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Microscopic details of the integer quantum Hall effect in an anti-Hall bar
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Due to the lack of simulation tools that take into account the actual geometry of complicated quantum Hall
samples there are lots of experiments that are not yet fully understood. Already some years ago Mani recorded
a shift of the Hall resistance transitions to lower magnetic fields in samples of a Hall bar with an embedded
anti-Hall bar by using a partial gating. We use a nonequilibrium network model to simulate this geometry and
find qualitative agreement. Fitting the simulated resistance curves to the experimental results we can not only
determine the carrier concentration but also obtain an estimate of the screened gating potential and especially the
amplitude and length scale of potential fluctuations from charge inhomogeneities which are not easily accessible
by experiment.
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I. INTRODUCTION

The main application of the classical Hall effect lies in the
simultaneous determination of the carrier concentration and
the mobility. For low enough temperatures and pure samples
quantum effects become important. In the quantum Hall
regime experimental results for magnetic fields corresponding
to plateau transitions depend on microscopic details such as
the potential landscape, which complicates interpretation.

For quantum Hall effect (QHE) experiments a fixed voltage
or current is applied to two metallic contacts, while additional
contacts are used to measure longitudinal and transversal
potential differences. For interpretation it is therefore essential
to know the distribution of the electrochemical potential
(ECP, to distinguish it from potentials in equilibrium) in the
sample. Generic properties of the ECP have been analyzed
for simple geometries in a series of papers.1–3 The plateaus
of the transversal (Hall) resistance at integer fractions 1/j

(j = 1,2,3 . . . ) of h/e2 as a function of magnetic field could
be explained in terms of a simple modification of the Landauer
model by Büttiker,4,5 using noninteracting electrons in an
empirical confinement potential.6 However, the resistance
between plateaus depends on the detailed geometry, the
electrostatics of electrons, or the potential landscape generated
by excess charges in the doped semiconductors in the vicinity
of the 2-dimensional electron gas (2dEG).

Electrostatics was investigated self-consistently in simple
geometries2,7 and was shown to lead to the formation of
alternating compressible and incompressible stripes. One
concludes that in the plateau regime, current in response to
(transversal) electric field only flows in the incompressible
stripes. The picture becomes more complicated for nonideal
contacts due to potential barriers or when applying gatings
because channels are (partially) blocked and the ECP is
changed in their surroundings. Dahlem et al. found experi-
mentally that width and magnetic field values of the transition
region between plateaus can change significantly.8 At the same
time we investigated such situations with the nonequilibrium
network model (NNM),9,10 with good agreement with the
experiments.

In addition the NNM has proven successful for exotic
sample geometries such as anti-Hall bars within Hall bars11

supplied by multiple constant current sources when compared

to experiments of ungated samples by Mani.12,13 Shortly after,
Mani applied partial gating to his samples and recorded a
shift of the Hall resistance transitions to lower magnetic fields
as a function of the gating voltage.14 In the present paper we
describe simulations of these samples with the NNM and show
that the features in the experiment are well reproduced.

Moreover, by manually fitting the transversal resistance
we extract the electron concentration, the screened gating
potential, and the average curvature of saddle points of
the electrostatic potential from charge fluctuations (e.g., by
disorder). From the curvature and a statistical model we obtain
independent estimates for the amplitude and length scale of this
potential.

II. THEORY

The exact Hamiltonian of a typical integer quantum Hall
sample is complicated due to the interface of two semiconduct-
ing layers, excess charges, and the presence of confinement
as well as metallic contacts at the borders of the 2dEG.
Using an effective single particle description (mean-field
approximation) we write for the Hamilton operator

Hs = T + Vcoul + V 0
g , ∇2Vcoul(r) = −4πe2δρmb(r), (1)

where the (single particle) potential is a sum of a bare
gate potential V 0

g and the (self-consistent) Coulomb potential
Vcoul. The latter can be split into a Coulomb interaction in
a hypothetical infinite 2dEG, using an effective local excess
charge density eδρmb(r) that reflects the many-body interaction
of charges, and a confinement potential Vconf due to edges and
metallic contacts in the QHE bar. T denotes the kinetic energy
operator, which is T = h̄ωca

†a, with a the destruction operator
in the Landau level (LL) basis.

