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Mechanism of asymmetric lineshape broadening in GaAs1-xNx Raman spectra
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Resonance Raman spectroscopy is used to probe the asymmetric broadening of the LO phonon linewidth in
a dilute GaAs1-xNx alloy (x = 0.41%). Electronic Raman scattering from a broad continuum is observed that
gets enhanced concurrently with the LO phonon linewidth under resonance. The Fano interaction between the
LO phonon and the electronic continuum is used to develop a model that satisfactorily explains the origin of
the asymmetric LO phonon linewidth broadening in this abnormal alloy as arising due to coupling between the
discrete and the continuum configurations.
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I. INTRODUCTION

In the Raman spectra of ternary semiconductor alloys,
a broadening of the LO phonon linewidth occurs due to
alloy disorder. However, in resonant Raman scattering, no
excitation energy dependence of the phonon linewidth has been
observed for conventional semiconductor alloys. In an earlier
Raman study on GaAs1-xNx , we reported a peculiar linewidth
broadening for light scattering from LO phonons, finding it to
be highly asymmetric towards the low frequency side of the LO
Raman line.1 In consequent studies, resonant Raman scattering
experiments, where Raman spectra are recorded as a function
of excitation wavelength, a resonance of the asymmetric
broadening at two particular energies, EW and E′

W , has been
revealed.2 It was observed that the excitation profile of the
empirically determined full width at half maximum (FWHM)
displayed a “camel back” shape. These linewidth resonances
were shown to correlate with nitrogen induced changes to
the electronic structure of GaAs1-xNx . The “linewidth” of the
asymmetric peak was determined on a purely empirical basis
with the exact mechanism of broadening remaining unknown.

We now provide a model for the origin of this peculiar
linewidth broadening that quantitatively describes the asym-
metric lineshape. In this paper, we report the observation
of a low energy electronic continuum in the Raman spectra
from dilute GaAsN alloy. By systematically focusing on the
low frequency region of the resonant Raman spectra, we
establish that the asymmetric linewidth broadening of the
295 cm−1 GaAs LO phonon is due to the Fano interaction of
the continuum with the discrete phonon mode. The coupling
parameter determined from the Raman lineshape resonates at
the empirically established energy EW corresponding to the L

critical point of the GaAs:N band structure.

II. EXPERIMENTAL METHODS

The GaAs:N sample with 0.41% nitrogen concentration has
been grown by molecular-beam epitaxy on a p-type Zn-doped
(001) oriented substrate (sample no. EB661).3 The sample has
been cleaved along the [110] and [11̄0] directions and glued to
a cold-finger of an Oxford Instruments He-flow cryostat with
silver epoxy. A DCM dye laser and a Ti:Si laser were used
as the excitation light source for the excitation wave length
ranges 640–695 nm and 700–750 nm, respectively. All spectra
were taken in the “polarized” optics configuration, which

means that laser light was linearly polarized and the polarizing
and analyzing elements for the incoming and scattered light
were arranged in parallel. The Raman signal was analyzed
via a triple-stage Jobin Yvon T64000 spectrometer. Data was
captured with a PC controlled Andor silicon CCD.

