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Room-temperature magnetoresistance of the order of 10% has been observed in organic semiconductors. We
predict that even larger magnetoresistance can be realized in suitably synthesized doped conjugated polymers. In
such polymers, ionization of dopants creates free charges that recombine with a rate governed by a competition
between an applied magnetic field and random hyperfine fields. This leads to a spin-blocking effect that depends
on the magnetic field. We show that the combined effects of spin blocking and charge blocking, the fact that
two free charges cannot occupy the same site, lead to a magnetoresistance of almost two orders of magnitude.
This magnetoresistance occurs even at vanishing electric field and is therefore a quasiequilibrium effect. The
influences of the dopant strength, energetic disorder, and interchain hopping are investigated. We find that the
dopant strength and energetic disorder have only little influence on the magnetoresistance. Interchain hopping
strongly decreases the magnetoresistance because it can lift spin-blocking and charge-blocking configurations
that occur in strictly one-dimensional transport. We provide suggestions for realization of polymers that should
show this magnetoresistance.
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I. INTRODUCTION

In the last decade, large room-temperature magnetic field
effects in the current and electroluminescence of devices of
organic semiconductors have been found.1–10 The precise
mechanisms behind these effects are still debated, but agree-
ment is arising that the effects are caused by the magnetic-field
sensitivity of spin-selective reactions between spin-carrying
electronic excitations (electrons, holes, triplet excitons). Strik-
ing analogies exist with mechanisms known in the field of
spin chemistry.11 The involvement of hyperfine fields has
recently been demonstrated by the occurrence of isotope
effects.9,10 Isotope substitution in organic semiconductors
(e.g., the replacement of hydrogen by deuterium or 12C by 13C)
leads to different nuclear magnetic moments and therefore
to a different hyperfine interaction between the nuclei and
spin-carrying excitations, while leaving all other electronic
properties of the semiconductor unchanged. It has been shown
that the magnetic field dependence scales accordingly.9,10

The electronic spin in an organic semiconductor interacts
with many (typically of the order of ten or more) nuclear
spins. As a consequence, this interaction can be quite well
described by assuming that the electronic spin experiences
a classical, quasistatic, and random hyperfine field, having
a Gaussian distribution with a standard deviation Bhf of the
order of a milli-Tesla.12,13 The evolution of the spin state of
a pair of spin-carrying excitations is then determined by the
sum of an externally applied magnetic field B and the local
hyperfine fields, which are different for the two excitations.
If the reaction between the two excitations is spin selective,
the reaction rate changes when the magnitude of B surpasses
Bhf , giving rise to a B-dependent reaction rate. Magnetic field
effects in the current of unipolar organic devices have been
explained by a mechanism in which two electrons or holes
react to form a singlet bipolaron.14 Magnetic field effects in the
electroluminescence of bipolar devices have been explained by
a mechanism in which electrons and holes react to form singlet

or triplet excitons with different rates.9,10,15 Spin-selective
reactions between electrons and holes as well as between
electrons or holes and triplet excitons have also been suggested
to be responsible for magnetic field effects in the current.3–5

A magnetic field effect in the current is usually interpreted
as a magnetoresistance. The reported magnetoresistance of
present organic devices is of the order of 10% at rather high
electric fields.16 With the insight that magnetic field effects in
organic semiconductors are caused by spin-selective reactions
between spin-carrying excitations, one may ask the question
if it is possible to design organic materials with even higher
magnetoresistance at a low electric field. The manufacturing
of an organic material with very large magnetoresistance at
low magnetic and electric field, to be used in highly sensitive
magnetic sensors or maybe even magnetic switches, would
be of large technological interest. Such sensors could be
integrated with other cheap and flexible organic electronics.
The present paper is concerned with a theoretical survey of
this possibility.

