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Giant reflection band and anomalous negative transmission in a resonant dielectric grating slab:
Application to a planar cavity
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The fundamental optical effects that are the basis of the giant reflection band and anomalous negative
transmission in a self-sustained rectangular dielectric grating slab in p polarization and for incidence angle
not very far from the Brewster’s angle of the equivalent slab are investigated. Notice that the self-sustained
dielectric grating slab is the simplest system that, due to the Bragg diffraction, can show both of the former
optical effects. A systematic study of its optical response is performed by an analytical exact solution of the
Maxwell equations for a general incidence geometry. At variance with the well-known broad reflection bands
in high-contrast dielectric grating slabs in the sub-wavelength regime, obtained by the destructive interference
between the traveling fundamental wave and the first diffracted wave (a generalization of the so-called second
kind Wood’s anomalies), the giant reflection band is a subtle effect due to the interplay among the traveling
fundamental wave and the first quasiguided diffracted one, as well as among the higher in-plane wave-vector
components of the evanescent/divergent waves. To better describe this effect we compare the optical response of
the self-sustained high-contrast dielectric grating slab with a system composed of an equivalent homogeneous
slab with a thin rectangular high-contrast dielectric grating engraved in one of the two surfaces, usually taken as a
prototype for the generation of second kind Wood’s anomalies. Finally, the electromagnetic field confinement in
a patterned planar cavity, where the mirrors are two self-sustained rectangular dielectric grating slabs, is briefly
discussed.
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I. INTRODUCTION

Diffractive phenomena in dielectric materials are the basis
of many interesting optical effects shown by the light propaga-
tion in complex systems. The so-called Wood’s anomalies,1,2

the superradiant effect,3,4 band gaps in photonic crystals,5

anomalous propagation in left-handed materials,6 and light
localization in amorphous photonics7 are some of the most
interesting properties that take a crucial role in the tailoring of
the optical devices, allowing full control of the local photon
density of states.

While the resonant anomalies of optical diffraction gratings
have been observed at the very beginning of modern optics,
when they were studied by Wood and Rayleigth in the
Philosophical Magazine,1,2 all the further interesting effects
have been obtained recently, due to the improvement in the
nanomanipulation of the samples.

It is well known8,9 that in the optical response study of a self-
sustained dielectric grating slab (SSGS) three different photon
energy zones can be considered: (i) the so-called equivalent
slab model (ESM) zone, from zero to the threshold energy of
the first diffraction wave, where only the zero order propagates;
(ii) the energy zone of the second kind Wood’s anomalies
(SKWA) that ranges from the first diffraction threshold until its
escape into the vacuum (this zone is also called subwavelength
energy zone); and finally (iii) the zone of the first kind Wood’s
anomalies (FKWA) for higher energies.

Some years ago two of the present authors pointed out
that in the SKWA energy range, a very broad reflection band
(giant reflection band: GRB) can be obtained in a self-sustained
rectangular dielectric grating slab in p polarization for an
incidence angle close to the Brewster angle of the ESM.10,11

They showed that this interesting property appears in the

presence of a complex coupling among traveling, guided,
evanescent, and divergent electromagnetic waves.

Recently, high contrast subwavelength SSGSs at normal
incidence have been used in vertical cavity surface emitting
lasers (VCSELs), in substitution for the vacuum/cavity Bragg
reflector, since they show a much broader reflection band and
a better response as a function of temperature with respect to
the massive λ/4 Bragg reflectors.12,13

It is worth remembering that high reflectivity in subwave-
length dielectric grating slabs can be obtained by a destructive
interference at the outgoing surface (zero transmission) in the
energy range between the first and the second energy threshold
of the diffracted waves (SKWA).9,14,15 However, these high
reflection bands are usually very narrow in energy except when
large Fabry-Perot oscillations, due to the zero-order diffraction
wave, are present at low photon energies. Some examples are
the rather broad and sharp-edged reflection bands that can be
obtained for s-polarized light.10,11

On the contrary for p polarization, close to the Brewster
angle of the equivalent slab, the Fabry-Perot oscillation
intensities of the zero-order wave are strongly depressed and
giant reflectivity bands can be obtained by a synergic effect
among the SKWA sharp resonances and the electric field
components with high in-plane wave vectors.10,11

In fact, in a dielectric grating slab, at variance of the
equivalent homogeneous slab, the Fourier components of
the electric field with high in-plane wave vectors, can also
be traveling in the direction normal to the surfaces, and a
complex interplay with surface evanescent/divergent waves
can be generated.

In the present work the conditions for which the giant
reflection bands can be obtained are discussed for a general
incidence geometry. Moreover, we show that in the energy
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range where the first diffracted wave propagates in the vacuum,
an anomalous negative transmission can be observed for a
positive real dielectric tensor. For particular values of the
incidence angle all the intensity can be carried out by the
first transmitted order, which propagates in the vacuum with a
negative wave vector.16

The aim of the present work is twofold. First of all, we
discuss the different optical effects that are the basis of giant
reflection band formation in rectangular dielectric grating slabs
for different optical polarizations. Second, by increasing the
incident photon energy we study the zone where also the
first diffracted wave becomes traveling in the vacuum. In
this case a negative propagation, which leads to the so-called
superlenses effect, just observed in two-dimensional (2D)
photonic crystal slab6 and in 2D anisotropic waveguides,17

can be obtained. Finally, the property of the electromagnetic
confinement between two parallel dielectric gratings in optical
microcavities will also be briefly discussed.

The plan of the paper is as follows.
In Sec. II we describe the theoretical framework used to

model the optical response of a SSGS.
The different optical contributions due to traveling, guided

and evanescent/divergent waves, which are the basis of GRBs
in dielectric grating slabs for p polarization are discussed in
Sec. III, where a systematic study of the optical response for
a highly symmetric dielectric tensor grating is presented. We
point out that broad reflection bands for a general polarization
of the incidence ray are a robust property of dielectric grating
slabs when characteristic resonance conditions are fulfilled.
Moreover, we underline that “giant reflection bands” are
obtained in p polarization close to the Brewster angle of the
ESM.

In the same section we study the energy zone where the first
diffracted wave becomes traveling in the vacuum and show
that, for selected parameter values, negative transmission can
be achieved in a slab of 1D photonic crystal16 by Bragg effects.

In Sec. IV an interesting application of dielectric grating
slabs in optical microcavities is suggested and briefly dis-
cussed.

Conclusions are given in Sec. V.

