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Optical effects of spin currents in semiconductors
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A spin current has novel linear and second-order nonlinear optical effects due to its symmetry properties.
With the symmetry analysis and the eight-band microscopic calculation we have systematically investigated
the interaction between a spin current and a polarized light beam (or the “photon spin current”) in direct-gap
semiconductors. This interaction is rooted in the intrinsic spin-orbit coupling in valence bands and does not
rely on the Rashba or Dresselhaus effect. The light-spin current interaction results in an optical birefringence
effect of the spin current. The symmetry analysis indicates that in a semiconductor with inversion symmetry, the
linear birefringence effect vanishes and only the circular birefringence effect exists. The circular birefringence
effect is similar to the Faraday rotation in magneto-optics but involves neither net magnetization nor breaking
the time-reversal symmetry. Moreover, a spin current can induce the second-order nonlinear optical processes
due to the inversion-symmetry breaking. These findings form a basis of measuring a pure spin current where and
when it flows with the standard optical spectroscopy, which may provide a toolbox to explore a wealth of physics
connecting the spintronics and photonics.
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I. INTRODUCTION

A pure spin current consists of flows of opposite spins in
opposite directions with the same amplitude. It bears neither
net charge current nor net spin polarization. Spin currents are
a key element in spintronics.1,2

Detection of spin currents is important for characteriza-
tion and applications in future spintronics technologies.1,2

While a polarized spin current may be detected by the
conventional Faraday/Kerr rotation spectroscopy3–5 or through
ferromagnetic filters,6,7 a pure spin current, without a di-
rect electromagnetic induction, is much less traceable. Still,
pure spin currents have been detected in a few pioneering
experiments in which they were converted into signals de-
tectable by conventional techniques. For example, the spin-
polarized electrons or excitons accumulated at the sample
edges where a spin current is terminated may be detected
by the Faraday/Kerr rotation,8,9 polarized light emission,10

and polarization-selective absorption.11,12 Or the inverse spin
Hall effect13–16 can be used to covert a spin current into
charge/voltage signals for electric measurement.17–21 All such
measurements, however, disturb the spin currents to some ex-
tent and are indirect. We are motivated to find a nondestructive
way to directly measure a pure spin current.22,23

A basic symmetry principle states that whenever there is a
current breaking the fundamental symmetries of a system, an
interaction may arise between the current and another current
of the same symmetry-breaking type so that the fundamental
symmetries are retained.24,25 A classic example is the Ampère
effect and the Ørsted effect where a charge current is coupled
to another charge current or a magnet. A straightforward
analog suggests that a pure spin current may be coupled to
another spin current. Such an idea stimulated the proposal
of direct measurement of a pure spin current in a direct-gap
semiconductor by a polarized light beam.22 A polarized light
beam can be regarded as such a “photon spin current”26 by

mapping the photon polarization into a spin 1/2 in the Jones
vector representation27

cos
θ

2
eiφ/2n+ + sin

θ

2
e−iφ/2n− ∼ |θ,φ〉 , (1)

where the right/left circular polarization n+/− corresponds
to the spin up/down state |↑ / ↓〉 quantized along the light
propagation direction. The effective interaction between a
pure spin current and a polarized light causes a phase delay
that depends on the light polarization and wave vector. The
observable result is a circular birefringence effect that is similar
to the Faraday rotation but involves no net magnetization nor
time-reversal symmetry breaking. Since Faraday’s discovery
in 1845,28 the circular birefringence effect of spin currents
is the first example of Faraday rotation without time-reversal
symmetry breaking. We dub this effect as spin current Faraday
effect.

At this point, we should mention a recent remarkable
experiment realizing the direct in-situ detection of a spin
current through the Doppler effect of a spin wave.29 In
fact, the observed Doppler effect and our predicted optical
birefringence effect are fundamentally related to each other.
The former is the frequency shift of the spin wave, while the
latter is the phase shift of the light accumulated by a frequency
shift over a coupling time. The frequency shift is measured in
the near field as in the experiment, while the phase shift should
be measured in the far field by light polarization detection.
Fundamentally, both are due to the effective coupling between
a pure spin current and another “probe spin current,” either a
spin wave or a polarized light, mediated by virtual excitations
in the systems.

The effective light-spin current interaction is induced in
a semiconductor by virtual excitations of electron-hole pairs.
The specific form of the phenomenological coupling depends
on the microscopic mechanisms.22 Since the light polarization
essentially couples only to the orbital motion of electrons,
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the spin-orbit interaction is needed to establish the effective
coupling. As there is inherent spin-orbit coupling in the valence
bands due to the relativity effect, the Rashba or Dresselhaus
effect due to the spatial inversion asymmetries30–32 is not a
necessity, thus the system can bear the inversion symmetry.

The optical birefringence effect of spin currents22 is usually
very weak, because a tiny light wave vector q is involved in the
coupling to the velocity v of the pure spin currents. However,
if the velocity of spin currents couples to another optical field,

q · v ⇒ F2 · v,

the coupling will be much enhanced. This means we can
use the second optical field to drive the spins, which may
result in the nonlinear optics of the pure spin current. In fact,
such an analogy stimulated the prediction of the second-order
nonlinear optical effects of pure spin currents,23 which was
soon verified by experiments.33

In Refs. 22 and 23, we have sketched the main ideas based
on symmetry arguments and given the key expressions in
a special model neglecting the energy band anisotropy. In
this paper, we will investigate in a more comprehensive way
the linear and second-order nonlinear optical effects of pure
spin currents, including a systematic symmetry analysis of
all relevant physical quantities, and a detailed derivation for
the effective Hamiltonian as well as the second-order nonlinear
optical susceptibility. The microscopic derivation confirms the
qualitative results obtained by the symmetry analysis. In par-
ticular, both the symmetry analysis and the microscopic calcu-
lation lead to the conclusion that the linear birefringence effect
(similar to the Voigt effect in magneto-optics) always vanishes
and only the circular birefringence effect exists, and the energy
band anisotropy induces only a relatively small quantitative
modification of the results. The absence of the Voigt effect is
fundamentally related to the lack of the |0〉 state in the physical
spin of photons [not the pseudospin in Eq. (1)]. The micro-
scopic mechanism of both linear and second-order nonlinear
effects can be understood in a unified physical picture.

In this paper, we assume that the host semiconductor system
has the inversion symmetry. We note that in compound semi-
conductors such as GaAs the inversion symmetry is broken,
which, though a small effect, is critical to some schemes of spin
current generation.34,35 In our present scheme, however, the
small inversion asymmetry in compound semiconductors is not
important. For conditions used in our microscopic calculation,
the spin splitting resulting from the Dresselhaus effect due
to the bulk inversion asymmetry (∼0.01 meV in GaAs with
doping density ∼1016 cm−3) is much less than the detuning
of the light from the interband transitions36 that mediate the
effective interaction, so it would only slightly modify the
coupling coefficients between spin currents and light. Also,
in this paper, we consider only bulk materials, so the structure
inversion asymmetry plays no role, though it is the basis of
the Rashba effect. Therefore in this paper, we can neglect the
inversion asymmetry in the measurement process even though
it could be of vital importance in generating the spin current.
Without considering the Dresselhaus and Rashba effects due to
inversion asymmetries, we avoid the subtlety in the definition
of a spin current.37,38 It should point out that the Dreasselhaus
effect under high energy (well above the gap) excitation and
the Rashba effect in low-dimensional structures could induce

important effects in the coupling between the light and the spin
current. Such effects need further investigation.

The paper is organized as follows. Section II presents
a systematic symmetry analysis for the coupling system to
give a qualitative understanding of the linear and circular
birefringence effects and the second-order nonlinear optical
effect of pure spin currents. Section III gives the theoretical
model and microscopic derivations for both the linear and the
second-order nonlinear optical effects, and also explains the
physical pictures for the microscopic mechanism of optical
effects of spin currents. Section IV presents the numerical
results and discussions of the experiment scheme. Section V
concludes this paper.

II. SYMMETRY ANALYSIS

We will particularly consider the time-reversal (T ) and the
space-inversion (P) symmetries of all the relevant physical
quantities, and the geometry symmetry for a specific form of
spin currents. According to the symmetry analysis, a pure spin
current may result in a circular birefringence effect but not
a linear birefringence effect, and as it breaks P symmetry,
a spin current can induce the second-order nonlinear optical
processes.

A. Linear optical effects

We assume the whole system has the T and P symmetries
at equilibrium. Namely, the effective coupling between a spin
polarization or a spin current in the semiconductor system and
a probe should have both symmetries, i.e., the transformation
properties of the effective Hamiltonian Heff are

T P
,

Heff + + (2)

where +/− refers to even/odd under the corresponding
symmetry transformations.