The route we propose towards high magnetoresistance
at low electric field is the use of doped π -conjugated
polymers with specific properties. Doped polymers have
been investigated in great detail because of their conducting
properties. In these polymers free charges created by ionization
of dopants move along the polymer chains. Our present
interest is in the concurrent creation of free spins, carried by
the free charges and the ionized dopants. We will consider
the case of intrinsically doped polymers where the dopants
are part of the polymer chains themselves. To obtain a large
magnetoresistance it is important that the coupling between
the monomeric units of the polymers is small, such that
the hopping transport between these units takes place with
a rate that is smaller than the hyperfine precession rate.
This makes the proposed polymers different from commonly
used conjugated polymers, where charges can delocalize
over several monomers. We propose to achieve the required
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small hopping rate by inserting spacer units in between the
monomers. Under this condition, the recombination rate of a
free charge with an ionized dopant will become magnetic field
dependent, leading to magnetoresistance. Another important
condition for obtaining large magnetoresistance is that the
charge transport is one dimensional. In this case, free charges
contributing to transport are forced to regularly recombine
with the ionized dopants. In principle, polymers are ideal
in this respect, because charge transport mainly takes place
along the polymer chain. However, interchain hopping can also
take place, and this may allow a free charge to hop around a
dopant. In order to obtain a large magnetoresistance, interchain
hopping will therefore have to be suppressed. Suppression of
interchain hopping can be achieved by introducing side groups.

This paper is built up as follows. In Sec. II we will introduce
our model system for a doped polymer. We will show that in the
case of low density of free charges in the system the problem
of finding its conductivity can be mapped onto that of a resistor
model. The latter problem can be easily solved. In this case, the
magnetoresistance is solely caused by a spin-blocking effect in
the recombination of a free charge with a dopant. In the general
case of high free electron density we find the conductivity from
Monte Carlo simulations. In these simulations the effect of
charge blocking is included, i.e., the effect that two free charges
are not allowed to occupy the same site due to their Coulomb
repulsion. In Sec. III we present the results of the resistor model
and those of the Monte Carlo simulations. The influences of the
dopant strength, energetic disorder, and interchain hopping are
investigated. In Sec. IV we discuss how the envisaged doped
polymers could be realized. Section V contains a summary
and the main conclusions.

II. MODEL

We model a polymer chain as a sequence of sites along
which nearest-neighbor hopping of localized charges occurs;
see Fig. 1. For simplicity, we assume that dopant sites
are distributed periodically within the chain, with a period
of n sites. Because of the one-dimensionality, the case of
arbitrarily distributed dopants follows from combining the
results of periodically doped chains with appropriate weights
for different n. We consider the case of donors (the case of
acceptors is completely equivalent) with a highest occupied
molecular orbital (HOMO) that is energetically separated by a
small energy � from the lowest unoccupied molecular orbital
(LUMO) of the host sites. In that case, ionization of a donor
can take place at thermal conditions by hopping of an electron
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FIG. 1. (Color online) Doped polymer chain containing donor
sites with period n. A small energy difference � between donor
HOMO and host LUMO allows ionization of donors, followed by
precession of the donor spin and the free-electron spin (red arrows).
Recombination occurs back to the spin-singlet unionized donor state.

from the donor to a neighboring host site. With the unionized
donor being a spin singlet, the combination of the free electron
and the ionized donor, both having spin 1

2 , will initially also
be a spin singlet. However, the different hyperfine fields at
the positions of the free electron and ionized donor mixes
in triplet character, which reduces the recombination rate
back to the singlet state of the unionized donor. Spin mixing
also changes the recombination rate of the free electron with
other ionized donors. The spins of the free electron and the
ionized donor might happen to be in a triplet configuration, for
which recombination would not be allowed. Spin mixing by
the random hyperfine fields will then raise the recombination
rate by mixing in singlet character. An applied magnetic field
suppresses the spin mixing and hence the recombination. In
both cases, a magnetic field-dependent spin blocking occurs
that leads to magnetoresistance, even at vanishing electric field.