II. THEORY

The Maxwell equations in photonic crystal slabs for s and
p polarizations are usually solved as an eigenvalue problem
with respect to the electric and magnetic fields. In the present
paper we choose to solve the equations as a function of the
electric field alone, by magnetic field elimination, namely,

∇ × ∇ × E(r) = ω2

c2
D(r). (1)

We consider a general scattering geometry of an incident
plane wave on the SSGS, periodic along the x axis and with
wires aligned along the y axis, as shown in Fig. 1. The plane
of incidence performs an angle ϕ◦ with the Cartesian plane
(x,z) and the angle between the wave vector, incident from the
vacuum, and the z axis is ϑ◦.

We model the 1D rectangular dielectric grating,11 with
periodicity d and wires of width Lx along the x axis, of a
nonmagnetic material (μo = 1), with a bulk local dielectric

x

y
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q

TMˆ

o

FIG. 1. (Color online) Schematic illustration of the system under
study: a SSGS, periodic in the x direction, infinite and homogeneus
in the y direction, and finite in the z direction.

function

ε(ω) = ε′(ω) + iε′′(ω)

and Fourier transformed dielectric tensor

εG,G′(ω) = ε◦δG,G′ + [�ε(ω) + iε′′(ω)]fxS(G − G′), (2)

where fx = Lx/d is the filling factor, �ε(ω) = ε′(ω) − ε◦
the dielectric contrast, ε◦ the vacuum dielectric constant,
and S(G − G′) the Fourier transformed geometrical tensor
(structural factor):

S(G − G′) = sin[(G − G′)Lx/2]

(G − G′)Lx/2
.

The reciprocal lattice vector components are G = 	2π/d and
G′ = 	′ 2π/d with 	,	′ = 0,±1,±2, . . . , ± N and N → ∞.

The limit G → G′ defines the so-called “equivalent slab
approximation” of the grating with dielectric function:

ε̄(ω) ≡ lim
G→G′

εG,G′(ω) = ε◦(d − Lx) + ε(ω)Lx

d

= (1 − fx)ε◦ + fxε(ω). (3)

In the energy range of low absorbtion (ε′′(ω) → 0) and
ε′(ω) = ε′ = const, the resonance conditions among different
in-plane wave vectors in the grating slab require:

(i) a large dielectric contrast �ε = ε′ − ε◦ � 10;
(ii) a large filling factor fx = Lx/d = 0.5 ÷ 1.0 that deter-

mines also the effective dielectric function ε̄; and
(iii) comparable slab thickness and wires width Lz/Lx =

1.0 ÷ 1.5 that determine the photon Mie’s resonances in each
rectangular elementary cell.

Clearly, the simultaneous occurrence of conditions (ii) and
(iii) strongly influences the building up of quasiguided waves
in the dielectric grating slab and their interplay with the
traveling fundamental one.

Moreover, while the (i) and (ii) conditions influence the
strong coupling among the different in-plane wave-vector
electric field Fourier components, generated by the grating
periodicity [see Eq. (2) where the coupling scales as the
product of the two quantities], condition (iii) determines the
destructive interference between the two propagating waves
(traveling and quasiguided).
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Notice that the dielectric tensor of Eq. (2), with row
index 	 and column index 	′, is symmetric and invariant for
translation along its principal diagonal, ε̄ being its value;
the matrix elements of all the other diagonals (	′ = 	 ± m

for m = ±1,±2, . . . , ± M) are proportional to the dielectric
contrast value �ε divided the distance m from the principal
diagonal. Moreover, for commensurate values between wire
width and grating periodicity (Lx/d = ν/n with ν and n

integer numbers) the matrix elements of the diagonals with
m = ±n are zero [see Eq. (2)], as well as all the other elements
in the diagonals with m a multiple of n.

A systematic study is performed by choosing, as duty
cycle values of the rectangular dielectric grating, the lowest
Pitagora’s fractions p/(p + 1) with integer p = 1, 2, 3, 4
values and optimizing the Lz/Lx ratio in order to obtain the
giant reflection band.

The dielectric tensor symmetry affects the strong coupling
among the incident zero diffraction (G = 0) electromagnetic
field component and the higher orders (G �= 0) in the grating
slab and it can be directly observed in the s-polarized optical
response. In fact, for a negligible y component of the photon
wave vector (qy → 0) and in the limit Lz → ∞ the Maxwell
equations reduce to an eigenvalues problem:∑

G′
MG,G′(ω)ϕn(G′) = k2

n ϕn(G), (4)

where the dynamical matrix has the same symmetry of the
dielectric tensor of Eq. (2) except for the matrix elements of
the principal diagonal,

MG,G′(ω) = ω2

c2
εG,G′ − q2

x (G)δG,G′ =
G=G′

ω2

c2
ε − q2

x (G),

which is no more translationally invariant.
In order to deal with finite-dimensional matrices a trun-

cation of the diffraction orders is needed. Considering, for
example, the simple case with ϕo = 0 in s polarization, the
choice of the N value to ensure the numerical convergence
of the optical response calculation can be achieved by two
different numerical approaches. We can increase the ν value
(ν → N ) of the square optical matrix of Eq. (4) [of the
order (2ν + 1) × (2ν + 1)]. In this case, we increase both
the eigenstate basis set {ϕ1(G),ϕ2(G), . . . ,ϕ2ν+1(G)} and the
Fourier basis of the reciprocal wave vectors {G} of the (2ν + 1)
dimension. We define this usual approach as the square matrix
method (SMM).

In a second approach, which we define as the n-diagonal
matrix method (nDMM), we start with a (2N + 1) × (2N +
1)-dimensional square matrix in Eq. (4), with only the principal
diagonal matrix elements different from zero. Then we
increase symmetrically, with respect to the principal diagonal,
the number of up and down diagonals with nonzero matrix
elements, until we reach the numerical convergence. Notice
that the 1DMM defines the equivalent slab approximation
(ESA).

In the first case the convergence is obtained with a Fourier
truncated basis set {ϕ1(G),ϕ2(G), . . . ,ϕ2ν+1(G)}, but with the
full interaction between the different in-plane components
taken into account. In the second case the Fourier basis set
dimension is at convergence, but with a reduced order of
interactions (off-diagonal matrix elements). Since these two

different criterions give physical complementary information
on the behavior of photon propagation in a dielectric grating
slab, we use both in the present work.

III. OPTICAL RESPONSE

A. Photonic modes dispersion

Let us consider an incident electric plane wave of energy
h̄ω and wave vector q on a surface of a rectangular SSGS that
meet the photonic crystals condition εb(ω) ≈ ε′

b(ω) 	 ε′′
b (ω).