In our study, a pure spin current is made of a nonequilibrium
distribution of spin polarization in the momentum space. In
general, it can be quantified by a rank-2 pseudotensor defined
by (with volume of the material taken as unity)

J =
∑

p

Jp = e
∑

p

spvp, (3)

where sp is the spin polarization and vp is the velocity of
a particle with wave vector p, and e is the electron charge.
The “photon spin current” tensor for a polarized light beam
with electric field F(r,t) = (F+n+ + F−n−) eiq·r−iωq t + c.c. is
formulated as

I ≡ Iq ≡ q(Ixxz + Iyyz + Izzz), (4a)

Ij = 1

2

∑
μ,ν=±

σ j
μνF

∗
μFν, (4b)

where q is the wave vector of the light beam, the unit vector
z is chosen along the direction of q so that q = qz, the unit

045215-2



OPTICAL EFFECTS OF SPIN CURRENTS IN . . . PHYSICAL REVIEW B 86, 045215 (2012)

vectors x and y are related to the light polarization through
n± ≡ (∓x − iy) /

√
2, and σ j (j = x,y,z) is the Pauli matrix.

For completeness, we also consider the spin polarization of
the system

S =
∑

p

sp. (5)

The transformation properties under the T and P of the
relevant physical quantities are

S q J Ix,Iy Iz ,

T − − + + −
P + − − + +

(6)

It is worth mentioning here there is no |0〉 state in the physical
spin of photons, and the photon pseudospin Ix and Iy do not
break the T symmetry, for it involves the second-order spin-
flip processes such as |+1〉 → |0〉 → |−1〉. In the following,
we will use these quantities to form an effective Hamiltonian
(undetermined up to a few coupling constants) satisfying the
T and P symmetries. Since the interaction of the light with a
spin is usually weak, we only consider the effect in the leading
order, which is bilinear in the spin and light quantities.

Net spin polarization. The only optical quantity of the same
symmetry-breaking type as the spin polarization is Izz. Thus
the effective interaction between a spin polarization and a light
beam has the form

H(0)
eff = ζ0IzS · z, (7)

with a coupling constant ζ0 to be determined by the specific
microscopic mechanism. Such a coupling corresponds to the
conventional Faraday effect in magneto-optics.39 We would
like to point out here that a spin polarization could induce
the Voigt effect. In order to have the same symmetry-breaking
type for Ix and Iy , the spin polarization should be of an even
power. Thus to the leading order, the effective interaction has
the form

HVoigt
eff = ζ

Voigt
0 Ix (S · x)2 . (8)

This explains that the Voigt effect is quadratic in the spin
polarization or the applied external magnetic field.

Pure spin current. There is no term in the light polarization
Ij (j = x,y,z) that has the same symmetry-breaking type as
the spin current, so it is not possible to have linear (nonlinear
optics is of course possible) interaction between the spin
current and the light without involving the wave vector.
Considering the wave vector of the light, coupling between
the spin current and the photon current qIzzz is possible.
The linear birefringence effect (similar to the Voigt effect
in magneto-optics) is absent. Due to the lack of |0〉 state in
the physical spin of photons, Ix and Iy preserve T symmetry.
Therefore there is no linear coupling of J to qIxxx and qIyyy.

Furthermore, if the system has spherical symmetry, the
effective Hamiltonian would have a simple tensor contraction
form as

H(1)
eff = ζ1qIzTr (J ) + ζ2qIzz · J · z, (9)

with only two coupling constants ζ1 and ζ2 to be determined
by the microscopic mechanisms. A possible spherically sym-

metric system is the vacuum, but, in general, a semiconductor
as a crystal does not have this symmetry. The general effective
interaction in a semiconductor should have the form

H(1)
eff = qIzzz : A : J , (10)

where A is a parameter tensor determined by the microscopic
structure of the material. Since only the light polarization term
Iz appears in the interaction, the optical birefringence effect is
circular, similar to the Faraday rotation.

In realistic case, the spin current often has some special
form. As a general case, a spin current tensor can have the
form

J = JXXZ + JY YZ + JZZZ = JZ, (11)

where Z is the unit vector along the direction of spin current,
the unit vectors X and Y are perpendicular to Z, and J denotes
the spin current amplitude vector, which is an axial vector
parallel to the spin polarization direction. Now, the z and Z axes
form a special plane. If the system has reflection symmetry
with respect to this plane (e.g., the system is spherically
symmetric or the plane is along a special crystal direction
of the semiconductor), the symmetry properties of the relevant
quantities under reflection with respect to the z-Z plane will
impose further constraint on the interaction and significantly
simplify the Hamiltonian. Under the reflection, the relevant
quantities transform as

q Iz J‖ J⊥
,

Reflection with z-Z plane + − − + (12)

where J‖ is the component of J in the plane and J⊥ is the
perpendicular component. By the table above, it is evident that
to keep the effective Hamiltonian invariant, only the in-plane
component of J‖ would couple with the qIz. Without loss of
generality, let Y be perpendicular to the z-Z plane, the effective
Hamiltonian reads

H(1)
eff = A1qIzJZ + A2qIzJX, (13)

in which two coupling constants A1 and A2 are to be
determined by microscopic calculation. Alternatively, the
Hamiltonian can be expressed in a form independent of the
choice of the X and Y axes as

H(1)
eff = ζ1qIzJZ + ζ2qIzz · J · z, (14)

which is the same as Eq. (9), but does not require the spherical
symmetry of materials.

The physical effect of the effective coupling can be
extracted from the linear optical susceptibility,

χμ,ν + χ∗
ν,μ = (1/ε0)∂2Heff/(∂F ∗

μ∂Fν), (15)

where ε0 is the vacuum permittivity. Thus we get an opposite
susceptibility for opposite circular polarization in presence of
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a spin polarization or a pure spin current:

χ
(0)
++ = −χ

(0)
−− = (1/4ε0)ζ0z · S, (16a)

χ
(1)
++ = −χ

(1)
−− = (q/4ε0) (ζ1JZ + ζ2z · J · z) . (16b)

The effective energy shift resulting from the light-spin or
light-spin current interaction means a phase shift in the
light observed in the far field. Equation (16a) is nothing
but the conventional Faraday rotation in magnetooptics.39

Equation (16b) indicates that a pure spin current would
produce a circular birefringence effect. This new effect of
a pure spin current may be dubbed “spin current Faraday
effect”22 because of its similarity to the conventional Faraday
rotation due to magnetization, with awareness that a pure spin
current, however, bears no net magnetization.

B. Second-order nonlinear optical effects

The second-order nonlinear optical effect such as sum-
frequency process is characterized by a second-order nonlinear
susceptibility χ (2) via

P(2)(ω1 + ω2) = χ (2) : F1(ω1)F2(ω2), (17)

where F1 and F2 are the two optical fields, P is the induced
polarization, and χ (2) is a rank-3 tensor. UnderP operation, F1,
F2 and P reverse the sign, which means χ (2) is zero if the system
has P-symmetry. A pure spin current breaks the P symmetry,
results in a nonzero χ (2), and makes the second-order nonlinear
optical process possible.

In general, as a rank-3 tensor χ (2) has 27 independent
components:

χ (2) = χXXXXXX + χXXY XXY + · · · + χZZZZZZ. (18)

But the symmetry properties of the spin current and the
system will impose constraints on χ (2), reducing the number
of independent parameters.40 For a longitudinal spin current
JZZZ in which the spin polarization is parallel or antipar-
allel to the current direction the spin current is reversed
under the reflection with respect to the X-Z plane, so that
χXXXXXX + χXXY XX(−Y) + · · · + χZZZZZZ = −χ (2) and
the terms with direction Y appeared even times (twice or zero
times) must vanish. Similarly, the longitudinal spin current is
reversed under the reflection with respect to the Y -Z and X-Y
planes, so the terms with direction X or Z that appear even
times must be zero. Moreover, the longitudinal spin current
should be invariant under the π/2 rotation with respect to its
current direction, therefore χXYZ = −χYXZ , χYZX = −χXZY ,
χZXY = −χZYX. With all these constraints, the sum-frequency
susceptibility induced by a longitudinal spin current JZZZ can
be expressed as

χ
(2)
JZ

= JZ [α1(XYZ − YXZ) + α2(YZX − XZY)