For sufficiently high magnetic field, electron wave functions
are highly confined to the magnetic length lB = √

h̄/eB, where
e and B denote elementary charge and magnetic induction
normal to the 2dEG. Therefore electronic states are spatially
localized on a network of semiclassical trajectories, which are
equipotential contours in the long-range part V l

coul of Vcoul. The
short-range part V s

coul of Vcoul is well described by a Gaussian
density of states (DOS) for each LL, as derived by Ando.15 We
use a constant broadening of σ0 = 0.5 (meV/T)1/2 to mimic
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this effect. V l
coul determines the central energy En of LL bands.

In addition, equilibration among edge channels is taken into
account by assuming tunneling in terms of an exponential
function with decay parameter.

We use a simple self-consistent Thomas-Fermi approxima-
tion for zero temperature to obtain V l

coul. In spite of the slow
variation of V l

coul we use

ρ = n
[
B,Ef (B) − (

V 0
g − V l

coul

)]
, n(B,Ef )

:= n0B

LL∑
j

∫ Ef

−∞
dE exp

(
− (E − Ej )2

σ 2
0 B

)
, (2)

where the bulk electron density, ρ0 = n(B,Ef (B)) = ρb (to
be fitted to experiment) is equal to the density ρb of positive
background charges and defines the Fermi energy Ef (B)
implicitly. The complementary equation is provided by the
Poisson equation ∇2V l

coul = −4πδρ (units of e = 1), with the
excess charge defined as δρ := ρ − ρb. The solution can be
expressed in terms of the Green’s function in an infinite 2D
system as16

V l
coul(r)=−2

∫
dr′ ln |r − r′|δρ(r′) ≈ 4πδρ(r)

∫ rD

rs

dxx ln x.

(3)

Here we approximated δρ(r) as slowly varying and rs :=
1/

√
πρ0 is the interparticle distance while rD denotes the

screening length. Averaging over r gives V l
coul = Cδρ with

C ≈ 2πr2
D ln r−1

D eV m2 when rD is inserted in units of m. We
used C = 50 for energy in meV and density in 1011 cm−2,
which corresponds to a realistic order of magnitude of rD ≈
250 nm.

Transport in high magnetic field can be viewed as a
percolation problem, where it is well known that only pivotal
edges are relevant to the (bond) percolation problem.17 These
edges correspond to saddle points of the potential landscape.
The most prominent of this type of models is the Chalker-
Coddington model,18 which is able to predict statistics of states
and scaling exponents but cannot describe the nonequilibrium
steady state (which is a distribution of ECPs). In contrast, our
NNM is designed to calculate these nonequilibrium quantities.
The model rests on the local equilibrium approximation,19

which is applied to a network of semiclassical wave functions.
In this way we attribute unique thermodynamical quantities
such as the ECP to each single wave function. Calculations
of the ECP and current distribution of the classical nonequi-
librium steady state of electrons and positive donors (without
other dissipative mechanisms) on a microscopic (ab initio)
level have recently been achieved.20 The ECP distribution
resembles the one in the plateau transition regime of the NNM9

but does not yield the distribution for the resistance plateaus
as expected.