The combination of incoherent spin-selective hopping and
coherent spin evolution can be described with the stochastic
Liouville equation.17,18 It follows from this equation that
when the hopping rate khop is much larger than the hyperfine
precession frequency ωhf of typically 108 s−1 (ωhf = γBhf ,
with γ the gyromagnetic ratio) the effects of the hyperfine
fields will be quenched and no magnetoresistance occurs. The
largest magnetoresistance occurs when khop is much smaller
than ωhf , and this “slow-hopping” case is the case we consider
from now on. The observation of large magnetic field effects
in organic semiconductors1–10 indicates that the hopping
rate can indeed be smaller than or at least comparable to
the hyperfine precession frequency. Because coherent effects
between eigenstates of the spin Hamiltonian vanish in the limit
of slow hopping, we only need to consider the occupancy of
the (localized) spin eigenstates and hopping between these
states.14

A. Resistor model

In Fig. 2(a) we consider a part of the chain for the
simplest situation, with periodically a donor and a host site,
corresponding to a period n = 2 in Fig. 1. To demonstrate the
essence of the magnetoresistance occurring in this system, we
take � = 0 and first consider what we will call a “low electron
density,” corresponding to at most one free electron on the
chain. In this case, there is either only one donor unionized
or all donors are ionized and there is one free electron on a
host site. In the donor-host-donor sequence of Fig. 2(a) an
extra electron can be on one of the three sites i = 1,2,3. If the
electron is on either of the donor sites (i = 1,3), that donor
is unionized, while the other is ionized. The spin eigenstates
then correspond to a spin at the ionized donor that can be either
parallel (P) or antiparallel (A) to the total effective magnetic
field Btot,i at that donor, which is the sum of the external
magnetic field B and the local random hyperfine field Bhf,i .
We label these eigenstates as −−P, −−A, P−−, and A−−.
If the electron is on the host site i = 2, there are spins at
all three sites and the corresponding eigenstates are labeled
as PPP, AAA, APP, PAA, PAP, APA, PPA, and AAP. In
Fig. 2(a) two consecutive hops are indicated, corresponding
to − − P → PAP → P − −.

In the presence of a vanishingly small electric field F the
current through the hopping network can be calculated from a
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FIG. 2. (Color online) (a) Donor-host-donor sequence i = 1,2,3
for the case n = 2. The spin eigenstates are indicated by the red and
dashed arrows. The total effective magnetic fields Btot,i are the sums
of the external field B and local random hyperfine fields Bhf,i . Two
possible consecutive hopping events are shown, corresponding to
ionization at the left donor and recombination at the right donor.
(b) Resistor network corresponding to hopping between the spin
eigenstates of (a), with conductances indicated by the thickness of the
drawn resistors. The arrows show the current flow corresponding to
the two hopping events in (a). The labeling of the states is explained
in the main text.

mapping onto a resistor network,19 where the above eigenstates
correspond to the nodes of the network. Generalizing the result
of Ref. 19, the conductance between nodes p and q is given
by

G̃pq = e2k̃
symm
pq

kBT
exp

(
EF

kBT
− Ep + Eq

2kBT

)
, (1)

where kBT is the thermal energy and e the electronic charge.
Ep and Eq are the energies associated with nodes p and q of
the network, and EF is the Fermi energy, which determines
the number of extra charges on the chain (in this case one).
k̃

symm
pq is a symmetrized hopping rate: k̃symm

pq ≡ (k̃pq k̃qp)1/2. The
rates k̃pq are equal to a spin-independent rate kpq multiplied
by a spin-projection factor Ppq : k̃pq ≡ Ppqkpq . For hops of the
electron between two host sites we have Ppq = cos2(θpq/2)
[sin2(θpq/2)] for hops between eigenstates for which the spin
keeps (changes) its orientation with respect to the direction
of the local effective magnetic field, where θpq is the angle
between the effective magnetic fields of the two sites. For
recombination from or ionization to a state for which the
dopant spin is parallel and the electron spin antiparallel to the
local effective magnetic field, or vice versa, we have Ppq =
1
2 cos2(θpq/2). If both spins are parallel or antiparallel to the
local effective magnetic field we have Ppq = 1