Moreover, in the energy zone of very low absorption [ε′′
b (ω) →

0] we can make the further approximation ε′
b(ω) ≈ const.

The model computation is performed for a p-polarized
incident wave in the resonance conditions regime. All the
necessary equations for the optical response calculation are
given in the Appendix.

We use as bulk refractive index value nb = √
εb = 3.34,

filling factor fx = Lx/d = 3/4, and spatial periodicity d =
300 nm, while the plane of scattering is taken normal to the
wire direction (the angle of scattering plane ϕ◦ = 0 in Fig. 1),
and the incidence angle is ϑ = 60◦ rather close to the Brewster
angle of the effective dielectric function (ϑ = 72◦). The slab
thickness Lz = 351.9 nm (Lz/Lx ≈ 3/2) is optimized in
order to have a strong coupling among in-plane wave-vector
components.

In the dispersion curves kn(ω) of the dielectric grating,
shown in Fig. 2 (solid black line), three different energy
zones, presented in the Introduction: (i) ESM, (ii) SKWA, and
(iii) FKWA, can be easily identified in correspondence of
different threshold energies.

Notice that while the zero-order curve (n = 1) is traveling
for any photon energy, the curves with n > 1 show different
threshold energies (in the limit kz → 0). For the chosen
parameter values and for photon energy h̄ω = 1.2 eV, a bit
greater than the threshold energy of the first diffracted mode

FIG. 2. (Color online) p-polarized dispersion curves kn(ω) (solid
black line) of a grating with bulk refractive index value nb = 3.34,
filling factor fx = 3/4, and spatial periodicity d = 300 nm. The
incidence plane is normal to the wire direction (ϕo = 0), and the
incidence angle, ϑ = 60◦. The dispersion curves of the ESA (dot-
dashed blue curves), as well as the two lowest dispersion curves
qz(G) for G = 0 and G = −2π/dx in vacuum (dashed red curves)
are also shown.
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(h̄ω1t ≈ 1.08 eV), the corresponding wavelength, computed
for the equivalent slab dielectric function ε̄ = fx εb + (1 −
fx) ε◦ = 8.6167, is λ̄ = 2π/k̄ = 351.882 nm rather close to
the chosen slab thickness λ̄ ≈ Lz.11

The dispersion curves in the ESA (dot-dashed curves),
computed by taking equal zero the off-diagonal elements of
the block matrices of Eq. (A7), are also shown in the same
picture for different diffraction orders. Notice that the energy
thresholds for the first and the second diffracted wave G = ∓1
are very close to that of the grating modes (n = 2, 3); therefore,
a rough estimation of the threshold energies for n = 2, 3
diffracted waves can be obtained by the propagation conditions
of the effective homogeneous model:

E∓ = Gc[
√

ε̄ ∓ √
ε◦ sin ϑ]/[ε̄ − εo sin2 ϑ].

Moreover, since the dispersion curves k1DMM have been
obtained by the diagonal elements of the dynamical matrix
of Eq. (A7), the k1DMM (G) and k1DMM (−2G) curves show
a crossing that is removed when the off-diagonal matrix
elements are considered.

The two lowest dispersion curves qz(G) for G = 0 and
G = −2π/d in the vacuum are also given in the same picture
(dashed red curves). The G = 0 line identifies, among the
grating modes, the ones that are confined in the patterned slab
while, for each k, the qz(−2π/dx) curve gives the threshold
energy above which the first order can be observed in reflection
and/or transmission. In the next section we point out how the
grating parameters can be chosen to enhance the first-order
transmitted intensity while depressing the zero-order reflection
and transmission.

Notice that the threshold energy (h̄ω = 2.21 eV) of the
G = −2π/d wave in the vacuum is rather close to the
threshold (h̄ωn=3 = 1.97 eV) of the second diffraction wave
in the grating; moreover, while the G = 0 wave emerges
from the sample with the same angle of the incident one, the
G = −2π/d ray shows a negative propagation very sensitive
to the photon energy, as is further discussed in the next section.

In Figs. 3(a) and 3(b) the G components of the electric field
eigenvectors {ϕn(G)} with n = 1, 2, 3 of Eq. (A7) are given for
an incidence angle ϑ = 60◦ and photon energies a bit higher
than the first (h̄ω = 1.2 eV) and the second (h̄ω = 1.97 eV)
threshold energies (see Fig. 2).

It is well known that for normal incidence (ϑ = 0◦) the
amplitude components of the nth-order diffracted wave show
even (2n + 1) or odd (2n) symmetry10 with respect to the
G → −G transformation (obviously, this property cannot be
observed in the present calculation, due to the large value of
the incidence angle chosen). Moreover, amplitude distribution
for n = 1, 2, 3 shows maximum values in correspondence
with 	 = 0,−1,+1, respectively, and gives an estimation of the
coupling among waves with different in-plane wave vectors.
The rather broad amplitude distribution around the maxima
become rather sharp when the eigenvector is computed at its
own threshold energy [see the distribution of n = 2 and n = 3
in Figs. 3(a) and 3(b) respectively].

Notice that the SKWA effect in a thick dielectric grating
slab11 is a rather more complicated phenomenon with respect
to that studied in planar waveguides with a thin grating
engraved on one of its surfaces, a system usually considered a
prototype for the SKWA explanation.9

(a)

(b)

FIG. 3. (Color online) Electric field eigenvectors ϕn(G) for n = 1,
2, 3 computed for incidence angle ϑ = 60◦ and photon energy (a)
h̄ω = 1.2 eV (b) h̄ω = 2.1 eV.

This different behavior is schematically reported in
Figs. 4(a) and 4(b), where the propagation of the fundamental
(G = 0) and the first-order diffraction wave (G = −2π/d)
inside the patterned planar waveguide is compared with the
propagation of the correspondent in-plane components (n = 1,
2) in a SSGS. Notice that the SKWA of the two systems are
qualitatively different; in fact, while on the bottom surface
of the grating slab [Fig. 4(b)] the first diffraction wave
amplitude (n = 2 and G = −2π/d) is partially transmitted by
the conversion on the fundamental wave component (G = 0),
due to the boundary conditions, on the planar waveguide case
[Fig. 4(a)] an internal total reflection is observed. Moreover,
while the SKWA in the structure of Fig. 4(a) is given by the
destructive interference between the fundamental (G = 0) and

i r

ts

i r

ts s’

(a)

(b)

