy states back
to lower-energy states. This two-step electronic transition
processes can balance roughly the energy gain and loss in
the electron-photon-phonon system. As a result, the CR can
be achieved mainly via intralevel electronic transition channels
in which the electrons gain the energy from the radiation field
and lose the energy through excitation of the quanta h̄ω±.
Consequently, the peaks of the optical absorption (or optical
energy transfer rate) can be observed when ω ∼ ω±. With
increasing radiation intensity, the electron-photon scattering
rate increases. Therefore, the intensity of CR effect increases
with F0 as shown in Fig. 1 when F0 � 0.2 kV/cm for
both ω ∼ ω±. (2) When the radiation field is intense enough
(i.e., when F0 � 2.0 kV/cm), the electrons in the QD can
gain energy very quickly through photon absorption channels
including multiphoton absorption mechanisms. Such a process
can be much quicker than that achieved for electronic energy
loss via electron-phonon scattering so that electrons gain
more energy from radiation field than energy loss due to
emission of phonons. Thus, two prime mechanisms can be
present. First, the interlevel transitions can result in electrons

running away from the system, i.e., the ionization of electrons
from the QD. Our numerical results show that in this case,
almost no electron is present the states below the Fermi level.
Second, the electron energy loss is mainly achieved via CR
effect occurred via intralevel excitations of quanta h̄ω±. Such
processes can lead to very strong electron-photon interaction
when ω ∼ ω±. As a result, at two resonance frequency ω±,
the effective electron-phonon scattering is suppressed and
both CR peaks are simultaneously split. This is evident by
the fact that the effect of CR peak splitting increases with
increasing radiation intensity, as shown in Figs. 1 and 2. (3)
Interestingly, at the intermediate radiation levels (i.e., when
0.2 kV/cm < F0 < 2 kV/cm), we have observed the splitting
of the CR peak for ω+ and the CR peak associated with ω− is
not well split (see Fig. 1). Because ω+ > ω−, a larger photon
energy h̄ω is required to observe the CR effect occurring at ω+
than that to see the CR effect at ω−. A larger photon energy
implies a stronger effect of running away or ionization of
electrons from the QD via interlevel transition events. Thus, the
stronger effect of effective electron-photon interaction can be
achieved at about ω ∼ ω+ through intralevel CR excitations.
This is the main reason why at intermediate radiation levels the
splitting of the CR peak can be observed for ω ∼ ω+ and not for
ω ∼ ω−.

It is known that in polar-semiconductor-based QD systems,
the strength of LO-phonon emission is much stronger than that
of phonon absorption. Therefore, LO-phonon emission is the
main mechanism for relaxation of photon excited electrons
in the system. In the presence of intense radiation fields, the
electron-photon interaction can be achieved via multiphoton
emission and absorption channels (see Figs. 3 and 4). The
processes of photon emission can lead to further energy loss
for electrons in the system, which gives a negative optical
energy transfer rate (see cases for m < 0 in Figs. 3 and 4).
However, the overall strength for photon absorption is much
stronger than that for photon emission, as shown in Figs. 3
and 4. Furthermore, the effect of multiphoton absorption or
emission becomes weaker with increasing |m|. Therefore, our
results indicate that one-photon absorption (i.e., the case for
m = 1) is the main channel for electron-photon interaction in
GaAs-based QDs when F0 � 2 kV/cm.

It should be noted that the energy relaxation rate induced
by electron-photon interaction can be evaluated through
1/τ = Pop/h̄ω. Our results show that τ is of the order of
picosecond for a GaAs-based QD subjected to magnetic
fields and THz radiation fields. Therefore, the condition
ωτ ∼ 1 can be satisfied for such a magneto-photon-phonon
system. It implies that the intense THz radiation can modify
strongly the process of electronic energy excitation and
relaxation in the QD system, and this is the main reason
why the interesting and important radiation effects can be
observed.

It is worth mentioning that the similar splitting of the
CR peak has been observed experimentally for bulk and 2D
electronic systems.21–23 The splitting of the CR peak was
clearly observed experimentally in SiC-based structures22 at
relatively low-B fields when the microwave radiation power
is larger than 100 mW at T = 1.6 K. Such effect was thought
to be caused by the coupling of the electrons with LO-
phonons and with intense microwave radiation. By applying
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the intense THz laser radiation generated by FELIX FELs,
we have investigated both experimentally and theoretically
the magneto-photon-phonon interaction in GaAs-based 2DEG
systems through magneto-optical transport measurements in
2004.23 The splitting of the CR peak in longitudinal resistivity
ρxx was observed in high magnetic fields and relatively high
temperatures T = 150 K when THz FEL radiation became
intense. The theoretical findings shown in this paper are very
similar to those observed in bulk and 2DEG systems. We
therefore believe that the splitting of the peaks of the CR
can also be observed in GaAs-based QD systems at relatively
high temperatures by using THz FEL radiation.