2 sin2(θpq/2).
The latter factors are the projections onto the spin-singlet
subspace. The resistor network corresponding to Fig. 2(a)

for the case � = 0, n = 2, and kpq = khop for all allowed
hops is given in Fig. 2(b), where the thickness of the drawn
resistors indicates their conductance. We note that reversing all
spins leaves the network unchanged, which is indicated by the
labels between brackets. It is straightforward to set up resistor
networks for larger values of n, but their complexity increases
rapidly with increasing n.

The charge-carrier mobility can be obtained from the
resistance R(B) of a chain of N � 1 sites by μ(B) =
exp(−EF/kBT )Na2/eR(B), where a is the intersite distance.
The resistance R(B) is the sum of the resistances of many
of the above resistor networks with random hyperfine fields
and is obtained by a hyperfine-field average of the resistance
of such a network. For simplicity we assume equal standard
deviations Bhf for the Gaussian distributions of the donor and
host hyperfine fields, and equal gyromagnetic ratios. If donor
and acceptor have different Bhf this will only change the results
for nonzero finite B and not the magnetoresistance.

B. Monte-Carlo simulations

The resistor model does not take into account Coulomb
interactions between the free electrons, and it is therefore lim-
ited to the case of low electron densities. The most important
effect of Coulomb interactions in organic semiconductors is
to prevent the presence of two charges on the same site.20 We
take this effect into account in Monte Carlo (MC) simulations
that we performed for long chains. In these simulations hops
are chosen randomly with weights proportional to the rates
k̃pq discussed above, where now two free electrons are not
allowed to occupy the same site. After each hop the time is
increased with a random time step drawn from an exponential
distribution with a decay time equal to the inverse of the sum
of the rates of all possible hops. A small electric field F is
applied that leads to a net drift of the electrons along the
chain by decreasing the rate of the up-field hops by a factor
exp(−eaF/kBT ). The mobility is obtained from the average
electron drift velocity v(B) by μ(B) = v(B)/F . We took F

small enough to be in the regime where v(B) is linear in F ,
yet large enough to obtain a sufficient accuracy in μ(B).

We considered the charge-neutral case of “high electron
density,” where the number of free electrons is equal to the
number of ionized donors. The typical chain lengths that
we took were 2 × 105 (n = 2) up to 3 × 106 (n = 30) sites.
Steady-state situations were obtained after 2 × 109 hops, after
which v(B) was calculated for 2 × 109 (n = 2) up to 3 × 1010

(n = 30) hops. Averages were taken over 10 (n = 30) up to
200 (n = 2) hyperfine-field configurations.

MC simulations were also performed for the case of low
electron density. In that case the mobility can alternatively
be obtained by using Einstein’s relation μ(B) = eD(B)/kBT ,
and calculating the diffusion constant D(B) from MC simu-
lations of diffusion of a single electron along a chain in the
absence of an electric field. The chain lengths that we took
were the same as for the case of high electron density. The
number of hops in the calculation of the diffusion constant were
2 × 106 (n = 30) up to 8 × 106 (n = 2). Averages were taken
over 103 (n = 10) up to 3.5 × 103 (n = 2) hyperfine-field
configurations.
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III. RESULTS

A. Low electron density

We start by considering the case of low electron density,
where there is at most one free electron on the chain. The
results for the mobility obtained from the resistor model
are shown in Fig. 3(a). In the limit B → ∞ we obtain
μ(∞) = [n2/(4n − 3)(n + 2)]ekhopa

2/kBT (crosses). Results
for μ(0) were evaluated for networks up to n = 5 (pluses). For
n → ∞ and finite B the effect of the presence of the donors
vanishes and we thus obtain μ(0) = ekhopa

2/kBT . The results
for the mobility using the Einstein relation, with the diffusion
constant obtained from MC simulations, are also displayed
(B = 0: filled circles; B → ∞: open circles). The agreement
with the results of the resistor model is perfect. These results
demonstrate explicitly that the magnetic field effect occurs
even in the absence of an electric field.