FIG. 4. Schematic illustration of (a) the geometry for the thin
grating engraved on an homogeneous slab and (b) the SSGS
configuration.
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the first diffracted wave (G = −2π/d), in the structure of
Fig. 4(b) many components, with the former two in-plane wave
vectors, interfere; therefore, we expect that the two structures
show, in the optical response spectra, rather the same resonant
energies (SKWA) but different line shapes. As an example let
us consider the case of photon energy h̄ω ≈ 1.242 eV and
in-plane wave vector qx(0) = 2.8854 × 10−4 a.u. (ϑ = 60◦),
where two diffracted waves propagate in the grating with
wave vectors along the z axis k2 = 3.378 38 × 10−4 a.u. and
k1 = 8.648 65 × 10−4 a.u. (as can be obtained from Fig. 2).
Since the two diffracted waves have their highest component
amplitudes at G = −2π/d and G = 0, respectively [see
Fig. 3(a)], it is possible to determine the propagation angles
inside the grating slab that in this case are ϕ1 ≈ 18◦30′ and
ϕ−1 ≈ −67◦30′, respectively [see Fig. 4(b)] for lattice wave-
vector value G = 2π/d = 11.083 54 × 10−4 a.u. Therefore,
the phase shift associated with path-length difference between
incident wave and the quasiguided wave in the grating slab
gives the relation: tg(ϕ−1) = qx (−G)

k2
≈ m d

Lz
with integer m. A

more quantitative analysis of the optical response differences
between the structures of Fig. 4(a) and 4(b) is fully discussed
in the next section.

B. Reflectivity and transmittivity

We would like to remind the reader that in a dielectric
grating supported on a homogeneous slab [see Fig. 4(a)]
the optical properties (reflectivity and transmittivity of the
fundamental and diffractive waves) are led by two different
Wood’s anomalies,9 namely, diffractive anomalies (or FKWA)
due to the propagation of deflected rays at vacuum sides of the
system and wave guiding anomalies (or SKWA), due to the
interference between incoming light and first diffracted wave,
guided into the slab (notice that these two effects are given in
a decreasing photon energy order).

1. Giant reflection band and negative propagation

In order to compare the optical properties of the two
structures of Figs. 4(a) and 4(b) we choose, for the engraved
grating of Fig. 4(a), the same parameter values of the self-
sustained one, with a grating thickness (� = Lz/10) one order
of magnitude lower than the SSGS, and the homogeneous
slab thickness L = Lz − � with a dielectric constant εs = ε̄.
Notice that the former parameter values are chosen in order to
observe rather the same Fabry-Perot and SKWA effects in the
two structures.

Moreover, while in the former structure [Fig. 4(a)] the
source of the diffracted waves and of the quasiguided waves is
given essentially to the periodic grating and the homogeneous
slab, respectively, in the latter structure [Fig. 4(b)] the two
effects are completely mixed in all the slab volume.

In Figs. 5(a) and 5(b) the optical reflection spectra, for
an incidence angle ϑ = 60◦ and in the SKWA energy range
(see Fig. 2), for both the structures of Figs. 4(a) and 4(b)
are shown for s and p polarization, respectively. In Fig. 5(a)
we observe that the optical spectra for s polarization show
Fabry-Perot oscillations, for photon energies lower than the
first threshold, very similar for the two different structures
and the SKWAs at rather the same energies, as hypothesized
before.11 At variance, for p polarization [Fig. 5(b)] narrow and

(a)

(b)

(c)

FIG. 5. (Color online) Reflected intensity, as a function of energy,
for a self-sustained grating of thickness Lz = 351.9 nm (solid red
curve) and for a thin grating (Lz/10) engraved on a thick slab
(9Lz/10) of dielectric function ε (dot-dashed green curve). (a) s

polarization and (b) p polarization for incidence angles ϕ◦ = 0 and
ϑ = 60◦. (c) reflection phase for the p polarization case, for the
engraved (solid red curve) and the self-sustained grating (dot-dashed
blue curve) structure.

broad reflection bands are observed for the engraved and the
self-sustained grating structure, respectively. In this case, since
the angle of incidence is very close to the Brewster angle of the
ESM, the Fabry-Perot oscillation amplitudes are rather small
for the engraved system while they are completely suppressed
for the SSGS and they show very different reflection spectra.
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For the SSGS any possible anomalous behavior in the band
where the reflectivity intensity remains equal to unity can be
identified only in the phase of the reflected wave. To this
end the reflection phase versus energy, for the p polarization
case, is shown in Fig. 5(c) for both the engraved and the
self-sustained grating structure. It can be seen that, as expected,
the reflection phase for the engraved structure has a change
equal to 2π at the reflection peak position. The changes in the
reflection phase of the self-sustained grating structure are a
signature of similar resonances underlying the giant reflection
band.

Now we consider the optical response for p polarization
of the SSGS in the same energy range of Fig. 2. The optical
spectra for reflected, transmitted, and deflected rays are shown
in Fig. 6. In Fig. 6(a) is shown the optical response in the energy
range from 0.5 eV to the energy where the first diffraction
wave (G = −2π/d) escapes into the vacuum (see dispersion
curves of Fig. 2). The three reflection curves correspond
to three different basis truncations in the reciprocal lattice
wave-vector space, namely: (i) for G = 0, the reflection curve,
RESM, of the ESM is obtained, (ii) for G = 0, ± 2π/d the
reflection peaks RN=1 of the SKWAs are shown, and, finally,
(iii) at convergence (G = 	 2π/d for 	 = 0,±1,±2, . . . , ± N

for N ≈ 10), where also surface waves are present and the
giant reflection band appears. The transmittivity is also shown
in the same picture in order to check the computation accuracy
(R + T = 1).

In the case (i) we observe Fabry-Perot oscillations of the
ESM very similar to that of the engraved system shown in
Fig. 5(b), for photon energies lower than the first threshold. In
the (ii) case four well-shaped SKWAs appear, distributed in all
the energy range between first and second threshold energies,
rather similar to those observed in the engraved dielectric slab
[see Fig. 5(b)]. Therefore, at this degree of approximation, the
similarity between the two different structures of Figs. 4(a)
and 4(b) is recovered, with the difference that, at variance
of the engraved grating structure, in the self-sustained one
the SKWA peaks are very sharp in correspondence of the
energy thresholds (n = 2h̄ω ∼ 1.25 eV, n = 3h̄ω ∼ 1.97 eV),
but rapidly broaden for energy far from the thresholds, due to
the interference of many in-plane components [see Figs. 3(a)
and 3(b)].