+α3(ZXY − ZYX)] , (19)

where there are only three independent parameters αi

(i = 1,2,3). For a transverse spin current JXXZ, in which
the spin polarization is perpendicular to the current direction,
the current is reversed under reflection with respect to the X-Z
plane, but invariant under refection with respect to X-Y or
Y -Z plane. Then the terms that contain even times of Y or odd

times of Z or X must be zero, so

χ
(2)
JX

= JX (x1XXY + x2XYX + x3YXX + z1ZZY

+ z2ZYZ + z3YZZ + yYYY) , (20)

with seven independent parameters to be determined. Similar
symmetry analysis can be applied to JY YZ. Such unique
polarization dependence of the second-order optical sus-
ceptibility can be used to distinguish the longitudinal and
transverse components of a spin current, and also to single
out the spin-current signature from the effects of the material
background or a charge current.41,42

III. MICROSCOPIC CALCULATION

To quantitatively determine the linear and the second-order
nonlinear optical effects of a spin current, we will perform the
microscopic calculation for a pure spin current in a bulk direct-
gap semiconductor using the standard perturbation theory.40,43

We employ the eight-band model.44 We assume that the
pure spin current result from a nonequilibrium distribution
of electrons in the conduction band. Namely, as shown in
Fig. 1(a), a small portion of nonequilibrium electrons with
opposite velocities near the Fermi surface have opposite spin
polarizations, which is similar to the situation in Ref. 8. The
optical interaction includes the interband transitions and the
intraband acceleration of electrons and holes. To avoid real
absorption of light, the light frequencies are chosen to be
below the absorption edge in linear optical effect, and the
sum frequency is below the two-photon absorption edge in the
second-order nonlinear optical effect.

A. Model

We consider an n-doped direct-gap semiconductor of GaAs
as a model material. Since other bands are separated far away
in energy, we assume the near-gap optical interactions in GaAs
involve mostly the eight bands around the fundamental gap,
including the conduction band (CB), the heavy-hole (HH)

( ) ( )

Fk

(a) (b)

+ip px y +ip px y

CB 1/ 2
CB -1/2 CB +1/ 2

FE
2

p p

6
p py

6
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2
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h

q

6 2
2

3
pz

HH 3/ 2

2

3
pz

HH +3/2

h HH 3/ 2

(c)t

l
HH -3/2 LH -1/2 LH +1/2

CB -1/2 CB +1/ 2

LH 1/ 2
2( + )

3

ie e2( )

3

ie e
3e3e

(c)t CB 1/2 CB +1/ 2

SO 1/ 2
33

SO -1/2 SO +1/2

FIG. 1. (Color online) (a) Schematic band structure of the eight-
band model near the 
 point of an n-doped III-V compound semi-
conductor, and illustration of the spin nonequilibrium distribution
of electrons for a pure spin current. (b) and (c) Selection rules and
relative dipole moments from the HH and LH, SO bands to the CB.
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band, the light-hole (LH) band, and the spin-orbit split-off
(SO) band, each of two-fold degeneracy [see Fig. 1(a)].

Near the 
 point of the Brillouin zone, the energy dispersion
of the CB and the SO electron is almost parabolic and isotropic,
which can be respectively written as Eep = p2/(2me) + Eg

and Etp = p2/(2mt ) + ESO, where me/t is the effective mass
of the CB/SO band, Eg is the fundamental band gap with the
energy zero at the top of the valence band, and ESO is
the split-off energy due to the spin-orbit coupling. Hereafter the
Planck constant h̄ is taken as unity. For the HH and LH bands,
since the energy band anisotropy will not affect the symmetry
analysis as shown in Sec. II (the fourfold rotation symmetry
will be retained even considering the anisotropic dispersion),
we will neglect the anisotropy effect in this section, and take
it into account separately in Sec. IV B. Thus we express the
isotropic Luttinger-Kohn Hamiltonian HI

LK for the HH and LH
bands near the band edge as45

HI
LK = 1

2m0

[(
γ1 + 5

2
γ2

)
∇2 − 2γ2 (∇ · K)2

]
, (21)

where K is a spin 3/2 for the total angular momentum of an
electron in the HH and LH bands, γ1 and γ2 are the Luttinger
parameters, and m0 is the free electron mass. The isotropic
Luttinger-Kohn Hamiltonian can be diagonalized with the
spin 3/2 quantized along the direction of the momentum p.
The HH band with magnetic quantum numbers ±3/2 has
the energy dispersion Ehp = (γ1 − 2γ2)p2/2m0 ≡ p2/2mh;
and the LH band has magnetic quantum numbers ±1/2 with
the dispersion relation as Elp = (γ1 + 2γ2)p2/2m0 ≡ p2/2ml ,
where mh/l is the effective mass of the HH/LH band. If
the HH-LH splitting is neglected further, the HH and LH
bands become a fourfold degenerate spin-3/2 band and the
spin quantization direction can be chosen independent of the
momentum. The effective mass model for the conduction
bands and the Luttinger model for the valence bands do not
take into account the Bloch wave function mixing between
the conduction and the valence bands, which is justified in this
study since only the near band edge excitations are considered.
For higher energy excitation, an 8 × 8 k·p Kane model would
be needed to take into both the mass and wave-function
renormalization.

The Bloch state of a CB electron with momentum p
is |ψc

±(p)〉 ≡ ê
†
±,p|0〉 = eip·r|±〉p, where |0〉 represents the

vacuum state and ê
†
±,p denotes an creation operator that

produces an electron in CB with spin ±1/2 and momentum
p. The Bloch state of an electron in the valence band with
momentum p is |ψα

m(p)〉 ≡ V̂
†
j,m;p|0〉 = eip·r|j,m〉p, in which

j = 3/2 and m = ±3/2 stands for the HH band (α = h),
j = 3/2 and m = ±1/2 for the LH band (α = l), j = 1/2
and m = ±1/2 for the SO band (α = t), and V̂j,m;p denotes
the annihilation operator for an electron in the corresponding
valence band. Then the noninteracting Hamiltonian is

Ĥ0 =
∑

μ=±,p

(
Eepê

†
μ,pêμ,p + Ehpĥ

†
μ,pĥμ,p + Elp l̂

†
μ,p l̂μ,p

+Etp t̂
†
μ,p t̂μ,p

)
, (22)

where the hole operators are defined as ĥ∓,−p ≡ V̂
†

3/2,±3/2;p,

l̂∓,−p ≡ V̂
†

3/2,±1/2;p, and t̂∓,−p ≡ V̂
†

1/2,±1/2;p. It should be

pointed out that here the angular momentum K is quantized
along p so that the spin-orbit coupling in the valence bands
has already been included.

The initial state of the system (before optical excitation)
is characterized by a density matrix ρ̂0. We assume that the
system has translation symmetry and initially there is no hole
in the system, so we have

Tr[ρ̂0ĥ
†
μkĥνk′] = Tr[ρ̂0 l̂

†
μk l̂νk′] = Tr[ρ̂0 t̂

†
μk t̂νk′] = 0, (23a)

Tr[ρ̂0ê
†
μkêνk′ ] = δk,k′fμν,k. (23b)

The spin current, which results from the nonequilibrium
distribution of CB electrons, is expressed by Eq. (3), where
the velocity and the spin polarization of an electron with
momentum p is respectively given by vp = ∇pEep and sp =
(1/2)

∑
μν σμνfμν,p with σ denoting the Pauli matrices.

B. Linear optical effects

The direct interaction between a light beam and a semicon-
ductor is the dipole interband optical transitions. Only through
the spin-orbit coupling in valence bands, may the light beam
interact with the spin of electrons.