Regarding the ECP and current distribution, there is a
long history of random resistor networks to study conduction
in disordered media.21,22 It was noted that the usual (two-
terminal) resistors cannot be used for calculating conductivity
in the presence of a magnetic field, as the conductivity
tensor is not globally diagonalizable. The usual approach uses
6(4)-terminal units in 3d(2d) systems together with appropriate
Kirchoff rules.23,24

In the NNM, at each saddle of V l
coul 4 trajectories meet, with

their respective ECPs. We assume that phases are destroyed
by decoherence, such that the distances between saddles be-
come irrelevant. This resembles classical resistor networks.23

Furthermore, it gets support from a very recent paper that
shows the validity of Ohm’s law well below the μm scale in
dopand wires in Si using phosphorus scatterers.25 Similar to
the classical case the distance between tunneling regions (that
is, generalized, multiterminal “resistor” units) is irrelevant in
case of phase destruction. Therefore we can replace V l

coul
by the model potential V (x,y) = V [cos(ωy) − cos(ωx)] of
a regular grid of saddle points, where the period L := 2π/ω

and amplitude V should be understood as average properties
of V l

coul that we determine by fitting to the experiment. In the
same way, Vconf is assumed to be zero in the center of the
sample and to increase quadratically a given distance from
the edges to a high enough value to make the charge density
practically zero at the edge.

Next we define the ratio of longitudinal to transversal field
component at a saddle point as

P := Ex

Ey

= u1 − u2

u1 − u4
= u4 − u3

u2 − u3
. (4)

In this way we construct a “transfer” equation for the ECPs[
u2

u3

]
=

[
1 − P P

−P 1 + P

] [
u1

u4

]
. (5)

We neglect nonlinear effects; that is, the values of P do not
depend on the ECPs. This should be well justified in the
case of the experimental currents of 5 nA,14 corresponding
to a voltage differences lower than 0.2 mV per LL across the
sample or energies well below the Landau level (LL) spacing
of h̄eB/m∗ ≈ 1.728 meV at B = 1 T. The ECP distribution
can be calculated as a boundary value problem once the values
for P at each node are given. We model external contacts,
which supply current to the NNM, by saddles with a pair of
trajectories that point into/out of the sample. The ECP at one
trajectory is fixed to the value of the contact, while the other
is determined.

Except in a small region around the highly localized hot
spots (at opposite edges of the current inducing contacts)
the local conductance tensor can be approximated as purely
off-diagonal. This leads immediately to P = Iy/Ix . This
approximation produces only a small local error near the hot
spot without influence on the global ECP distribution and has
the advantage that only the electric field has to be calculated.
According to the edge channel picture we call T the probability
of transmission in the longitudinal direction; therefore we get
Iy ∝ R and Ix ∝ T = 1 − R. P can then be calculated from
elastic tunneling transition probabilities at the Fermi energy
across a saddle as26,27

P = δmn

Rmn

1 − Rmn

= exp

[
−ε

B

c

]
, (6)

with ε := EF − En − VS the energy of the trajectory, in
terms of the difference of the Fermi energy to the energy
of LL n, relative to the saddle (potential) energy VS =
V l

coul + Vconf . We define the “center of the transition” as
ε = 0. While B denotes the magnetic field strength, the
parameter c := hV /eL2 is related to the curvature of the model
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potential energy fluctuations with amplitude V . Similar to
other approaches3,28 we calculate longitudinal and transversal
resistance from the ECP distribution by identifying the current
with the macroscopic current direction, that is, dividing ECP
differences by total current.

III. RESULTS

A. Transversal resistance and fit of experiment

Figure 1 schematically shows the geometric setup of an
anti-Hall bar embedded in a Hall bar, used in the experiment.14

The gated rectangular region is filled with yellow color and a
confinement potential develops near the inner and outer border
of the 2DEG, indicated by solid lines. In the experiment a
constant inner/outer current was driven through the device by
applying appropriate voltage differences at the contact pairs
A-B of the outer Hall bar and 1-2 of the inner anti-Hall bar. We
denote in the following the longitudinal (parallel to direction
A-B) and transversal direction by x and y, respectively.
Transversal Hall resistances Rxy are obtained from F-C and
6-3. As discussed in Ref. 9 it is sufficient to use point contacts
in simulations of macroscopic Hall samples, such as in the
present experiments.