Finally, when the numerical convergence is reached (iii), a
giant reflection band is obtained close to the Brewster angle
value with the crucial contribution of higher-order diffracted
waves.11 For photon energy h̄ω ≈ 2.2 eV rather close to the
threshold of the second diffracted wave and to the escape into
the vacuum of the first diffracted wave, the synergic effect
between SKWAs and higher-order diffracted waves, that is the
basis of the giant reflection band, deteriorates and the reflection
band disappears.

The mechanism that underlies giant reflection bands in p

polarization, near the Brewster angle, is then rather different
from that observed for broad reflection bands in s polarization
(or in p polarization for an incidence angle rather far from
the Brewster angle). In the s polarization case, from the
first to the second energy threshold, well-shaped reflection
bands originate due to the interference between the large
Fabry-Perot oscillations, in the slab resonance condition, and
the quasiguided first diffracted wave (SKWA); higher-order

(a)

(b)

(c)

FIG. 6. (Color online) p-polarized reflected (solid red line) and
transmitted (dashed blue line) intensity for ϕ◦ = 0◦,ϑ = 60◦, for (a)
the G = 0 wave in the energy range from zero to the second energy
threshold and, in the FKWA range; (b) the G = 0 wave; (c) the first
diffracted one. In (a) the reflection curve, RESM, of the ESM (dotted
orange curve) and the reflection peaks RN=1 of the SKWAs (dot-
dashed green line) are also shown. In (c) the transmittivity computed
considering only the G = 0, ± 2π/d components in the dielectric
tensor is shown (dot-dashed green line).

waves seem to give a minor contribution to the reflection effect
[see Ref. 10 and Fig. 5(a)].

Now we move to the energy zone of the first kind Wood
anomalies and show, in Figs. 6(b) and 6(c), the reflectivity and
transmittivity intensities of the fundamental mode G = 0 and
the first diffracted one that propagates in the vacuum.
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FIG. 7. (Color online) Output angle ϑout of the first diffracted
wave as a function of energy.

Also in this range of photon energies it is easy to verify
that the sum of all the propagating reflection and transmission
waves equals 1.

It is worth noting that, in the energy range close to the
first diffracted wave escape into the vacuum, the deflected ray
shows the highest intensity with transmission close to unity
(∼94% for h̄ω = 2.3 eV), while the zero-order reflected and
transmitted waves are drastically suppressed. Moreover, the
first diffracted wave, with q// = (qx − G) î, propagates in a
leftward direction with an energy-dependent output angle ϑout

as shown in Fig. 7 for the entire energy range of the optical
spectrum. For example, at photon energy h̄ω = 2.3 eV the
deflection angle is ϕ−1 ≈ 20◦; therefore, an incident wave will
be deflected with an angle as large as 50◦, as shown in the
inset of Fig. 7, and intensity greater than 90%, as shown in
Fig. 6(c). The transmittivity computed considering only the
G = 0, ± 2π/d components in the dielectric tensor, shown
with a dot-dashed green line in Fig. 6(c), has a rather different
behavior with respect to the full calculation.

In conclusion, we would like to underline that the negative
propagation is produced by the Bragg effects in a nonmagnetic
material with positive bulk dielectric function,6 a completely
different effect with respect to that hypothesized by Vese-
lago many years ago,18 due to the negative dielectric and
magnetic susceptibilities of the sample. Moreover, because
this effect is not present in the engraved structure under the
same scattering conditions, we can conclude that also for
this property the higher-order diffracted waves are crucially
important.

2. General scattering geometry

In order to go a bit deeper in studying the giant reflection
band and the negative propagation present in two different and
characteristic energy zones close to the first and the second
Wood’s anomalies, let us consider the scalability properties of
the SSGS.

As discussed in Ref. 11 the giant reflection band is scalable
in energy if the filling factor fx = Lx/d and the ratio Lz/Lx are
taken constant. For the present parameter values and fx = 3/4,
Lz scales according to the wavelength of the ESM, computed

TABLE I. Grating parameters.

ωo (eV) �ω (eV) Lx (nm) d (nm) Lz (nm) λ (nm)

1.818 1.273 150 200 234.6 234.588
1.212 0.848 225 300 351.9 351.882
0.909 0.636 300 400 469.2 469.176
0.454 0.318 600 800 938.4 938.352

at the first photon threshold energy (Lz ≈ λ) of the grating as
shown in Table I.

While the filling factor determines the effective dielectric
function value of the grating, the ratio Lz/Lx is connected
with the Mie energy states of the elementary nanoparticle of
the system; therefore, the two basic ratios Lx/d and Lz/Lx

completely determine the building up of the quasiguided waves
in the former dielectric grating slab. Notice that the giant reflec-
tion band can be as large as the whole visible energy range,
and moreover, it scales from infrared to ultraviolet energies
according to the simple relationship �ω/ωo ≈ Lx/d ≈ 3/4
and Lz/Lx ≈ 3/2, where the band width �ω and the lower
energy band edge ωo are calculated for reflectivity values 1/2.
Notice that for R � 98% the band ratio is �λ/λ � 40%, where
λ is calculated at the band center.

The former properties are not restricted to the parameter
values considered in Table I. In fact, in Figs. 8(a)–8(c) we
plot the reflection intensity as a function of photon energy
and in-plane wave vector for three different gratings with
filling factors values Lx/d = p/(p + 1), where p = 2, 3, 4;
the ratio 1/2 is not taken into account since it does not give
a real giant reflection band, due to the small value of the
effective dielectric constant that cancels the strong coupling
condition among different in-plane wave-vector components.
The grating periodicity is taken constant (d = 300 nm), the
wire width scale as Lx = p d/(p + 1) and the slab thickness
(Lz/Lx ≈ 3/2) is optimized in order to obtain a reflection zone
as large as that observed for the sample with Lx/d = 3/4.
In fact, rather similar zones of high reflectivity (in red in
the plots), for the three different filling factor values, are
present and cover the energy range from the first to the second
diffraction thresholds.

We remind the reader that in all the three different cases the
dielectric matrix of the grating is symmetrical and translational
invariant with respect to its principal diagonal and indeed has
zero value for the up and down diagonal matrix elements
far from the principal one with periodicities m, where m

is the denominator of the filling factor: Lx/d = n/m [see
Eq. (2)]. Notice that the symmetry strongly reduces the
number of nonzero matrix elements of the block dielectric
tensor (2N + 1) × (2N + 1) to 2N (m − 1)/m reducing the
interaction among different in-plane wave components. Since
the giant reflection band in p polarization is a robust property
of the dielectric grating slab under resonance conditions, it can
be observed for filling factor values in the range 0.5 ÷ 1.0.