In addition, for the first sight the splitting of the CR peaks
observed in this study looks a bit similar to the Rabi splitting
(RS) occurring in a QD in the presence of intense light
radiation.35,36 However, the RS takes place in a regime where
�Rτ � 1. Here �R = DF0/h̄ is the Rabi frequency, with D

being the transition dipole moment of a two-level system (TLS)
induced by, for example, exciton35 or charged exciton36 in
a QD, and τ is the corresponding relaxation or decay time.
Hence, to be able to observe the RS effect the TLS has to
be formed and the coupling strength or the Rabi frequency
�R should significantly exceed the decay rate of the system.
In contrast, the splitting of the CR peaks shown here occurs
under the condition ωτ ∼ 1 and requires an intense radiation.
Moreover, the RS is a signature of a strongly coupled TLS.
Thus, the physical origin of the RS differs essentially from the
splitting of CR peaks discussed in this paper.

IV. CONCLUSIONS

In this study, we have proposed a nonperturbative treatment
to deal with electron interactions with static magnetic fields
and intense radiation fields in parabolically confined QD
systems. On this basis, we are able to study more easily the
magneto-optical properties in this system in the presence of
scattering centers such as phonons and impurities. We have
applied the energy-balance equation approach derived from
the Boltzmann equation to theoretically study the magneto-
photon-phonon interaction in GaAs-based QD structures. The
electron energy transfer rate induced by magneto-optical
transition, which is proportional to magneto-optical absorption
coefficient, has been calculated and discussed. The main
conclusions obtained from the present study are summarized
as follows.

For a parabolically confined QD subjected simultane-
ously to magnetic and radiation field, the time-dependent
Schrödinger equation can be solved analytically where the
radiation field can be included exactly. We find that the effect
of the coupled magnetic and radiation fields on time-dependent
electron wave function is through shifting the coordinates and
phases. The coordinate shifts do not depend on the choice of the
gauge for the magnetic field, whereas the phase shifts depend
on the gauge factor of the magnetic field. Moreover, due to
the coupling of the magnetic field and the radiation field and
to the coupling of these fields to the confining potential of the
QD, the time-dependent electron wave function diverges when
ω → ω± = √

ω2
0 + ω2

c/4 ± ωc/2. This suggests that when the
radiation frequency ω is around the Kohn’s frequencies ω±,

the effect of CR can be observed in a parabolically confined
QD in the presence of the magnetic field.

With the time-dependent electron wave function in which
the magnetic and radiation fields have been considered exactly
in a QD, we can derive the steady-state electronic transition
rate induced by magneto-photon-phonon interaction using the
Green’s function technique. Thus, we are able to calculate
more easily and more accurately the measurable physics
properties induced by magneto-photon-phonon coupling in
the corresponding device systems. On the basis of the energy-
balance equation derived from the Boltzmann equation, we
have calculated the electron energy transfer rate induced by
magneto-optical transition events as the function of magnetic
field and of the intensity and frequency of the radiation field.
The theoretical approach developed in this paper has gone
beyond the conventional way to deal with magneto-photon
interaction in a QD. It is very useful and powerful to handle
the case where the intense radiation is present so that it cannot
be taken a perturbation.

We have found that at relative low radiation intensities,
two CR peaks can be observed at the Kohn’s frequencies
as documented previously. In such a case, CR occurs via
intralevel electronic excitations and the strength and the width
of the CR peaks increase with radiation intensity. When the
radiation intensity is strong enough, the splitting of the CR
peaks can be observed. This is because the electrons in the
system gain more energy from radiation field than lose it via
phonon emission. As a result, the effective electron-phonon
coupling is suppressed and the effective electron-photon inter-
action is enhanced. In this case, almost no electron is present
in the states below the Fermi level. Consequently, the strong
CR occurs via intralevel excitations. The splitting of the CR
peaks increases with radiation intensity. Similar phenomena
have been observed experimentally in bulk materials and in
2D electron gas systems.

We have demonstrated that the interesting CR in GaAs-
based QD systems can be measured in the presence of intense
THz radiation fields. Currently, THz FELs (e.g., UCSB and
FELIX) have been applied to scientific investigation into
various material systems including low-dimensional semicon-
ductor structures. We therefore hope the theoretical findings
discussed in this paper can be verified experimentally in the
near feature.
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APPENDIX

In this Appendix, we present a simple way to solve time-
dependent Schrödinger equation with a Hamiltonian given by
Eq. (2). Because the presence of the B and At fields does not
affect the electronic states along the z direction, the solution
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of the corresponding Schrödinger equation is in a form

	(R,t) = 
(x,y,t)ψn(z)e−i(εn+σgμBB)t/h̄, (A1)

where the wave function ψn(z) and electronic subband en-
ergy εn are determined by a time-independent Schrödinger
equation along the z direction. The wave function 
(x,y,t)
satisfies

ih̄
̇(x,y,t) = H1(t)
(x,y,t), (A2)

with

H1(t) = [px − (1 − α)eBy + eAt ]2 + (py + αeBx)2

2m∗

+ m∗

2
ω2

0(x2 + y2).