We manually fit our simulations to the experimental results
in order to obtain important microscopic information such
as the carrier concentration, the enhancement factor for
the Zeeman energy, the screened gating potential, and the
magnitude and correlation length of the potential fluctuations.
We estimate errors from half the thickness of lines in plots of
the experimental results as no error bars are given.

To get the carrier concentration we fit the plateau transition
center of Rxy of the outer ungated Hall system for the
(3 last integer) transitions from fill factor ν = 4 to ν = 3,
ν = 3 to ν = 2, and ν = 2 to ν = 1. This results in a carrier
concentration of ρ0 = 1.81 × 1011 ± 0.02 × 1011 cm−2. Our
value is slightly below the range 2 × 1011 cm−2 � ρ0 �
3 × 1011 cm−2 proposed in the experimental work,29 where
however a fit to the classical Hall slope is normally used.

Due to spin polarization a Zeeman term adds to the energy,
resulting in an energy difference of 	EZ = gμB/2, with
g an enhancement factor and μ := gGaAsμB . Here gGaAs =
−0.44 is the Landé factor of GaAs heterostructures and
μB = eh̄/2m∗ the Bohr magneton for electrons with effective

FIG. 1. (Color online) Geometry of the anti-Hall bar within a Hall
bar: The figure shows the labeling of contacts used and the shaded,
yellow area denotes the partial gating applied by a top gate in the
experiment.

FIG. 2. (Color online) Screened gating potentials as a function of
magnetic field: We show results for bare gatings of 10 meV, 30 meV,
and 50 meV. Low/high screening does not directly correspond to
transition/plateau regions of Rxy as broadened LLs for different spin
significantly overlap for the Zeeman energy found.

mass m∗, which we set to the typical effective mass of GaAs,
m∗ = 0.067 m. By manually fitting the transition centers in
the case of no gating we arrive at g = 12.5 ± 1.5. Such
large enhancement values are typically seen in transport
measurements.30

We fit the magnetic field at the center of the plateau
transitions observed in the inner and outer leg of the anti-Hall
structure, and arrive at bare gating potentials of 10 meV,
30 meV, and 50 meV. The screened gating potentials Vg(B)
as functions of the magnetic field B are shown in Fig. 2 for
these bare gating potentials. We note that within the plateau
transition Vg is small and fairly constant only for small values
of V 0

g . The magnetic fields at the transition centers are then
collected in Table I.
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TABLE I. Magnetic fields in T of the transition centers for various
bare gating potentials. We estimate the error as 0.05 T.

V 0
g = −450 V 0

g = −300 V 0
g = −150 V 0

g = 0
Transition mV mV mV mV

2 → 1 2.83 4.00 4.90 5.05
3 → 2 1.55 2.19 2.72 2.93
4 → 3 1.24 1.70 2.20 2.26

Figure 3 shows Rxy for various V 0
g applied to the inner

Hall bar. The dominant feature of gating lies in a shift of the
plateau transitions to lower magnetic fields due to a reduced
electron concentration. We remind the reader that the Fermi
energy is fixed by a reservoir and therefore only a function
of the magnetic field but not the local gating. The impression
of a more or less rigid shift is a consequence of Ef (B) −
Vg(B) having small variations on the scale of the magnetic
field interval of Rxy transitions. We mention that if the gating
is large enough, which is the case for V 0

g = 50 meV, the center
can jump down to the next lower linear increasing part of the
Fermi energy, corresponding to the neighboring LL band at
lower energy (see Fig. 4).

In order to obtain the potential curvatures for all gate
potentials, we would have to fit the slope at each transition
for each V 0

g separately, which is very demanding. Therefore

FIG. 3. (Color online) Variation of the transversal resistances as
a function of magnetic field: The upper plot shows Rxy for various
gating potentials applied to the inner gated bar. The lower curves
show transversal resistance curves for various curvatures c and no
gating.