The folding of dispersion curves at h̄ω = 2.06 eV photon
energy, at the boundary of the first Brillouin zone, is clearly
shown in Fig. 8; this energy is close to the escape energy into
the vacuum of the first diffracted wave [for q// = (qx − G) î]
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(a) (b) (c)

FIG. 8. (Color online) Reflection intensity as a function of photon energy and in-plane wave vector for three different gratings with filling
factors values (a) fx = 2/3,Lz = 320 nm, (b) fx = 3/4,Lz = 350 nm, (c) fx = 4/5,Lz = 380 nm.

(see Fig. 2). Moreover, for photon energy of the fundamental
wave (G = 0) greater than 2.1 eV a very small reflection
intensity is observed for all the three dielectric grating slabs,
as observed before in the sample p/(p + 1) = 3/4 at ϑ = 60◦
incidence angle [see Figs. 6(b) and 6(c)].

In particular in Fig. 9 reflection and transmission intensities
are shown for the two electromagnetic waves traveling in the

FIG. 9. (Color online) Reflection (R) and transmission (T) in-
tensities of the two electromagnetic waves traveling in the vacuum:
G = 0 and G = −2π/d in the energy range 2.1–3.2 eV in the second
Brillouin zone. The same color scale as Fig. 8 is used.

vacuum (namely, G = 0 and G = −2π/d) in the energy range
2.1–3.1 eV in the folded second Brillouin zone.

We observe high intensity values only for the first trans-
mission wave; therefore, the optical behavior of the dielectric
grating slab is similar to a negative propagation for a rather
broad energy range and incidence angles. In fact, in the second
Brillouin zone, the intensity of transmitted and reflected optical
waves are negligibly small except for the transmission of
deflected ray at q// = (qx − G) î, and this behavior is in
agreement with the optical spectra of Fig. 6(c).

In Figs. 10(a) and 10(b) the reflectivity maps for TE and
TM polarization, respectively, are computed for a p/(p + 1) =
3/4 grating slab and angle of incidence ϑ = 60◦, as a function
of 0 � ϕo � π/2 angle (see Fig. 1); the reflection spectra
for ϕ◦ = 0 are also shown for sake of comparison. In the
central maps are given the reflection intensities computed
with only the first three waves (N = 1) in the Rayliegh
expansion of the electric field, while the right maps are at
convergence.

The TE polarization reflectivity shows a broad zone of high
reflectivity values and the optical response is rather insensitive
to the contribution of higher order evanescent waves, while
for TM polarization where the role of the evanescent waves
is crucially important the broad reflection band still remains
very sensitive to the incidence angle values.

IV. PATTERNED MIRROR CAVITIES

The giant reflection band effect discussed in the previous
sections suggest the use of sub-wavelenght gratings as very
efficient reflectors in vertical microcavities since they allow
the use of a single patterned layer, contrary to multilayer
Bragg mirrors, and give wider wavelength ranges of high
reflection.
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FIG. 10. (Color online) Reflectivity maps for (a) TE and (b) TM polarization for a fx = 3/4 grating slab, angle of incidence ϑ = 60◦, as a
function of the incidence plane angle ϕ◦ (see Fig. 1). The blue curves on the left, corresponding to the reflection spectra for ϕ◦ = 0, as well as
the central maps, are obtained for N = 1; the right maps are at convergence. The same color scale of Fig. 8 is used.

Recently, a self-sustained rectangular dielectric grating was
used at normal incidence angle in VCSELs.12,13

The interest for the former system with respect to the
massive Bragg reflectors is twofolds: (i) in energy a broad
stop band is obtained (ii) it should show a better response as a
function of the temperature variation.

In Fig. 11 the design of a vertical cavity is presented
where the electromagnetic field confinement is achieved by

the internal reflection of two patterned mirrors at distance L.
The case of mirrors with the same periodicity of the lateral
pattern and the same slab thickness d1 = d2 is considered. If
we take the in-plane wave vector along the x axis (ϕ◦ = 0 in
Fig. 1) the Maxwell equations [Eq. (A7) for ϕ◦ = 0] separate
in s [Eq. (4)] and p polarization.

The in-plane electric field components in the cavity, in the
grating slab, and in the region to its right side, can be written
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FIG. 11. (Color online) Schematic design of a patterned cavity.

as

0 � z � L/2,

E//(r; ω) =
∑
G

eiqx (G)x
[
AR(G)eiqz(G)(z− L

2 )

+BR(G)e−iqz(G)(z− L
2 )]

, (5a)

L/2 � z � d2 + L/2,

E//(r; ω) =
∑

n

[
A2(n)eikn(z− L

2 ) + B2(n)e−ikn(z− L
2 )]

×
∑
G

ϕ
n
(G)eiqx (G)x, (5b)

d2 + L/2 � z � ∞,

E//(r; ω) =
∑
G

eiqx (G)x
[
A3(G)eiqz(G)(z−d2− L

2 )

+B3(G)eiqz(G)(z−d2− L
2 )]

, (5c)

where the kn 2N + 1 square roots of the eigenvalue problem
and the {ϕn(G)} correspondent 2N + 1 eigenfunctions with
2N + 1 G components of the Maxwell equation [Eq. (A7)],
are computed for a chosen qx(0) value in the first Brillouin
zone (−π/d,π/d).

A phase matrix,

χ>(L) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiqz(−N2π/d)L 0 0 0 0

...
. . .

...
...

...

0 0 eiqz(0)L 0 0

...
...

...
. . .

...

0 0 0 0 eiqz(N2π/d)L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

matches the fields in the left and right side of the cavity:

AR = χ>(L)AL BR = χ<(L) BL, (6)

where the χ<(L) matrix elements are obtained by the substi-
tution eiqz(G)L → e−iqz(G)L.

By considering the s polarization and imposing the
Maxwell boundary conditions at z = L/2 and z = d2 + L/2

we obtain the amplitudes in the transfer matrix form:

AR(G) =
∑

n

[t>2 (G,n)]−1ϕn(G){A2(n) + r>
2 (G,n)B2(n)},

(7a)
BR(G) =

∑
n

[t>2 (G,n)]−1ϕn(G){r>
2 (G,n)A2(n) + B2(n)},

A3(G) =
∑

n

[t>2 (G,n)]−1ϕn(G)

×{A2(n)eiknd2 + r>
2 (G,n)B2(n)e−iknd2},

B3(G) =
∑

n

[t>2 (G,n)]−1ϕn(G)

×{r>
2 (G,n) eiknd2A2(n) + e−iknd2B2(n)}, (7b)

where

r>
2 (G,n) = qz(G) − kn

qz(G) + kn

, t>2 (G,n) = 2qz(G)

qz(G) + kn

, (8)

are the interface reflection and transmission amplitudes of the
right grating slab, respectively.