III. THEORETICAL METHODS

If a discrete mode φ couples to a continuum of ex-
citations ψ , quantum interference of wavefunctions leads
to asymmetric lineshapes. The analytical expression to de-
scribe such lineshapes in condensed matter spectroscopies
was suggested by Fano for absorption lines in the ioniza-
tion continuum of atomic (and molecular) spectra:4 I ∼
|〈�E|T |i〉|2/|〈ψE |T |i〉|2 = (q + ε)2/(1 + ε2). The LHS of
this equation is the ratio of the excitation probability of the
interacting (hybridized) configuration to that of an unperturbed
configuration, where |i〉 denotes the initial state, T a generic
transition operator, and the capital and the lower case bras
are respectively the hybridized and the unperturbed states.
The RHS is an effective functional form with an “asymmetry
parameter” q related to the coupling strength between the two
configurations, and ε ≡ ε(E) is a “reduced energy” variable.
Later, Klein showed that hybridized continuum-discrete peaks
in Raman spectra can be described by exactly the same
analytical expression.5 The spectroscopic lineshape of the
hybridized configuration displays an asymmetry on one side
of the discrete mode and an antiresonance (reduced intensity)
on the other side, as shown in Fig. 1. This occurs because the
transition probability from an initial state |i〉 to a hybridized
state |�〉 can be written as a difference of two terms with
orthogonal trigonometric functions (sin and cos). These terms
add constructively or destructively, depending on the sign
of the wavefunction phase �, which changes sign when the
excitation frequency crosses a certain resonance frequency.
However, both Fano’s original and the later description by
Klein have the shortcoming of the Dirac-δ-function-like
discrete state approximation. Among other things, it forces
a complete antiresonance of the hybridized spectral intensity,
which is not observed in real spectra. Blumberg et al.,6 and
later Mialitsin,7 have expanded the Fano lineshape treatment
of Raman spectra to finite linewidths of the discrete mode. In
this case, the Raman response of the hybridized configuration

045209-11098-0121/2012/86(4)/045209(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.045209


MIALITSIN, FLUEGEL, PTAK, AND MASCARENHAS PHYSICAL REVIEW B 86, 045209 (2012)

can be described by a function

f (ν,ω) ∼ πr(ω)
[(

(ω − ωLO) + ν τ
t

)2 + γLO(ν2πr(ω) + γLO)
] + γLO

(
νR(ω) + τ

t

)2

(ω − ωLO − ν2R(ω))2 + (ν2πr(ω) + γLO)2
, (1)

where t and τ , respectively, denote the light interaction
strength with the discrete mode and with the continuum of
states, ν is the coupling strength between the discrete mode
and the continuum, ωLO and γLO are the frequency and the
linewidth of the unperturbed GaAs LO phonon, and R(ω) and
r(ω) are the real and the imaginary parts of the Green’s function
generating the continuum in the form G(ω) ∼ R(ω) − ıπr(ω).
In Fig. 1, we compare the functional form of the expression
(1) with that of an unperturbed Raman oscillator8 on top of a
constant continuum [Fig. 1(a)] as well as that of Eq. (1) with
the expression of a Dirac-δ-function approximation [Fig. 1(b)].
Both cases are juxtaposed to a sample from experimental data
described in the following section. In this paper, we adopt the
finite-linewidth treatment provided by Eq. (1), instead of the
more commonly used Fano expression parameterized by q and
ε. Equation (1) provides a better approximation of the physical
system, and, most importantly, it features the coupling strength
ν scaled with the ratio of the light interactions strengths, as
a fitting parameter to the experimental data. In contrast to a
purely phenomenological parameter q, this scaled coupling

FIG. 1. (Color online) Comparison of the configuration inter-
action approximated by the “finite linewidth” expression [Eq. (1)]
to a bare superposition (a) and (b) to the configuration interac-
tion approximated by the “Dirac-δ-function” expression given by
Ref. 5. A set of experimental data is shown for scale.

strength ν̃ = ν · τ/t , reflects directly a physical property of
the underlying model. Derivation of Eq. (1) and the specific
choice of the function r(ω) approximating a continuum of
nearly constant magnitude are described in the Appendix.