FIG. 4. (Color online) Fermi energy and 4 Landau levels of lowest
energy (2 spin-resolved pairs) as functions of the magnetic field.

we determine c0 by comparing experimental curves of gated
samples to our ungated Rxy curve and calculate from it
the respective value cv for nonzero V 0

g . We focus on the
three transitions with lowest fill factor ν, starting with the
center at the highest magnetic field and ordered due to
decreasing magnetic field [corresponding to the states (ν,s) ∈
{(2,+),(2,−),(1,+)} crossing the Fermi energy, where s is the
spin orientation]. We summarize the manually fitted c0 values
as a function of V 0

g in Table II.
It is interesting to also present the c0 values at the leg without

gating, summarized in Table III. For each transition the values
should not depend on V 0

g , if there is no charge transfer from the
gated to the ungated leg. It seems that the curvature decreases
(the potential landscape is getting flatter) with increased gating
on the opposite leg. On the other hand, we expect the charge
transfer to be small in such a macroscopic bar. Within the
(large) uncertainties of the experimental curves we cannot
predict even a qualitative trend. Therefore we average along
each row to obtain 0.17, 0.4, and 0.67 in units of meV/T for
4 → 3, 3 → 2, and 2 → 1, respectively.

We stress that the shift of the transition center with gating
also changes the slope of Rxy in the center of transitions (ε = 0)
due to the appearance of B/c (note c = a/2, to be consistent
with the definition of a in Ref. 9) in P [see Eq. (6)]. In order
to compare transitions for various gatings, we demand that the
interval in magnetic field δBv , corresponding to |ε(B)B/cv| =
1, is the same as the one at zero gating, given by |ε(B)B/c0| =
1, using an appropriate definition of cv(c0). In order to get
explicit expressions we expand linearly around the magnetic
field at transition centers, ε(B) ≈ ε0 + ε1Btr . In this way we

TABLE II. Fitted curvatures c0 in units of meV/T for various
transitions and bare gating potentials. We estimate the fitting error
as ±0.2 meV T from the line thickness of the Hall resistance in the
experimental figure.

Transition V 0
g = −450 mV V 0

g = −300 mV V 0
g = −150 mV

2 → 1 0.5 0.85 1.0
3 → 2 0.5 0.45 0.6
4 → 3 0.3 0.4 0.2
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TABLE III. Curvatures c0 in units of meV/T for various transitions
and bare gating potentials for the part of the anti-Hall bar with no
gating applied.

Transition V 0
g = −450 mV V 0

g = −300 mV V 0
g = −150 mV

2 → 1 0.6 0.6 0.8
3 → 2 0.45 0.35 0.4
4 → 3 0.1 0.2 0.2

get from |ε(B)B/c| = 1 the interval

δB = −Btr

2
±

√
B2

tr

4
+ c

ε1
. (7)

Demanding δBv = δB0 we map the two transitions onto one
curve and arrive at the curvature of the gated sample,

cv = εv
1

⎡
⎢⎣−

(
Bv

tr

)2

4
+

⎛
⎜⎝Bv

tr − B0
tr

2
+

√√√√(
B0

tr

)2

4
+ c0

ε0
1

⎞
⎟⎠

2⎤
⎥⎦ . (8)

Using the values of c0 in Table II, we calculate cv for each
transition in terms of Eq. (8), which we summarize in Table IV.

B. Potential landscape

To determine both the amplitude and length scale of the
potential fluctuations we need another quantity besides the
curvatures. In this respect a model of charge fluctuations by
statistically independent electrons is very useful.31,32 As is
well known, if a collection of statistical objects with identical
properties (described by the same random variable) are
independent then the relative fluctuations of X := ∑N

j Xj are
given by 	X/〈X〉 ∝ N−1/2, where 〈X〉 denotes the average of
X and 	X :=

√
〈(X − 〈X〉)2〉 = [

∑N
j,k〈XjXk〉 − 〈X〉2]1/2/N

together with 〈XjXk〉 = δjk .
We partition the sample in N cells of equal size and interpret

the electron distribution (or number of electrons) in each
cell as a random variable. Assuming charge neutrality on the
average the absolute fluctuations of the charge density n are
then δρ = ρ0/N

1/2. Employing the Poisson equation we then
get the estimate V [meV] = | 2πe103

κK
δρ| for the magnitude of

the (long range) potential energy fluctuations.31 κ = 1.3797 ×
10−9C/V m denotes the dielectric constant of the sample
(GaAs) and K is the modulus of the smallest wave vector
supported by geometry.