It is, however, well known that, as discussed in Refs. 14,19,
and 20, the inevitable existence of evanescent solutions
in dielectric gratings makes the transfer-matrix calculation
numerically unstable very quickly, so that the scattering matrix
formalism must be used.

In the scattering matrix form Eqs. (7a) and (7b) that now
read

AR(G) =
∑

n

[t>2 (G,n)]−1ϕn(G){A2(n) + r>
2 (G,n)B2(n)},

B3(G) =
∑

n

[t>2 (G,n)]−1ϕn(G)

×{r>
2 (G,n) eiknd2A2(n) + e−iknd2B2(n)}, (9a)

A3(G) =
∑

n

[t>2 (G,n)]−1ϕn(G)

×{A2(n)eiknd2 + r>
2 (G,n)B2(n)e−iknd2}, (9b)

BR(G) =
∑

n

[t>2 (G,n)]−1ϕn(G)

×{r>
2 (G,n)A2(n) + B2(n)}, (9b)

give the input and output field amplitudes of the right grating
slab.

The forward optical response of the dielectric grating
slab, for a given incident in-plane wave vector in the ex-
tended Brillouin zone q// = [qx(0) + G′]î = qx(G′) î, defined
by the assumption (F) AR(G) → δG,G′ , BR(G) → r2(G,G′),
A3(G) → t2(G,G′), and B3(G) → 0.0, makes the system
of Eq. (9a) a heterogeneous algebraic system that can be
solved with respect to the values of the internal electric field
amplitudes {A2(n),B2(n)}.

Then the system of Eq. (9b) gives the matrices of forward
reflection r2(G,G′) and transmission t2(G,G′) whose dimen-
sion is (2N + 1) × (2N + 1).

Due to the optical symmetry of the grating, the backward
optical response, defined as (B) AR(G) → 0.0, BR(G) →
t2(G), A3(G) → r2(G) and B3(G) → δG,G′ , gives the same
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values of reflection r2(G,G′) and transmission t2(G,G′)
amplitudes of the forward one.

We can then write the scattering matrix of the system as a
2 × 2 block matrix in {G,G′} in the form(

A3

BR

)
= S2(ω)

(
AR

B3

)
=

(
t2(ω) r2(ω)

r2(ω) t2(ω)

)(
AR

B3

)
. (10)

An analogous relation holds for the left grating slab:(
AL

B0

)
= S1(ω)

(
A0

BL

)
=

(
t1(ω) r1(ω)

r1(ω) t1(ω)

) (
A0

BL

)
. (11)

Moreover, Eq. (6) now is(
AR

BR

)
=

(
χ>(L) 0

0 χ<(L)

) (
AL

BL

)
, (12)

where the field amplitudes are given in the
{
G,G′} reciprocal

space, and χβ(L) (for β =<,>) are diagonal matrices.
Moreover, from Eqs. (11), (12), and (13) we obtain

AL = G>(L) [t1(ω)A0 + r1(ω)χ>(L)t2(ω)B3],
(13)

BL = G<(L) [r12(ω)t1(ω)A0 + χ>(L)t2(ω)B3],

where the tensors G(L) are

G>(L) = [I − r1(ω)r12(ω)]−1,
(14)

G<(L) = [I − r12(ω)r1(ω)]−1,

with r12(ω) = χ>(L)r2(ω)χ>(L).
The total scattering matrix of the cavity is then(

A3

B0

)
=

(
t2(ω)χ>(L) 0

0 t1(ω)

)(
AL

BL

)

+
(

0 r2(ω)
r1(ω) 0

)(
A0

B3

)
. (15)

Notice that the tensor G(L) embodies the poles of the
resonant matrix, and, since the poles of the matrix are
the zeros of its inverse, these are the eigenenergies of the
electromagnetic field confined between the two grating slabs in
the cavity. Moreover, the reduced scattering matrix embodies
also the optical properties of the isolated grating slabs, as
shown in the second term of the right side of Eq. (15).

The s-polarization reflection spectra of a laterally patterned
planar cavity obtained with two parallel dielectric grating slabs
at distance L, filling factor fx = Lx/d = 3/4, elementary
cell ratio Lz/Lx = 3/2, and periodicity d = 300 nm are
shown in Figs. 12(a)–12(c) for three different incidence angles
ϑ = 55◦; 60◦; 65◦. The cavity thickness (L = 826.34 nm) is
chosen for obtaining a λ/2 cavity in a guided geometry. The
reflection spectra of a single patterned dielectric grating slab
are also shown in the same pictures; it is interesting to note
that the reflection bands of this kind of cavity are improved
with respect to the reflection band of a single dielectric grating
slab. Moreover, the cavity peak shifts in energy linearly as a
function of the incidence angle, due to the small angle range
chosen, and the half width at half height is � ≈ 5 meV.

In conclusion, these results underline that self-sustained
dielectric gratings are well suited for obtaining patterned

FIG. 12. (Color online) s-polarized reflection spectra for a lat-
erally patterned planar cavity obtained with two parallel dielectric
grating slabs of filling factor fx = 3/4, elementary cell ratio Lz/Lx =
3/2, and periodicity d = 300 nm for incidence angle (a) ϑ = 55◦, (b)
ϑ = 60◦, (c) ϑ = 65◦.

planar cavities in guided configuration; a more complete
analysis will be performed in a subsequent paper.

V. CONCLUSION

The physical effects that are the basis of the giant reflec-
tion band and negative light propagation in a self-sustained
rectangular dielectric grating slab are clarified by comparison
with an analogous optical system obtained by a homogeneous
planar dielectric waveguide with a thin grating engraved on
one of the surfaces.9 Notice that the latter system is usually
suggested in the literature9 as a prototype for explaining
the SKWA in a dielectric grating. The role of the strong
coupling among electromagnetic waves with different in-plane
wave vectors on the SKWAs and of the symmetry of the
dielectric grating tensor are also discussed. The different
physical effects that are the basis of broad reflection bands
in s and p polarization are clarified. We pointed out that in
a self-sustained grating slab, under resonant conditions, giant
reflection bands and negative transmission can be obtained in
p polarization, due to the interplay among traveling, guided,
and evanescent/divergent waves not very far from the Brewster
angle. The optical behavior for a general scattering geometry
and mixed polarization is also briefly discussed. Finally, the
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attitude on the confinement of the electromagnetic field on
laterally patterned planar cavities is also discussed for s

polarization.