For the dipole interband transition [see Figs. 1(b) and 1(c)],
the polarization density operator reads43

P̂inter(r) = −d∗
cv

∑
k,p;μ=±

(
nμ̄,pĥμ̄,−pêμ,k + 1√

3
nμ,p l̂μ,−pêμ,k

−
√

2

3
zp l̂μ̄,−pêμ,k − μ

√
2

3
nμ,p t̂μ,−pêμ,k

+ μ√
3

zp t̂μ̄,−pêμ,k

)
eip·r−ik·r + H.c., (24)

where n±,p ≡ ∓(xp ± iyp)/
√

2 denotes the right/left circular
polarization about the momentum direction p, zp ≡ p/p, and
μ̄ ≡ −μ. As will be discussed in Sec. IV B, the momentum
dependence of the dipole moment has no significant effect, so
here we assume the interband dipole moment dcv independent
of the momentum. With the dipole interaction with a light
Ĥ1(t) = − ∫

P̂inter(r) · F(r,t)dr, the light-matter interaction
Hamiltonian in the rotating wave approximation can be
explicitly expressed as

Ĥ1 ≡ exp

⎛
⎝∑

μ,k

iωqt ê
†
μ,kêμ,k

⎞
⎠Ĥ1(t) exp

⎛
⎝∑

μ,k

−iωqt ê
†
μ,kêμ,k

⎞
⎠

= d∗
cv

∑
μ,ν,p

F ∗
ν n∗

ν ·
(

nμ̄,pĥμ̄,−pêμ,q+p + 1√
3

nμ,p l̂μ,−pêμ,q+p

−
√

2

3
zp l̂μ̄,−pêμ,q+p − μ

√
2

3
nμ,p t̂μ,−pêμ,q+p

+ μ√
3

zp t̂μ̄,−pêμ,q+p

)
+ H.c. (25)

Under the condition that the optical interaction strength is
much smaller than the detuning of the light from the valence
band to the Fermi level (the perturbation regime), the effective
energy due to the dipole interaction can be derived by the
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second-order perturbation as

Heff = Tr[ρ̂0Ĥ1(Ĥ0 − ωq)−1Ĥ1]. (26)

Such effective coupling between a spin current and a polarized
light beam on the one hand can be regarded as the frequency
shift of the light in the presence of the spin current, and on
the other hand can be considered as the energy change of the
semiconductor system under the driving of light beam. The
second-order perturbation means that there are two virtual
optical transitions induced by the electric field of the light:
one creating an electron-hole pair and one annihilating the
electron-hole pair. The virtual excitations cause no real optical
absorption but a phase shift, indicating that the effective
coupling is real. The optical effect of the spin-current can
be understood as the Pauli blocking in the transition involving
different spin states. With this picture in mind, the following
microscopic calculation, though lengthy, is quite transparent.

1. Physical picture

The physical picture for the microscopic mechanism of the
spin current Faraday effect is rooted in the fact that a spin will
induce a Faraday rotation like a magnet. In Faraday rotation,
a linearly polarized optical field F induces a polarization as a
rotation about the spin,

P(1) ∝ F × sk

ω − Ek
, (27)

where sk is the spin polarization associated with the state of k,
Ek is the resonant optical transition energy. This naturally
explains Faraday rotation due to spin polarization as in
Eq. (36a).

For a pure spin current, we first consider only a pair of
spins, sk at momentum k, and −sk at momentum −k in the
CB [see Fig. 2]. This pair can be viewed as a generator of
pure spin current. sk gives rise to a Faraday rotation of P(1)

k ∝
F × sk/(ω − E+k); while −sk leads to a Faraday rotation
of P(1)

−k ∝ F × sk/(ω − E−k). Therefore the Faraday rotations
caused by the pair of spins cancel each other in the vertical
optical transition. However, when the effect of the small light-
momentum is taken into consideration, the excitation energy
at ±k will shift respectively to E±k → Eq±k ≈ E±k ± q · vk

FIG. 2. (Color online) Physical picture for the microscopic
mechanism of the spin current Faraday effect. The virtual transition
energy is the same for ±sk when neglecting light momentum q.

[see Fig. 2], and ±sk will induce different Faraday rotations
due to opposite energy variation. Up to the first order of
q, the polarization is P(1) ∝ F × skvk · q/(ω − Ek)2, where
eskvk is just the spin current tensor contributed by the pair of
electrons. This explains the q-dependence of the spin current
Faraday effect. More generally, the hole state wave function
is also changed when considering the light momentum, which
causes extra Berry phase effects [terms proportional to 1/EF

in Eq. (37)].

2. Effective Hamiltonian by SO-CB transitions

To better understand the microscopic mechanism of the
light-spin current coupling, let us first derive the effective
Hamiltonian contributed solely by the transitions between
the CB and SO bands. The SO band electrons has twofold
degeneracy, and the spin states as well as the selection
rules for the interband transitions, like the CB electrons, are
independent of the momentum [see Fig. 1(c)].

We first consider a single electron with momentum k
and spin polarization sk. The spin current contributed by
this electron is Jk = eskvk with the velocity vk = k/me. It
is convenient to define the spin basis states along the spin
polarization direction. In such chosen basis, the spin density
matrix of the electron is diagonal. With the population in
the spin-up and spin-down states denoted as f+ and f−,
respectively, the spin polarization is sk = (f+ − f−)/2. The
interband transitions |1/2,±1/2〉k ↔ |∓〉k couple to a field
with circular polarization ∓(e1 ± ie2)/

√
3, and the vertical

interband transitions |1/2,±1/2〉k ↔ |±〉k couple to a field
of linear polarization e3/

√
3, where the coordinate system is

so defined that e3 is along the spin polarization direction of
the electron considered. Summing up all possible interband
transitions, the energy shift of this electron due to coupling to
an optical field F is

HSO
eff,k = −1

3
|dcv|2

∑
±

(1−f±) F∗ · (e1 ∓ ie2) (e1 ∓ ie2)∗ · F
ωq − Et,−k+q − Eek

−1

3
|dcv|2

∑
±

(1 − f±) F∗ · e3e∗
3 · F

ωq − Et,−k+q − Eek
, (28)

where the factor (1 − f±) accounts for the Pauli blocking of
the interband transitions. The second term, which is related to
vertical transitions caused by a linearly polarized field, does
not depend on the spin polarization, so it can be dropped as
the background. With expansion to the first order of q and
omission of the background terms, the energy shift becomes

HSO
eff,k = +2

3
i |dcv|2 skF∗ · (e1e2 − e2e1) · F

ωq − Et,−k − Eek

+ 2

3
i |dcv|2 skF∗ · (e1e2 − e2e1) · Fq · k

mt (ωq − Et,−k − Eek)2
. (29)

Since (e1e2 − e2e1) · F = F × (e1 × e2) = F × e3, the physi-
cal meaning of this coupling is transparent: the linear-polarized
optical field will tilt about the spin, which is essentially the
Faraday rotation with spin playing the role of a magnet. The
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summation over the momentum space gives

HSO
eff = −4

3
|dcv|2 1

�t

Izz · S − 4

3
|dcv|2 me

emt�
2
t

qIzz · J · z,

(30)

where �t is the light detuning from SO band to the Fermi
surface.

3. Effective coupling by transitions between HH/LH and CB

If the HH bands and LH bands are assumed degenerate,
the quantization direction of the 3/2 spin of the HH and LH
can be chosen arbitrarily and the effective Hamiltonian are
obtained in a similar way to that contributed by the SO-CB
transition. However, with the HH-LH splitting considered,
the quantization direction of the hole states depends on its
momentum, thus, with the trivial background omitted, the
effective Hamiltonian can be derived explicitly as

HHL
eff = |dcv|2[Ix (xx − yy) + Iy (xy + yx) + Iz (ixy − iyx)] :

∑
μ=±,p

[
fμ̄pμ̄p,q+p

nμ,pn∗
μ,p

Eeq+p + Eh−p − ωq

(31a)

+1

3
fμ̄pμ̄p,q+p

nμ̄,pn∗
μ̄,p + 2zpz∗

p

Eeq+p + El−p − ωq

(31b)

−
√

2

3
fμpμ̄p,q+p

nμ̄,pz∗
p + zpn∗

μ,p

Eeq+p + El−p − ωq

]
, (31c)

where μp indicates the spin moment quantized along p.
The terms in the equation above stand for different physical
processes as follow. Term (31a) accounts for the HH-CB
transitions where an (virtually) absorbed photon will be

emitted with the same circular polarization conserving the
electron spin. The LH-CB optical transition can be either
circularly polarized or linearly polarized. In Eq. (31b), the
absorbed and emitted photons in the virtual LH-CB transitions
have the same polarization with the electron spin conserved.
In Eq. (31c), the optical polarizations involved in the LH-CB
absorption and emission are changed, leading to an angular
momentum transfer between the light and the electron, while
the total angular momentum is still conserved.