The detailed description of the experimental setup14 lets us
estimate the length of each leg as l = 2 mm and the transversal

TABLE IV. Effective curvatures cv in units of meV/T for various
transitions and bare gating potentials used in the experiment.

V 0
g = −450 V 0

g = −300 V 0
g = −150 V 0

g = 0
Transition mV mV mV mV

2 → 1 0.25 0.51 0.93 0.67
3 → 2 0.17 0.17 0.47 0.40
4 → 3 0.11 0.24 0.20 0.17

TABLE V. Number of correlated electrons in statistically inde-
pendent cells. We rounded to the next higher/lower integer.

V 0
g = −450 V 0

g = −300 V 0
g = −150 V 0

g = 0
Transition mV mV mV mV

2 → 1 5 5 4 4
3 → 2 3 2 2 2
4 → 3 2 2 2 2

width as w = 0.2 mm. Assuming variations of charge only
normal to equipotential lines the largest wavelength should
occur in the middle of the plateau transition where the
Hall angle is close to π/4. We arrive at a wavelength
of 2π/K = 2 × 10−4

√
2 meters. Moreover we get δρ =

ρ0/
√

N = √
ρ0Nc/lw. Noting that n hardly varies between

transitions we use averages for each V 0
g . The fitted densities (in

10−11 cm−2) turn out to be ρ0 = 1.81, ρ0 = 1.62, ρ0 = 1.25,
and ρ0 = 0.88 for bare gating (in meV) V 0

g = 0, V 0
g = 10,

V 0
g = 30, and V 0

g = 50, respectively. Nc denotes the number
of (correlated) electrons in each fictitious cell of the statistical
model. The amplitudes of potential fluctuations become
V/

√
Nc = 2.203, 1.972, 1.521, and 1.071, respectively, in

units meV, for increasing gating.
This gives the interesting possibility to get a value for the

number of correlated electrons, as explained in the following:
A plausible upper bound for Nc is given by the energy
difference between LLs, because the screening tries to suppress
higher potential amplitudes due to Wulf et al.31 Namely, if the
potential energy exceeds the LL spacing a new LL band is
occupied, which leads to strong screening that suppresses the
potential until the new LL band is emptied and screening is
weak again. Clearly this argument does not hold for potentials
that are so large as to change the level structure significantly
or lead to the breakdown regime. We arrive in this way at the
upper bounds Nu

c that are presented in Table V. The variation
with V 0

g turns out to be small.
Using the definition of the curvature we get the potential

correlation length in nm as

L =
√

hV

ecv

= v

√√
Nc

cv

, (9)

where V = ev2
√

Nc/h with numerical values v = 95.46,
85.44, 65.93, and 46.41 for increasing gating. The so obtained
potential correlation lengths are summarized in Table VI. We
judge the error as coming predominantly from the curvature,
because the concentration n can be fitted with high accuracy.
The resulting error varies strongly due its proportionality to
c−3/2. Qualitatively the error is less for less gating and smaller
fill factor (that is, for larger value of L in Table VI).

Table VI, which shows microscopic information that is hard
to be addressed by experiment, is our main result. These values
should be viewed as the largest correlation lengths appearing
in the potential landscape, due to the Hartree-like estimation of
the potential amplitude used. The general trend is decreasing
screening (smaller L) with increasing V 0

g . This makes sense,
despite the high error for low L, and is due to decreased
carrier concentration. Similarly the screening increases with
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TABLE VI. Correlation length and their errors of potential energy fluctuations in nm, using the values of Nc from Table V. Parentheses
indicate values with large errors.