The magnetic field effect in the mobility, defined as MFE ≡
MFE(∞), where MFE(B) ≡ [μ(B) − μ(0)]/μ(0), is shown in
Fig. 3(b) (half-filled circles). For n = 2 we obtain a magnetic
field effect of −37%, which grows to −75% in the limit n →
∞. The physical reason for the magnetic field effect is the spin
blocking that occurs in the case of large B due to the occurrence
of spin configurations where the spin of the electron has the
same orientation as that of a neighboring ionized donor site,
preventing recombination and further transport. The reason
why the magnetic field effect increases for increasing doping
period n is that spin blocking then becomes more effective. At

(a)

(b)

FIG. 3. (Color online) (a) Mobility as a function of doping period
n for B = 0 and B → ∞, obtained from the resistor model (plusses
and crosses) and from Monte-Carlo (MC) simulations for low (closed
and open circles) and high (closed and open squares) electron density
(see main text for the definition of high and low). (b) Magnetic
field effect in the mobility. The horizontal line shows the asymptotic
magnetic field effect of −75% in the absence of interaction. The error
in the MC results is smaller than or equal to the size of the symbols.

short doping period a spin-blocking situation of a free charge
and an ionized donor in a configuration with parallel spins
can be lifted not only by spin mixing by hyperfine fields, but
also by return of the free charge to the ionized donor that
was last visited. Recombination at this donor and subsequent
re-ionization of this donor randomizes the spin of the free
charge, which can lift the spin blocking. This process becomes
more unlikely for a longer doping period.

We checked that in the MC simulations at zero electric
field the equilibrium occupancies of all states are equal. This
should be the case because the hyperfine energy scale of
μeV of energy differences between the states is orders of
magnitude smaller than the thermal energy scale of 10 meV.
A magnetic field of the order of the hyperfine fields therefore
cannot lead a change of equilibrium occupancies. We note that
existing explanations of magnetic field effects involve driven
reactions between spin-carrying excitations and therefore
assume a nonequilibrium situation. By contrast, the present
magnetoresistance is a quasiequilibrium effect.

B. High electron density

We now consider the case of high electron density, where
the number of free electrons is equal to the number of ionized
donors and the chain is electrically neutral. The results for
the mobility and the magnetic field effect in the mobility
as obtained from MC simulations for this case are given
by the squares in Fig. 3. For large doping period n the
results approach the case of low electron density, as expected.
Contrary to that case, however, we now see that the size of
the magnetic field effect increases with decreasing n. For
n = 2 a magnetic field effect of −98.5 ± 0.3% is found,
corresponding to a magnetoresistance of almost two orders
of magnitude. Figure 3(a) shows that the main cause for this
huge magnetoresistance is a dramatic drop in the mobility
for B → ∞ at low doping period. The reason for this huge
magnetoresistance is that the spin blocking is now enhanced
by charge blocking: since two electrons cannot occupy the
same site, a single spin-blocked electron blocks all electrons
that would otherwise be able to pass it.

C. Line shapes

Figure 4 shows MFE(B) for several doping periods, for
low (circles) and high (squares) electron density. As fitting
functions for the line shapes we use a Lorentzian (B2/[B2 +
B2

0 ], solid line) or a non-Lorentzian (B2/[|B| + B0]2, dashed
line). In studies of magnetoresistance in devices with different
organic semiconductors these two line shapes were observed.16

For low electron density, the line shape is Lorentzian for small
n, but changes to the non-Lorentzian between n = 10 and
30. For high electron density, the line shapes are always non-
Lorentzian and broader than for low electron density.