The spin-independent population terms such as f++,p +
f−−,p are related to a change in the background refraction
index, but not to the spin polarization and spin current, we will
drop the spin-independent population terms and keep the spin
polarization terms sp only in the effective coupling as

HHL
eff = |dcv|2 [Ix (xx − yy) + Iy (xy + yx) + iIz (xy − yx)] :

i
∑

p

[(
fzp,p+q(xpyp − ypxp)

Ee,q+p + Eh,p − h̄ωq

− 1

3
(Eh → El)

)

+2

3

fxp,p+q(ypzp − zpyp) + fyp,p+q(zpxp − xpzp)

Ee,p+q + El,p − h̄ωq

]
,

(32)

where fei ,p ≡ sp · ei . Using the antisymmetric tensor E ≡
εijkeiej ek , which is invariant under orthogonal coordi-
nate transformation, we can express xpyp − ypxp = zp · E ,
ypzp − zpyp = xp · E and zpxp − xpzp = yp · E , whereby the
terms associated with the electron spin polarization form an
antisymmetric tensors. Noticing that the contraction between
the antisymmetric and the symmetric tensors associated with
Ix and Iy must vanish, and also that the effective Hamiltonian
must be real, we have

HHL
eff = − |dcv|2 Iz (xy − yx) :

∑
p

[
sp+q · zpzp · E

Eeq+p + Ehp − h̄ωq

− sp+q · zpzp · E

Eeq+p + Elp − h̄ωq

+ 2

3

E

Eeq+p + Elp − h̄ωq

]
(33a)

= 2 |dcv|2 Iz

∑
p

[(
sp+q · zpzp · z

Eeq+p + Ehp − h̄ωq

− (Eh → El)

)
+ 2

3

sp+q · z
Eeq+p + Elp − h̄ωq

]
. (33b)

By expanding to the first order of q, we have Eeq+p ≈ Eep + q · ∇pEep, and sp+q ≈ sp + q · ∇psp. By using ∇pzp = ∇p(p/p) =
I (2)/p − pp/p3 = (xpxp + ypyp)/p, and ∇p(zpzp) = (xpzpxp + ypzpyp + xpxpzp + ypypzp)/p, we obtain the effective Hamil-
tonian as

HHL
eff = 2 |dcv|2 Iz

∑
p

[
(sp · zpzp · z)

(
1

�h

− 1

�l

)
+ 2

3
sp · z

1

�l

]
− 2

e
|dcv|2 qIz

∑
p

Tr[Jp]

(
1

2�hEF

− 1

2�lEF

)

+ 2

e
|dcv|2 qIzzz :

∑
p

[
zpzp · Jp

(
me

mh�
2
h

− me

ml�
2
l

+ 1

�hEF

− 1

�lEF

)
+ Jp

(
2

3

me

ml�
2
l

+ 1

2�lEF

− 1

2�hEF

)]
, (34)

where EF is the Fermi energy, �h/l is the light detuning from the HH/LH band to the Fermi level, respectively [see Fig. 1(a)].
The first term in Eq. (34) results from the spin polarization, while the other terms result from a spin current. When neglecting
the HH-LH splitting by letting �h = �l and mh = ml , Eq. (34) is reduced to a expression similar to Eq. (30) but with a minus
sign(mt → mh, �t → �h). This reduction confirms that the effective Hamiltonian from the HH/LH-CB transitions can be derived
as easy as that from the SO-CB transitions if the spin quantization direction in HH/LH band can be chosen arbitrarily. Moreover,
if there were no spin-orbit coupling in the valence bands, i.e., the HH, LH, and SO bands had the same effective mass and the
same band-edge energy, the coupling between a spin current and a light would vanish.
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Finally, once the spin distribution is specifically given, the
total effective Hamiltonian will be determined. We assume that
the electron spin distribution around Fermi wave vector kF

deviate only slightly from the equilibrium distribution. More
specifically, we suppose the spin distribution has the form

sp = N0 + N1f (p) cos θp, (35)

where θp is the angle between the momentum p and the current
direction Z. Such a distribution is the usual case for weak
currents. A straightforward integration over the momentum
space gives [see Appendix A]

H(0)
eff = ζ0Izz · S, (36a)

H(1)
eff = ζ1qIzJZ + ζ2qIzz · J · z, (36b)

with the coupling constants

ζ0 ≡ 2

3
|dcv|2

(
1

�h

+ 1

�l

− 2

�t

)
, (37a)

ζ1 ≡ |dcv|2
e

(
2me

5mh�
2
h

− 2me

5ml�
2
l

− 3

5�hEF

+ 3

5�lEF

)
,

(37b)

ζ2 ≡ |dcv|2
e

(
4me

5mh�
2
h

+ 8me

15ml�
2
l

− 4me

3mt�
2
t

− 1

5�hEF

+ 1

5�lEF

)
. (37c)

For a spin distribution different from Eq. (35), as can be seen
in Sec. IV D, the coupling constants shown above will only be
changed quantitatively, which further confirms the symmetry
analysis in Sec. II [see Eq. (9)].

C. Second-order nonlinear optical effects

The linear optical effect of spin currents is weak since
the photon current involves the small light momentum. If
we replace the light momentum by another optical field, the
coupling can be greatly enhanced by a factor of F2 · v/q · v. As
shown in Sec. II B, the second-order nonlinear optical effects
of spin currents is rooted in their unique physical nature and
spatial inversion-symmetry breaking. Specially, noticing that
a longitudinal spin current, is a chiral quantity, we envisaged
that it could be probed by the chiral sum-frequency optical
(SFG) spectroscopy which was recently developed to detect
molecular chirality.46–48 If otherwise measured in linear optics,
the effect of the chirality relies on the small magnetic moment
of the molecules, and in turn on the small wave vector of the
probe light, similar to the case of linear optical effects of spin
currents.22

1. Physical picture

The nonlinear coupling between a spin current and light
contains three processes: one virtual interband transition creat-
ing an electron-hole pair, one intraband transition accelerating
the electron or the hole, and one virtual transition inducing
the combination. The physical picture for the microscopic
mechanism of the second-order nonlinear optical effects of
spin currents is similar to the linear optical effect. A spin

F2

F1

F2

F1

@ks k

@ks k

FIG. 3. (Color online) Physical picture for the microscopic
mechanism of the second-order nonlinear optical effects of a pure
spin current. The second light F2 will accelerate the electrons
(or holes).

will induce a Faraday rotation P(1) ∝ F × sk/(ω − Ek). The
Faraday rotations due to the pair of spins of sk (at momentum
k) and −sk (at momentum −k) cancel each other in the vertical
optical transition. Instead of considering the small light-
momentum in the linear optical effect, we add another optical
field F2. The spin will experience an intraband acceleration
by this optical field and the transition energy will be changed
to E±k → E±k ± ∫

evk · F2e
−iω2t dt [see Fig. 3]. The physical

meaning of evk · F2 is clear that is the power done by the field
to the electron. Therefore ±sk will induce different Faraday
rotation due to opposite energy modification

P(2) ∝ F1 × skevk · F2/[(ω1 + ω2 − Ek)(ω1 − Ek)ω2]. (38)

This gives the second-order nonlinear optical effects of spin
currents.

2. Microscopic calculation

The second-order nonlinear susceptibility can be obtained
straightforwardly through the standard perturbation method as
shown below. Here, we take the SFG as an example of the
second-order nonlinear optical effects of spin currents.

The dipole density operator for the intraband transition
reads43

P̂intra(r) = ie
∑
k,p

[ ∑
μ,μ′=±

ê
†
μ′,pêμ,k〈μ′|pμ〉k

+
∑

j ′,m′;j,m

V̂
†
j ′,m′;pV̂j,m;k〈j ′,m′|pj,m〉k

]
∇ke

ip·r−ik·r.

(39)

With the input optical field consisting of several frequency
components F(r,t) = ∑

j=1,2 Fj e
−iωj t + c.c., the light-matter

interaction Hamiltonian is Ĥ1(t) = − ∫
P̂(r) · F(r,t)dr, where

P̂(r) = P̂(r)inter + P̂(r)intra. Explicitly, we can write

Ĥ1(t) = −(D̂ + D̂† + d̂) ·
( ∑

j=1,2

Fj e
−iωj t + c.c.

)
, (40)
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with

D̂ ≡ −d∗
cv

∑
μ,k

(nμ̄,kĥμ̄,−kêμ,k + (1/
√

3)nμ,k l̂μ,−kêμ,k

−
√

2/3zk l̂μ̄,−kêμ,k − μ
√

2/3nμ,k t̂μ,−kêμ,k

+ (μ/
√

3)zk t̂μ̄,−kêμ,k), (41a)

d̂ ≡ ie
∑
k,p

( ∑
μ=±

ê†μ,pêμ,k +
∑
j,m

V̂
†
j,m;pV̂j,m;k

)
∇kδp,k

−ie
∑

k

( ∑
μ,μ′=±

ê
†
μ′,kêμ,k〈μ′|k∇k|μ〉k

+
∑

j,m,m′
V̂

†
j,m′;kV̂j,m;k〈j,m′|k∇k|j,m〉k

)
, (41b)

denoting the inter- and intraband polarization operators,
respectively. D̂ and D̂† are the positive- and negative-
frequency components of the interband polarization operator,
respectively. The first part of the intraband polarization is
the usual acceleration term. The second part, which has the
form of non-Abelian Berry connections (similar to vector

potentials), accounts for the variation of the spin quantization
direction with acceleration of an electron. It is necessary to
include the Berry connection term for the gauge-invariance
of the intraband polarization. The explicit form of the Berry
connection term depends on the choice of the local coordinate
(xp,yp,zp) at momentum p. In Appendix B, we present an
example for the Berry connection in a specific convention.