Transition V 0
g = −450 mV V 0

g = −300 mV V 0
g = −150 mV V 0

g = 0 mV

2 → 1 138.8 ± 55.5 138.0 ± 27.1 125.3 ± 13.5 164.9 ± 24.6
3 → 2 148.2 ± 87.1 (190.3 ± 111.9) 148.2 ± 31.5 179.5 ± 44.9
4 → 3 (166.5 ± 151.3) 160.1 ± 66.7 227.1 ± 113.6 (275.3 ± 162.0)

the number of electrons present at transitions, that is, with
decreasing magnetic field, due to the same reason. However,
there are exceptions to the rule which seem to come from the
nontrivial dependence of the Fermi energy and screened gating
potential energy with the magnetic field.

We stress that via K a larger area of the 2dEG sample
leads in principle to higher potential fluctuations, which
gives different Nc due to the saturation at the LL energy
difference. Furthermore, the presented (large scale) correlation
lengths have a realistic order of magnitude when compared to
experiments33–35 as well as to our own Hartree-Fock (HF)
calculations, using our refined version, with Broyden mixing
for fast convergence, of a code originally written by Römer
et al.36 We note here that in reality due to imperfect screening a
reminiscence of the distribution of charge from doping centers
near the 2dEG affects the assumed statistical independence
slightly. However, as shown by Gudmundsson et al.32 the
agreement with experiments is good.

C. Electrochemical Potential distribution

Finally, in Fig. 5 we present details of the ECP distribution
for the case corresponding to a bare gating of V 0

G = 30 meV

FIG. 5. (Color online) Distribution of the electrochemical poten-
tial: We show results for a bare gating potential of 30 meV and
magnetic field values (from top left to bottom right) of 3.66 T, 4.20 T,
4.86 T, and 5.50 T.

(−300 mV in the experiment). We selected 4 magnetic field
values to show the generic behavior. We first note that with
increasing B the maximum voltage difference in the system
increases, which is a consequence of constant injected current.
At 3.66 T the inner (gated) bar is in the transition region,
which can clearly be seen from the longitudinal gradient in
blue/red color in the upper/lower leg. On the other hand the
red color on the other bar is homogeneous; that is, it is in the
plateau and dissipation only occurs at the current contacts. At
4.20 T the inner and outer bar are in the plateau; therefore
only a transversal gradient develops and the line of zero ECP
(white) is parallel to the longitudinal direction along the leg.
4.86 T shows qualitatively the same behavior as 3.66 T with
the role of inner and outer bar reversed. Now the outer bar
shows a longitudinal gradient. Finally at 5.50 T both bars are
in the plateau again.

IV. SUMMARY AND CONCLUSION

In summary we present simulations of experiments done
on an anti-Hall bar within a Hall bar geometry by Mani,14

which show a shift of the Hall resistance to lower magnetic
field by applying partial gating. We calculate the ECP
distribution for the integer quantum Hall regime under a
constant current condition, as used in the experiment. The
so obtained transversal resistances as a function of magnetic
field compare well with the experimental curves.

Fitting by hand the position of plateau transitions of the
transversal resistance for applied gating, we are able to obtain
the electron density, the enhancement factor for the Zeeman
interaction, and the screened gating potential in the 2d electron
gas. Finally we determine the curvature of potential saddles
by fitting the width of plateau transitions using the ungated
Hall resistance curve. Employing a model of partitioning
the sample into statistically independent cells with correlated
electrons in each cell, we arrive at the amplitude of potential
fluctuations. Defining a transformation we obtain plateau
transition intervals for the gated system from the fitted values
of the ungated system. In this way we are able to provide
the magnitude and length scale of potential fluctuations from
charge inhomogeneities as a function of the fill factor of the
transition and bare gating potential.
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