D. Influences of the dopant strength and energetic disorder

We investigated the influences of the donor-host HOMO-
LUMO energy offset �, which is a measure of the dopant
strength of the donor, and of energetic disorder in the site
energies of donor and host. For simplicity we consider only
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FIG. 4. (Color online) Line shapes of MFE(B) at low (circles)
and high (squares) electron density, for four different doping
periods. Lorentzian (B2/[B2 + B2

0 ], solid line) and non-Lorentzian
(B2/[|B| + B0]2, dashed line) fits are shown with the corresponding
values of B0.

the case of low electron density. We expect that the conclusions
drawn will qualitatively also hold for high electron density.

In the resistor model, the effect of a finite � manifests
itself in a difference between the spin-independent part of
the conductance between two host sites, Ghost, and the
conductance between a donor and a host site, Gdonor. We note
that the relevant dimensionless parameter is �/kBT . Since
for the case of a doping period n = 2 there are only hops
between donor and host sites, all hops are affected equally
by a change in � and there is thus no dependence of the
magnetic field effect on � for this case. For doping periods
n = 3, 4, and 5, the magnetic field effect in the mobility as
a function of the ratio Ghost/Gdonor is shown in Fig. 5. The
results shown for low electron density in Fig. 3 correspond
to Ghost = Gdonor and lie on the dashed line in Fig. 5. We see
in Fig. 5 that there is a gradual decrease in the magnitude

FIG. 5. (Color online) Magnetic field effect in the mobility at low
electron density as a function of the ratio between Ghost and Gdonor,
for doping periods n = 3, 4, and 5. Points lying on the dashed line
correspond to the data shown in Fig. 3.

of the magnetic field effect from 75% when Ghost � Gdonor

to 50% when Ghost � Gdonor. Except for a small region in
Ghost/Gdonor for n = 3, the magnitude of the magnetic field
effect never gets smaller than 50%.

The dependence of Ghost/Gdonor on � is determined by the
specific hopping model. In modeling studies of charge trans-
port in organic semiconductors usually Miller-Abrahams21

or Marcus22 hopping models are used. For Miller-Abrahams
hopping we find:

Ghost

Gdonor
=

{
exp(−�/kBT ) if � � 0
1 if � > 0 , (2)

while for Marcus hopping we find:

Ghost

Gdonor
= exp

(−� + �2/2Er

2kBT

)
. (3)

Here, Er is the reorganization energy, which is typically of the
order of 0.1 eV (approximately 4kBT at room temperature).23

Figure 6 shows the magnetic field effect in the mobility
as a function of the offset � for doping period n = 4, for
both (a) Miller-Abrahams and (b) Marcus hopping. It is clear
from Fig. 6 that the type of hopping determines the effect of
� on the magnetic field effect. While for Miller-Abrahams
hopping the magnetic field effect is constant for � > 0,
for Marcus hopping the magnitude of the effect can both
decrease or increase as a function of � for realistic Er. For
Miller-Abrahams hopping, we also calculated the magnetic
field effect using MC simulations to confirm the results of the
resistor model. The agreement is perfect; see the squares in
Fig. 6(a).

We also studied the effect of energetic disorder, again for
the case of low electron density. We took Gaussian energetic
disorder with a standard deviation σ both for the HOMO
energies of the donor sites and the LUMO energies of the
host sites. The relevant dimensionless parameter is σ/kBT .

(a)

(b)

FIG. 6. (Color online) Magnetic field effect (MFE) in the mobility
at low electron density as a function of energy offset � for n = 4, for
(a) Miller-Abrahams hopping and (b) Marcus hopping. The asterisks
are calculated with the resistor model while the squares are obtained
with MC simulations. In the case of Marcus hopping, results are
shown for three values of the reorganization energy. The dashed line
corresponds to the case considered in Fig. 3.