We adopt the interaction picture for calculating the SFG.
The second-order polarization response obtained by the
standard perturbation theory is

P(2)(t) = −
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′Tr[ ˆ̃D(t)[ ˆ̃H 1(t ′),[ ˆ̃H 1(t ′′),ρ̂0]]],

where ˆ̃D(t), ˆ̃H 1 are operators in the interaction picture. We
consider the case that (1) the sum frequency ω = ω1 + ω2 is
near resonant with the band-edge, so the positive-frequency

component ˆ̃D(t) dominates the optical process; (2) the intra-
band dipole moment must be considered for the contribution
by the spin current; and (3) no holes exist in the initial system,
so the interband excitation has to be involved (caused by
D̂†). With all these considerations taken into account, the
second-order response of interest is

P(2)(t) = −
∫ t

dt ′
∫ t ′

dt ′′e−iω2t
′−iω1t

′′
Tr( ˆ̃D(t)F2 · ˆ̃D

†
(t ′)[F1 · ˆ̃d(t ′′),ρ̂0]) + {F1,ω1 ↔ F2,ω2} (42a)

−
∫ t

dt ′
∫ t ′

dt ′′e−iω2t
′′−iω1t

′
Tr( ˆ̃D(t)[F1 · ˆ̃d(t ′),F2 · ˆ̃D

†
(t ′′)ρ̂0]) + {F1,ω1 ↔ F2,ω2}. (42b)

The physical meaning of Eq. (42) is clear: Eq. (42a) cor-
responds to the driving of the electron population (at t ′′)
followed by interband excitation (at t ′) and emission (at t);
Eq. (42b) corresponds to the process in which an electron-hole
pair (created at t ′′) is driven by an external field (at t ′) till its
emission (at t).

When the HH-LH splitting is neglected, we have a simple
microscopic calculation as discussed in Ref. 23, in which the
spin quantization for valence band states and the selection rule
for interband transitions are independent of its momentum.
Beyond such an approximation, the calculation of P(2) through
Eq. (42) is lengthy, but only quantitatively modifies the results.
So we will only list the result in the Appendix E, and the details
are shown in Supplementary Material.49

IV. DISCUSSIONS AND NUMERICS

A. Faraday rotation of a spin current and spin polarization

The Faraday rotation angle is expressed as

θF = ωql(χ++ − χ−−)/ (4nc) , (43)

where l is the light propagation distance, n is the material
refractive index, and c is the light velocity in vacuum
[see Appendix C].

Pure spin current. For a spin current configuration as shown
in Fig. 4, where a light comes in with a zenith angle β and an

azimuth angle γ , the Faraday rotation angle due to different
components of JZ is

θ
(1)
F (JX) = δ

(1)
F JXζ2 sin β cos γ, (44a)

θ
(1)
F (JY ) = −δ

(1)
F JY ζ2 sin2 β sin γ cos γ (n2 − sin2 β)−1/2,

(44b)

θ
(1)
F (JZ) = δ

(1)
F JZ(ζ1n

2 + ζ2 sin2 β cos2 γ /n)(n2− sin2 β)−1/2,

(44c)

X

Z
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NN

SS
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S NN
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N

S

NN
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S NN
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N

S

NN
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N
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N

S

z(1)
F

FIG. 4. (Color online) The geometry for measuring a spin current
in which the spin current is along Z direction and the red arrow
denotes the propagation direction of the light beam.
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FIG. 5. (a)–(c) The Faraday rotation amplitude of spin current components JZ , JY , and JX as functions of the incident angles of the light
beam. (d) The dependence of δ

(1)
F on the light wavelength λ. Parameters are chosen similar to those in Ref. 8: Eg = 1519 meV, ESO = 341 meV,

the doping concentration is 3 × 1016 cm−3, the effective mass (in units of free electron mass) of the HH, LH, SO, and conduction bands is in
turn 0.45, 0.082, 0.15, and 0.067, the dipole dcv = 6.7 eÅ, n = 3.0, L = 2.0 μm, EF = 5.3 meV, and JX = JY = JZ = 20 nA/μm−2.

where δ
(1)
F = π2l/2nε0λ

2. The dependence of the rotation
angle on the incident angles for JZ , JY and JX components of
a pure spin current are shown in turn in Figs. 5(a)–5(c).

Net spin polarization. The net spin polarization also causes
the Faraday rotation. With the incident light of zenith angle β,
the Faraday rotation angle equals

θ
(0)
F (S) = (2πl/8ε0nλ) (ζ0z · S) . (45)

Spin polarization has both the normal and parallel components
with respect to the sample surface S = S⊥ + S‖. For the normal
component S⊥, the rotation is independent of β,

θ
(0)
F (S⊥) = πζ0S⊥L/4ε0nλ, (46)

while for parallel component S‖,

θ
(0)
F (S‖) = (πζ0S‖L/4ε0λ) sin β cos γ (n2− sin2 β)−1/2. (47)

In general, the angle dependence of Faraday rotation can be
used to distinguish a pure spin current from a spin polarization.
However, in many materials n � 1 � sin β, both θ

(0)
F (S‖) and

θ
(1)
F (JX) have nearly the same angle dependence, which is

proportional to sin β cos γ . As there is inversion symmetry
difference between a pure spin current (P = −, odd) and a
spin polarization (P = +, even), a pure spin current would
have a sign flip at reflection while a spin polarization would
not. Therefore, the Faraday rotation angle of a pure spin current
vanishes through reflection, while the rotation angle of a spin
polarization will be doubled. This difference can be used
to distinguish the effect of a spin current from that of spin
polarization.

For the realistic case in Ref. 8, the vanishing Faraday
signal is reported in the middle region where the spin current
flows without net spin polarization. We explain it with the
fact that in the experiment Z · z = 0 and JZ = 0.22 With the
experimental configuration shown in Fig. 4, the rotation angle
θ

(1)
F (β,γ ) ∝ δ

(1)
F sin β cos γ . The maximum Faraday rotation

angle is reached when β → π/2 and γ → 0. The dependence
of maximum Faraday rotation angle on the light wavelength is
plotted in Fig. 5(d). For the specific example shown in Fig. 5(d)
with light wavelength around 800 nm, the maximum Faraday
rotation angle is 0.38 μrad. Such a Faraday rotation angle,
though still small, is measurable in experiments.
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B. Effects of valence band anisotropy

In the derivation above, we have neglected the anisotropy of
the valence bands. Now we examine the effect of the valence
bands anisotropy. The anisotropic valence band Hamiltonian
takes the form

HA
LK = 1

2m0

[
(γ1 + 5γ2/2) ∇2 − 2γ3 (∇ · K)2

+ 2 (γ3 − γ2)
(∇2

xK2
x + c.p.

)]
, (48)

where the (γ3 − γ2) term describes the anisotropy. The
anisotropy is usually small. The eigenfuctions of HA

LK

are

|ψi〉 =
∑

j=±3/2,±1/2

α
j

i |3/2,j 〉, i = ±3,±1, (49)

where the basis states |3/2,±3/2〉 and |3/2,±1/2〉 are explic-
itly given in Appendix D, and α

j

i are coefficients satisfying
U †α = α∗, with U = −iσx ⊗ σy . The eigenstates |ψ±3〉 and
|ψ±1〉 have eigenvalues Eh and El , respectively. The dipole
density operator can be explicitly written as

P̂(r) = −e
∑
μ,k,p

e−ip·r+ik·r
[
ĥ−,−pêμ,k〈ψ3|r|μ〉

+ l̂−,−pêμ,k〈ψ1|r|μ〉 + l̂+,−pêμ,k〈ψ−1|r|μ〉
+ ĥ+,−pêμ,k〈ψ−3|r|μ〉

]
+ H.c., (50)

where |μ〉 = |±〉 denotes the CB electron state with spin ±1/2,
and the operators ĥ∓ and l̂∓ annihilate |ψ±3〉 and |ψ±1〉, respec-
tively. By using the fact p/m0 = dr/dt = (rH0 − H0r)/i, we
get

〈ψi | − er|μ〉 =
∑

j=x,y,z

Mi,pA
j

i,μjp, (51)

where M±3/±1,p = −ie/m0(Ee,p − Eh/l,p). The detailed ex-
pression for A

j

i,ν can be found in Appendix C. The effective
Hamiltonian then reads

HA
eff = Tr

(
ρ̂

j,j′=x,y,z∑
σ,σ ′,p,i,μ,μ′

F ∗
σ Fσ ′nσ ′n∗

σ :

| Mi,p|2Aj

i,μA
j ′
i,μ′jpj′p

1 − fμμ′,p+q

Ee,p+q + Ei,p − h̄ωq

)
. (52)

The calculation is lengthy. Here, we omit the details but just
give the terms with i = 3, μ = μ′ = + and i = −3, μ = μ′ =
− explicitly, which is proportional to(∣∣A1

3,+
∣∣2

xpxp + ∣∣A2
3,+

∣∣2
ypyp + ∣∣A3

3,+
∣∣2

zpzp
)
(f++,p + f−−,p)

(53a)

+ 2i
[�(

A1
3,+A2∗

3,+
)
(xpyp − ypxp)

+ 2i�(
A2

3,+A3∗
3,+

)
(ypzp − zpyp)

+2i�(
A3

3,+A1∗
3,+

)
(zpxp − xpzp)

]
fzp . (53b)

The term (53a) is just a background. The term (53b) is the
total anisotropy tensor, which couples to Iz only. This result
confirms the symmetry analysis in Sec. II.