Letting X = x + xt and Y = y + yt , Eq. (A2) becomes

ih̄
̇(X,Y,t) = [H ∗
0 + R(t) + S(t) + T (t)]
(X,Y,t), (A3)

where

H ∗
0 = [pX − (1 − α)eBY ]2 + (pY + αeBX)2

2m∗

+ m∗

2
ω2

0(X2 + Y 2),

R(t) = m∗

2

{[
(1 − α)ωcyt + eAt

m∗

]2

+α2ω2
cx

2
t + ω2

0

(
x2

t + y2
t

)}
,

S(t) = [ẋt + (1 − α)ωcyt + eAt/m∗]pX + (ẏt − αωcxt )pY ,

T (t) = −m∗[(1 − α)2ω2
cyt + ω2

0yt + (1 − α)ωceAt/m∗]Y

−m∗(α2ω2
c + ω2

0

)
xtX,

and ωc = eB/m∗ is the cyclotron frequency. Assuming

(X,Y,t) = eim∗(utX+vt Y )/h̄e−i[E t+∫ t

dτ f (τ )]/h̄φ(X,Y ), we get
that φ(X,Y ) and E are determined by

(H ∗
0 − E)φ(X,Y ) = 0,

(A4)

f (t) = m∗

2

[
ẋ2

t + ẏ2
t + 2ẋyut + 2ẏt vt + ω2

0

(
x2

t + y2
t

)]
,

and xt , yt , ut , and vt are determined, respectively, by

ẋt + (1 − α)ωcyt + ut = −eAt/m∗, (A5a)

−αωcxt + ẏt + vt = 0, (A5b)

−(
α2ω2

c + ω2
0

)
xt + u̇t + αωcvt = 0, (A5c)

and [
(1 − α)2ω2

c + ω2
0

]
yt + (1 − α)ωcut − v̇t

= −(1 − α)ωceAt/m∗. (A5d)

Equation (A5) can be solved through[
O4 + 2

(
ω2

0 + ω2
c

/
2
)
O2

]
xt = −e

(
O2 + ω2

0

)
Ȧt /m∗, (A6a)

O2yt + ω2
0yt − ωcẋt = 0, (A6b)

ut = −ẋt − (1 − α)ωcyt − eAt/m∗,
(A6c)

and

vt = αωcxt − ẏt , (A6d)

with O = ∂/∂t . We note that the coordinate shifts xt and yt do
not depend on the choice of gauge for the vector potential of
the magnetic field, whereas the phase shifts ut and vt depend
on the gauge of the vector potential induced by the B field.

For the case where time-dependent vector potential is
induced by a linearly polarized radiation field, we have At =
�(t)(F0/ω)sin(ωt) under the usual dipole approximation,
where �(x) is the unit-step function and F0 and ω are,
respectively, the electric field strength and the frequency of
the radiation field. Using the initial conditions under which
xt = yt = ut = vt = 0 at t = 0, we have

xt = r0cos(ωt) − r+cos(ω+t) − r−cos(ω−t), (A7a)

yt = ωωcr0

ω2 − ω2
0

sin(ωt) − r+sin(ω+t) + r−sin(ω−t), (A7b)

and ut and vt are obtained using, respectively, Eqs. (A6c)
and (A6d). Here, ω± = �0 ± ωc/2 with �0 =

√
ω2

0 + ω2
c/4,

r0 = (eF0/m∗)(ω2 − ω2
0)/[(ω2 − ω2

+)(ω2 − ω2
−)], and r± =

(eF0/2m∗�0)ω±/(ω2 − ω2
±).

We know that it is convenient to solve Eq. (A4) in the
symmetry gauge where the gauge factor α = 1/2, which reads

φ(X,Y ) = φmN (R,θ ) = (1/
√

2π )eimθRmN (R/l0), (A8)

and

E = EmN = [2N + 1 + |m| + m(ω/2�0)]h̄�0, (A9)

where m = 0,±1,±2, . . ., N = 0,1,2, . . ., R = √
X2 + Y 2, θ

is the angle between (X,Y ) and the x axis, l0 = (h̄/m∗�0)1/2,
and

RmN (x) = 1

l0

√
2N !

(N + |m|)!e
−x2/2x|m|L|m|

N (x2),

with Lm
N (x) being a Laguerre polynomial. It should be noted

that, in the above derivations, no assumption regarding the
validity of Eq. (A4) has been made. Thus, Eq. (A4) must be
completely equivalent to Eq. (A2). Consequently, the time-
dependent electron wave function for a parabolically confined
QD subjected to a static magnetic field and a linearly polarized
EM feld is given by Eq. (3).
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