045210-5



S. P. KERSTEN, S. C. J. MESKERS, AND P. A. BOBBERT PHYSICAL REVIEW B 86, 045210 (2012)

FIG. 7. (Color online) MFE(B) found from MC simulations at
low electron density for n = 4 and different combinations of the
energy offset � and strength of the energetic disorder σ .

For the special case n = 2 there are two types of conductances
within each donor-host-donor sequence: the ones between the
middle host site and the left donor site, and the ones between
the middle host site and the right donor site. A change in the
ratio between the spin-independent parts of those two types
of conductances with respect to unity increases the magnitude
of the magnetic field effect in the mobility from 37% at a
ratio of unity (the case considered in Sec. III A) to 50%
at an infinite or zero ratio. For n > 2, a difference between
the energies of neighboring host sites decreases Ghost, while
an energy difference between a host and a donor site can
both increase or decrease Gdonor, depending on � and, in
the case of Marcus hopping, Er. Figure 7 compares MFE(B)
when σ = � = 0 (the case considered in Sec. III A) to the
case � = −2kBT and σ = 0, and to the case � = 0 and
σ = 2kBT , for Miller-Abrahams hopping. The results in Fig. 7
were obtained from MC simulations. The case of positive � is
identical to that of � = 0 for Miller-Abrahams hopping; see
Fig. 6(a). It is clear from Fig. 7 that neither nonzero � nor
nonzero σ changes the magnetic field effect significantly.

The conclusion of our analysis is that the predicted
magnetoresistance is very robust against a nonzero energy
offset � and the presence of energetic disorder. Since the
relevant dimensionless parameters are �/kBT and σ/kBT ,
this also means that the magnetoresistance is robust against
a change in the temperature. We do note that a nonzero
� or σ creates energy barriers in the transport and that
therefore the mobility itself strongly decreases with increasing
� or σ .

E. Influence of interchain hopping

The huge magnetoresistance in doped polymers predicted
in this work crucially depends on the effects of spin and
charge blocking, which are only optimal for one-dimensional
charge transport. However, in reality it might be difficult to
separate individual chains far enough to completely prevent in-
terchain hopping. We investigated the detrimental influence of

FIG. 8. (Color online) Magnetic field effect in the mobility as a
function of the interchain hopping rate, kinterchain, for doping period
n = 2, energy offset � = 0, no disorder, and high electron density.
The dashed line indicates the result for kinterchain = 0.

interchain hopping on the magnetoresistance by MC simu-
lations at high electron density, for � = 0 and no energetic
disorder. In these simulations interchain hopping is modeled
by allowing every electron to hop to a randomly chosen empty
host site or to an ionized donor site within the chain with a rate
kinterchain.

Figure 8 shows the magnetic field effect in the mobility
as a function of kinterchain/khop for doping period n = 2. The
size of the magnetic field effect decreases strongly with
increasing kinterchain to a very small value when kinterchain/khop >

1. This result demonstrates that if the interchain hopping
rate is not small enough, spin and charge blocking are not
effective anymore, since electrons can hop to another chain
when confronted with a spin-blocking or charge-blocking
configuration.

IV. REALIZATION OF SUITABLE SYSTEMS

We now come to the discussion of the possible realization
of suitable systems that would show the predicted magne-
toresistance. Two important conditions should be fulfilled:
(1) The charges should be localized on monomers, with a
hopping rate between monomers, khop, that is smaller than
the hyperfine precession frequency, ωhf ; (2) Charge transport
should be essentially one dimensional, which means that the
interchain hopping rate must be much lower than the intrachain
hopping rate.