C. Second-order nonlinear optical effects

The independent parameters of the susceptibility of spin
current in a bulk GaAs in Eqs. (19) and (20) are listed
in Appendix E. For the sake of simplicity, we neglected
the anisotropy of the valence bands. We also neglected the
Coulomb interaction, since it is largely screened in the n-doped
material. These approximations, according to the symmetry
analysis, would only quantitatively modify the results.
The bulk inversion asymmetry would cause a background
second-order susceptibility, which is indeed strong but can be
well separated from the spin-current effect by ac modulation
of the current and the phase-locking detection technique. Two
representative results of the calculated susceptibility spectra
are shown in Fig. 6. The other terms of the susceptibility

FIG. 6. (Color online) Representative results of the sum fre-
quency susceptibility. (a) −χ

(2)
YZX due to a longitudinal spin current

and (b) −χ
(2)
YYY due to a transverse spin current, as functions of the

optical frequencies. Parameters are chosen similar to those in Ref. 8
(same as in Fig. 5). The dielectric constant εr = 10.6 and the spin
current JX = JZ = 20 nA/μm2.
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tensor (not shown) have similar frequency dependence
and comparable amplitudes. As a specific example, a
transverse spin current 20 nA/μm2 has a susceptibility
−χ

(2)
YYY ≈ 4.8 × 10−12 esu (or 0.2 × 10−14 m/V in SI units)

for input frequencies ω1 = 100 meV and ω2 = 1400 meV or
0.25 × 10−12 esu for ω1 = ω2 = 750 meV (corresponding to
the second harmonics generation).

The SFG of spin current can be straightforwardly extended
to other second-order optical spectroscopy such as difference
frequency and three-wave mixing.40

V. CONCLUSIONS

In summary, with the systematic symmetry analysis and the
microscopic calculation under realistic conditions, we have
shown that a pure spin current has a measurable circular bire-
fringence effect and a sizable sum-frequency susceptibility.
With universality of the method guaranteed by the symmetry
principle and without requirements of special structure design
and fabrication, the linear and nonlinear optical spectroscopy
can be applied to study a wide range of spin-related quantum
phenomena such as in topological insulators.50–55 A wealth
of physics connecting spins and photons and technologies
synthesizing spintronics and photonics may be explored.
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APPENDIX A: COORDINATE BASIS

We choose a global coordinate system (X,Y,Z) and define
the local coordinates as

θ̂p = xp = X cos θp cos φp + Y cos θp sin φp − Z sin θp,

(A1a)

φ̂p = yp = −X sin φp + Y cos φp, (A1b)

p̂ = zp = X sin θp cos φp + Y sin θp sin φp + Z cos θp.

(A1c)

The angle average of the tensor

zpzp ≡ 1

4π

∫
zpzpd� = 1

3
I (2). (A2)

And the angle average

Z · zpzpzpzp

≡ 1

4π

∫
Z · zpzpzpzpd�

= + cos2 θp sin2 θp cos2 φp (XXZ + XZX + ZXX)

+ cos2 θp sin2 θp sin2 φp (YYZ + YZY + ZYY)

+ cos4 θpZZZ

= 1

15
(I (2)Z + XZX + YZY + ZZZ + ZI (2)). (A3)

For a spin distribution of Eq. (35), the total spin polarization
and the spin current is, respectively, as

S =
∑

p

sp =
∑

p

N0, (A4a)

J =
∑

p

Jp = e

me

∑
p

N1f (p)pZ · zpzp

= e

me

∑
p

N1f (p)pZ · zpzp

= N1Z
3

e

me

∑
p

f (p)p = JZ. (A4b)

Also, we have∑
p

zpzp · Jp = e

me

∑
p

zpzp · (N1f (p)pZ · zpzp)

= e

me

∑
p

f (p)pZ · zpzpzpzp · N1

= 1

3

e

me

∑
p

f (p)p

×I (2)Z + XZX + YZY + ZZZ + ZI (2)

3
· N1

= 1

5
(JZI (2) + J + JT ). (A5)

APPENDIX B: BERRY CONNECTION

The band edge states of CB are

|+/−〉p = |S〉 ⊗ |↑ / ↓〉p, (B1)

with |S〉 being a periodic s-wave orbital wave function, which
is isotropic in a unit cell, and |↑ / ↓〉p denoting the spin
eigenstate parallel/antiparallel to the momentum.

Similarly, the band edge states of the valence bands are∣∣∣∣3

2
,+3

2

〉
p

= −|X〉p + i|Y 〉p√
2

⊗ |↑〉p, (B2a)

∣∣∣∣3

2
,+1

2

〉
p

=
√

2

3
|Z〉p ⊗ |↑〉p − |X〉p + i|Y 〉p√

6
⊗ |↓〉p,

(B2b)∣∣∣∣3

2
,−1

2

〉
p

=
√

2

3
|Z〉p ⊗ |↓〉p + |X〉p − i|Y 〉p√

6
⊗ |↑〉p,

(B2c)∣∣∣∣3

2
,−3

2

〉
p

= +|X〉p − i|Y 〉p√
2

⊗ |↓〉p, (B2d)

∣∣∣∣1

2
,+1

2

〉
p

= − 1√
3
|Z〉p ⊗ |↑〉p − |X〉p + i|Y 〉p√

3
⊗ |↓〉p,

(B2e)∣∣∣∣1

2
,−1

2

〉
p

= + 1√
3
|Z〉p ⊗ |↓〉p − |X〉p − i|Y 〉p√

3
⊗ |↑〉p.

(B2f)
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where |X〉p,|Y 〉p,|Z〉p are the p-type orbital parts of the
Bloch amplitudes with wave vector p, which have the
same rotation and inversion transformation properties as
the coordinate system xp,yp,zp, defined with respect to
the momentum direction (i.e., zp = p/p). The mixing of
the orbital wave functions and the electron spin states in the
total angular momentum eigenstates includes the spin-orbit
coupling automatically. This spin-orbit coupling is an intrinsic
relativistic effect and does not reply on whether or not the
material has inversion symmetry.

With the convention chosen in Eq. (A1), the transformation
of the Bloch and spin states are as follows:

|X〉p = |X〉 cos θp cos φp + |Y 〉 cos θp sin φp − |Z〉 sin θp,

(B3a)

|Y 〉p = −|X〉 sin φp + |Y 〉 cos φp, (B3b)

|Z〉p = |X〉 sin θp cos φp + |Y 〉 sin θp sin φp + |Z〉 cos θp,

(B3c)

|↑〉p = + cos
θp

2
e−iφp/2 |↑〉 + sin

θp

2
e+iφp/2 |↓〉 , (B3d)

|↓〉p = − sin
θp

2
e−iφp/2 |↑〉 + cos

θp

2
e+iφp/2 |↓〉 . (B3e)

|X〉,|Y 〉,|Z〉 are the orbital Bloch functions which transform
as X,Y,Z, and |↑ / ↓〉 are the spin Bloch function as the
eigenstates of σ · Z with eigenvalue ±1. With this convention,
the Berry curvature term has a very simple form as

−i〈j,m′|p∇p |j,m〉p = i
n±,p√

2p
δm′±1,m

√
(j ± m)(j ∓ m + 1)

− δm,m′m
cos θp

sin θp

yp

p
. (B4)

APPENDIX C: FARADAY ROTATION ANGLE

For a light with frequency ωq , the polarization density is

P = ε0

∑
σ,σ ′

nσχσ,σ ′Fσ ′ . (C1)