APPENDIX: OPTICAL RESPONSE OF A SELF-SUSTAINED
DIELECTRIC GRATING

A schematic illustration of a SSGS with general incidence
plane wave of h̄ω energy is given in Fig. 1.

The electric field components (α = x,y,z) in the grating
region, 0 � z � Lz, expanded in-plane waves, are

Eα(ρ,z; ω) =
∑
G

Eα(q// + Gî,k; ω) ei(q//+Gî)·ρ eikz, (A1)

where ρ is the in-plane vector [ρ = (x,y,0)].
The wave vector of the incident electric field

q = (q//(0),qz(0)) has q// = qx î + qyĵ = qo[cos ϕoî +
sin ϕoĵ ] and z-component qz(0) =

√
ω2

c2 ε◦ − q2◦ with q◦ =
ω
c

√
ε◦ sin ϑ◦, while the in-plane wave vectors of reflected,

transmitted and deflected fields are q//(G) = (qx + G)î +
qyĵ = qx(G)î + qyĵ and qz(G) =

√
ω2

c2 ε◦ − q2
x (G) − q2

y .
Therefore, the polarization plane α	 of the deflected 	th wave
component performs a solid angle ϕ	 = arctg ( q// sin ϕ◦

q// cos ϕ◦+	2π/d
)

with the (x,z) plane.
Moreover, the unit vectors of the incident electric field

for TE and TM polarizations, defined by the transversality
conditions, are

ε̂TE = (− sin ϕ◦, cos ϕ◦,0), (A2a)

ε̂TM = (cos ϕ◦ cos ϑ◦, sin ϕo cos ϑ◦, sin ϑ◦). (A2b)

The Fourier transformed Maxwell equations in mixed coordi-
nates are

[
∂2

∂z2
− q2

y

]
Ex(G,z) + qx(G)qyEy(G,z) + −iqx(G)

∂Ez(G,z)

∂z

= −ω2

c2
Dx(G,z), (A3a)[

∂2

∂z2
− q2

x

]
Ey(G,z) + qx(G)qyEx(G,z) + −iqy

∂Ez(G,z)

∂z

= −ω2

c2
Dy(G,z), (A3b)

iqx(G)
∂Ex(G,z)

∂z
+ iqy

∂Ey(G,z)

∂z
+ [

q2
x (G) + q2

y

]
Ez(G,z)

= ω2

c2
Dz(G,z), (A3c)

and, given the dielectric displacement field in the form

Dα(G,z) =
∑
G′

εG,G′Eα(G′,z) = eikz
∑
G′

εG,G′Eα(G′,k),

(A4)

they reduce to

∑
G′

[
ω2

c2
εG,G′ − q2

y δG,G′

]
Ex(G′,k) + qx(G)qyEy(G,k)

= k2Ex(G,K) − kqx(G)Ez(G,k), (A5a)∑
G′

[
ω2

c2
εG,G′ − q2

x (G)δG,G′

]
Ey(G′,k) + qx(G)qyEx(G,k)

= k2Ey(G,k) − kqyEz(G,k), (A5b)∑
G′

[
ω2

c2
εG,G′ − (

q2
x (G) + q2

y

)
δG,G′

]
Ez(G

′,k)

= −k[qx(G)Ex(G,k) + qyEy(G,k)]. (A5c)

The former system can be solved with respect to the z

component of the electromagnetic field

Ez(G,k)

= −k
∑
G′

M−1
G,G′ {qx(G′)Ex(G′,k) + qyEy(G′,k)}, (A6)

where the matrix of elements MG,G′ = ω2

c2 εG,G′ −
(q2

x (G′) + q2
y )δG,G′ is real and symmetric in the photonic

crystal limit (ε′′(ω) → 0). The substitution of the z component
of the electromagnetic field in the first two equations of the
system of Eq. (A5) gives the Maxwell equations as a
generalized eigenvalue problem,(

Axx Axy

AT
xy Ayy

) (
ϕx

ϕy

)
= k2

(
Bxx Bxy

BT
xy Byy

) (
ϕx

ϕy

)
, (A7)

where each block of the matrix, of dimension (2N + 1) ×
(2N + 1), real and symmetric in the photonic crystal approxi-
mation, is given by

Axx(G,G′) = ω2

c2
εG,G′ − q2

y δG,G′ ,

Axy(G,G′) = qx(G′)qyδG,G′ ,

Ayy(G,G′) = ω2

c2
εG,G′ − q2

x (G′)δG,G′ ,

(A8)
Bxx(G,G′) = qx(G)M−1

G,G′qx(G′) + δG,G′ ,

Bxy(G,G′) = qx(G)M−1
G,G′qy,

Byy(G,G′) = qyM−1
G,G′qy + δG,G′ .

We solve the generalized eigenvalue problem by the method
of Refs. 9 and 10 to which it reduces when qy = 0. We first
have to diagonalize the matrix

A =
(

Axx Axy

AT
xy Ayy

)
(A9)

by solving

Aξn = λnξn, (A10)

where

ξn ≡
(

ξ x

ξ y

)
n

.
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Then, through the unitary transformation U that diagonalizes A
we define the new quantities ξ̃n ≡ UT ξn and B̃ ≡ UT BU and
transform the generalized eigenvalue problem into a canonical
one.

In fact with the unitary transformation we obtain

λ ξ̃n = k2
nB̃ ξ̃n,

where λ is the diagonal matrix of the complex eigenvalues.
Finally, defining

˜̃ξn = λ1/2ξ̃n

and
˜̃B = λ−1/2B̃ λ−1/2,

we obtain the canonical eigenvalue equation

1

k2
n

˜̃ξn = ˜̃B ˜̃ξn. (A11)

Notice that matrix A and the renormalized matrix ˜̃B are
symmetrical and real in the photonic crystal limit, while
they are not Hermitian for a complex dielectric bulk value.
For ε′′(ω) �= 0 the eigenvalues become complex and the
eigenvectors are no longer orthogonal. In this case, the
eigenvalue problem [Eq. (A7)] must be solved together with its
Hermitian conjugate and the biorthogonality relations between
eigenvectors corresponding to complex conjugate eigenvalues
must be used.

Finally, imposing the continuity of the in-plane electric and
magnetic fields at z = 0 and z = Lz interfaces we compute the
optical response of the dielectric grating slab.11

In the particular case of ϕ◦ = 0 the off-diagonal blocks
of both A and B are zero and Byy reduces to the
identity matrix. Consequently, the system in Eq. (A7)
separates in two eigenvalue problems for s and p

polarization.
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