Condition (1) could be fulfilled by inserting spacer units
in between the monomers. We propose to use phenyl spacer
units for this. It has been shown that with a single phenyl
spacer the exchange coupling between a hole at a donor
and an electron at an acceptor unit can be reduced to a
value corresponding to a mT, while with more phenyl spacers
the coupling decreases exponentially with the number of
phenyls.24 In the optimal case of vanishing �, the condition
that khop is smaller than ωhf means that the intrachain mobility
(in the absence of an external magnetic field and for n = 2)
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should not exceed 0.1eωhfa
2/kBT ; see Fig. 3(a). With the

typical values ωhf = 108 s−1 and a = 1 nm this leads to a
maximal room-temperature mobility μ ≈ 4 × 10−6 cm2/Vs.
While this is not a very high mobility, the high charge density
still leads to an appreciable current. Taking for the case n = 2
half an electron per monomer unit with a volume of 1 nm3,
such a mobility leads to a conductivity of about 0.3 S/cm−1.
This is not more than one order of magnitude lower than the
conductivity of a conducting doped polymer like PEDOT:PSS
[poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)].

Condition (2) could be fulfilled by adding side groups to
the polymer such that polymer chains are far enough apart
to prevent interchain hopping. Another interesting option
might be blending with a nonconducting polymer. It has
been shown that blends of poly(3-hexylthiophene) (P3HT)
with nonconducting commodity polymers can show excellent
conduction even at P3HT weight percentages of only a few
percent.25

A starting point for realizing the case n = 2 could be the
copolymerization of monomeric units with strongly electron
accepting and electron donating properties. The onset of
the optical transition for charge transfer in these polymers
marks the energy needed to generate free charge carriers
and has been made as low as � = 0.5 eV.26,27 The mobility
for these copolymers has been measured to be in the range
10−5–10−3 cm2/Vs,27 which is too large to find a substantial
magnetic field effect. Localization of the charges to the
monomeric units and a sufficiently low hopping rate could be
achieved by inserting spacer units in between the monomers,
as discussed above.

Although a small value of the energy offset � is not
needed to obtain a large magnetoresistance, it is an important
condition for obtaining an appreciable mobility. It is inter-
esting to note that the condition � ≈ 0 has been realized
in molecularly doped organic semiconductors. An example
is F4-TCNQ:ZnPc (tetrafluorotetracyanoquinodimethane:zinc
phthalocyanine), which is used as hole-injection material in
organic light-emitting diodes.28 In this system the LUMO
energy of the acceptor (F4-TCNQ) and the HOMO energy of
the host (ZnPc) are nearly identical. The conduction in these
systems is not one dimensional, so that the blocking effects
discussed above will not be optimal. However, the existence

of these systems shows that synthesis of π -conjugated organic
units with � ≈ 0 should be possible.

We finally remark that a small magnetoresistance has been
found in devices of PEDOT:PSS.29 It would be very interesting
to investigate if the magnetoresistance in this polymer is of the
type proposed in the present work. If this is the case, one
could try to optimize the magnetoresistance along the route
described in this paper.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the magnetic field
dependence of the charge mobility in a doped conjugated
polymer by analytical and numerical methods. We considered
the case of an electron donor in a host polymer and the limit
that the electron hopping rate between the sites in the polymer
is smaller than the hyperfine precession frequency of the
electron spin. The largest magnetic-field effect in the mobility
of −98.5 ± 0.3% was found for high doping concentration
(equal amounts of donor and host sites) and high electron
density (equal amounts of free electrons and ionized donors).
The magnetic field effect arises because of the spin dependence
of the recombination of an electron with an ionized donor
(spin blocking) and the suppression of hyperfine-induced
spin mixing by an external magnetic field. The increased
effect at high electron density occurs because a single free
electron-ionized donor pair in a spin-blocking configuration
can block the current through the whole polymer chain (charge
blocking). In addition, we found that energetic disorder and
an imperfect alignment of the HOMO energy of the donor and
the LUMO energy of the host polymer have only a minimal
influence on the effect. The interchain hopping rate, however,
does have a significant influence and should be low in order
to obtain a large effect. We have suggested promising ways of
realizing polymers that show the effect.
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