Then the energy density in the material is

ρE = 1
2 〈D(r,t) · F(r,t)〉 + 1

2 〈B(r,t) · H(r,t)〉
= (ε0εrF + P) · F∗ + c.c., (C2)

where εr is the background dielectric constant. Thus the linear
optical susceptibility is related to the effective Hamiltonian
through

Heff = ε0

∑
σ,σ ′

χσ,σ ′F ∗
σ Fσ ′ + ε0

∑
σ,σ ′

χ∗
σ,σ ′FσF ∗

σ ′ . (C3)

Thus we have

χσ,σ ′ + χ∗
σ ′,σ = 1

ε0

∂2Heff

∂F ∗
σ ∂Fσ ′

. (C4)

The index change due to two circular polarization is, respec-
tively,

δn± = √
εr + χ±± − √

εr ≈ ± 1
2χ±±/

√
εr = ± 1

2n−1χ++,

(C5)

where n is the material refractive index. The phase delay within
a propagation length l is then

δφ± = ωqc
−1lδn± = 2πλ−1lδn±, (C6)

where λ is the light wavelength in vacuum. For a light with
linear polarization

x = (−n+ + n−) /
√

2, (C7)

after propagation of the length l, the polarization becomes

(−n+e−iδφ+ + n−e−iδφ− )/
√

2 = cos δφ+x + sin δφ+y. (C8)

So the Faraday rotation angle is

θF = δφ+ = 2πl

2nλ
χ++. (C9)

For a light with incident zenith and azimuth angles β and γ ,
the angles inside the sample β ′ and γ ′ are determined by

n sin β ′ = sin β, (C10a)

γ ′ = γ, (C10b)

the propagation length through a sample of thickness L is

l = L/ cos β ′. (C11)

For a pure spin current and an off-resonant probe, the
susceptibility is

χ
(1)
++ = −χ

(1)
−− = 1

4ε0
(ζ1qJZ + ζ2qz · J · z) , (C12)

Thus the Faraday rotation for a spin current polarized normal
to the surface (as in Awschalom’s experiment8) is

θ
(1)
F = δφ+ = 2πqL

8ε0nλ cos β ′ ζ2J cos β ′ sin β ′ cos γ

= π2ζ2JL

2nε0λ2
sin β cos γ, (C13)

where q = 2πn/λ has been used.

APPENDIX D: ANISOTROPIC VALENCE BAND EFFECT

The anisotropic Luttinger-Kohn matrix of HA
LK is

HA
LK =

⎛
⎜⎝

E3 P Q 0
P ∗ E1 0 Q

Q∗ 0 E−1 −P

0 Q∗ −P ∗ E−3

⎞
⎟⎠, (D1)

where

E3 = E−3 = 1

2m0

[
(γ1 + γ2)k2 − 3γ2k

2
z

]
, (D2a)

E1 = E−1 = 1

2m

[
(γ1 − γ2)k2 + 3γ2k

2
z

]
, (D2b)

P = −
√

3γ3

m0
kz(kx − iky), (D2c)

Q = 1

2m0

[−√
3γ2

(
k2
x − k2

y

) + i2
√

3γ3kxky

]
. (D2d)
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(001)(001)

py
(100)

px (010)

FIG. 7. (Color online) The geometry of the coordinates.

The eigenstates can be in general written as

|ψi〉 =
∑

j=± 3
2 ,± 1

2

α
j

i

∣∣∣∣3

2
,j

〉
, i = ±3,±1. (D3)

By making the transformation U †HUU †α = U †α with

U † =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎠ , (D4)

we can see U †HU = H ∗. Thus we get the relation

U †α = α∗. (D5)

Without loss of generality, we take the coordinate relation
between the electron and the crystal as [see Fig. 7]

(100) = sin φ̃xp − cos φ̃yp,

(010) = cos θ̃ cos φ̃xp + cos θ̃ sin φ̃yp − sin θ̃zp, (D6)

(001) = sin θ̃ cos φ̃xp + sin θ̃ sin φ̃yp + cos θ̃zp,

where (001),(010), and (100) are directions of the three crystal
axis, and θ̃ and φ̃ are the relative direction angles between
xp,yp,zp and the (100),(010),(001) axes.

The explicit form of A
j

i,μ is

Ax
i,± =

[
∓ 1√

2

(
α

± 3
2

i

)∗ ± 1√
6

(
α

∓ 1
2

i

)∗
]

sin φ̃ + i

[
1√
2

(
α

± 3
2

i

)∗ + 1√
6

(
α

∓ 1
2

i

)∗
]

cos θ̃ cos φ̃ +
√

2

3

(
α

± 1
2

i

)∗
sin θ̃ cos φ̃, (D7a)

A
y

i,± =
[
± 1√

2

(
α

± 3
2

i

)∗ ∓ 1√
6

(
α

∓ 1
2

i

)∗
]

cos φ̃ + i

[
1√
2

(
α

± 3
2

i

)∗ + 1√
6

(
α

∓ 1
2

i

)∗
]

cos θ̃ sin φ +
√

2

3

(
α

± 1
2

i

)∗
sin θ̃ cos φ̃, (D7b)

Az
i,± = −i

[
1√
2

(
α

± 3
2

i

)∗ + 1√
6

(
α

∓ 1
2

i

)∗
]

sin θ̃ +
√

2

3

(
α

± 1
2

i

)∗
cos θ̃ , (D7c)

and with Eq. (D5), they satisfy the relation

A
j

i,ν = −νA
j∗
−i,−ν . (D8)

APPENDIX E: SECOND-ORDER NONLINEAR SUSCEPTIBILITY

With a spin current of the form J = JXXZ + JZZZ, where JX is the transverse amplitude, the second-order nonlinear optical
susceptibility induced by the spin current is

χ (2) (ω1,ω2; ω1 + ω2) = JX[XXY(−2ξ3 − 2ξ ′
3 + ξ ′

4 + ξ ′
5) + ZZY(−4ξ3 − ξ ′

1 + ξ ′
3 − ξ ′

5) + YXX(−ξ4 − ξ5 − ξ ′
4 − ξ ′

5)

+ XYX(−2ξ3 + ξ4 + ξ5 − 2ξ ′
3) + ZYZ(−ξ1 + ξ3 − ξ5 − 4ξ ′

3)

+ YZZ(ξ1 − ξ3 + ξ5 + ξ ′
1 − ξ ′

3 + ξ ′
5) + YYY(−4ξ3 − 4ξ ′

3)] (E1a)

+ JZ[(XYZ − YXZ) (ξ1 + ξ2 + 2ξ3 + ξ4 + 3ξ5 − ξ ′
2 − 3ξ ′

3 − ξ ′
5)

+ (YZX − XZY) (ξ2 + 3ξ3 + ξ5 − ξ ′
1 − ξ ′

2 − 2ξ ′
3 − ξ ′

4 − 3ξ ′
5)

+ (ZXY − ZYX)(ξ2 + 5ξ3 + ξ5 − ξ ′
2 − 5ξ3 − ξ ′

5)], (E1b)

where ξ ′
k is derived from ξk by exchanging ω1 and ω2, and

ξ1 =
(

εr + 2

3

)3

|dcv|2 2

3

[
1 + me/ml

(�l)2ω1
+ 1 + me/ml

(�l)2�l
2

− 1 + me/mt

(�t )2ω1
− 1 + me/mt

(�t )2�t
2

]
, (E2a)

ξ2 =
(

εr + 2

3

)3

|dcv|2
(

�l − �h

2EF �h�lω1
+ �l − �h

2EF �h�l�l
2

)
, (E2b)
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ξ3 =
(

εr + 2

3

)3

|dcv|2 1

5

(�l − �h)
(
�l

2 − �h
2

)
4EF �h�h

2�
l�l

2

, (E2c)

ξ4 =
(

εr + 2

3

)3

|dcv|2
[

�l − �h

2EF �h�lω1
+ (�l − �h)

(
�l

2 + �h
2

)
4EF �h�h

2�
l�l

2

]
, (E2d)

ξ5 =
(

εr + 2

3

)3 |dcv|2
5

[
1 + me/mh

(�h)2ω1
+ 1 + me/mh

(�h)2�h
2

− 1 + me/ml

(�l)2ω1
− 1 + me/ml

(�l)2�l
2

− �l − �h

EF �h�lω1

− �l − �h

2EF �h�l�l
2

− (�l − �h)
(
�l

2 + �h
2

)
4EF �h�h

2�
l�l

2

]
, (E2e)

where the factor containing the material dielectric constant εr takes into account the difference between the macroscopic external
field and the microscopic local field.56
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