IV. RESULTS

A. Experimental data

We measure a GaAs:N sample with a nitrogen content of
0.41%, which lies at the lower end of nitrogen concentrations
investigated previously with resonance Raman.2 This is the
impurity doping regime, where the EW and the E′

W linewidth
resonances are still well separated, but also one that poten-
tially serves as a good starting point for resonance Raman
investigations of the experimentally challenging more dilute
regimes. In Fig. 2, we show a sequence of selected Raman
spectra from this 0.41% sample. The sequence [Figs. 2(a)–2(d)]
is ordered as a function of increasing excitation wavelength
(decreasing energy) from 645.1 to 720.1 nm (1.92–1.72 eV).
To validate the conjecture of coupled configurations it is
necessary to measure the relative light scattering frequencies
from 300 cm−1, where the broadened LO-phonon mode is
located, down to about 30 cm−1. Previous Raman scattering
studies concentrated on the LO phonon frequency, as a function
of temperature,9 concentration,10 or the low frequency Raman
resonances between 1.83 and 1.96 eV excitation energies.11

To the best of our knowledge, systematic correlations between
the low frequency resonances and the LO phonon line shape
have not been examined. The 645 nm spectrum shown in Fig.
2(a) exhibits as its main features the slightly asymmetrically
broadened LO-phonon peak at 295 cm−1 and, adjacent to it,
a forbidden TO-phonon peak at 270 cm−1 that arises due to
lattice-symmetry breaking in the presence of disorder. Both
peaks reside noticeably on a broad extended continuous back-
ground. These narrow, high intensity peaks are respectively
labeled LO and TO in the same panel. The residual background
shows two low intensity cusps at about 60 and 210 cm−1

labeled as ES1 and ES2, respectively, to reflect their anticipated
electronic scattering origin. As the excitation wavelength
changes, we observe that the residual continuum gets enhanced
concomitantly with the broadening of the LO peak. The ES1

and ES2 peaks intensity displays a prominent resonance as
a function of wavelength. In addition, while the ES2 peak
position remains the same as a function of wavelength, the ES1

peak position moves to higher Raman shifts with increasing
wavelength, such that beyond 720 nm [Fig. 2(d)] both peaks
almost merge due to accompanying broadening of the features.
We link the resonating ES peaks to the interacting part of the
continuum, which is treated separately, from the monotonically
rising noninteracting part as outlined below. An overview of
the intricate resonance pattern of the electronic excitations is
presented in Fig. 3.
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FIG. 2. (Color online) Selected Raman scattering data with the
corresponding fits, and the fit decomposition according to Eq. (2):
(a)–(d) Sequence of experimental data for increasing wavelengths
(decreasing energies) from top to bottom. The inset in (a) shows the
empirically determined LO-phonon effective linewidth; the inset in
(c) shows the alleged position of the ES3 resonant electronic scattering
band.

B. Configuration interaction model (Fano lineshape)

This correlation of the electronic-continuum resonance
and the asymmetric linewidth broadening of the LO phonon
immediately presents us with a physical model that we
proceed to explore in the following paragraphs. To describe

FIG. 3. (Color online) Development of the Raman continuum in
the 0.41% GaAs:N between 640 and 700 nm. The line shape changes
of the ES bands constitute a unique signature of electronic Raman
scattering, see Ref. 12.

the recorded Raman spectra we devise a model which consists
of the superposition of the TO peak modeled with a Raman
oscillator,8 the electronic scattering peaks 1 and 2 modeled by a
Gaussian distribution, and the LO-phonon-continuum coupled
configuration modeled with the finite-linewidth Fano lineshape
[Eq. (1)]:

χ ′′(ω) = noninteracting cont. + TO phonon

+ Fano(ν) + ES1 + ES2. (2)

As suggested above, the continuum is divided in two parts:
the interacting part contained in the Fano-lineshape and the
noninteracting part, fitted separately. The noninteracting part
originates from the semi-insulating substrate of the sample
as has been verified by comparisons with a GaAs:N sample
grown on an undoped substrate.13 The interacting part is
included in the configuration interaction and is the one that
displays the excitation resonance together with the LO-peak
effective linewidth γ0 and the electronic scattering peaks ESi .
The effective linewidth γ0, which corresponds to the FWHM
measure in Ref. 2, is determined empirically. We draw a
smoothed spline function through the data points and evaluate
its value at 40% of the peak maximum. The difference between
the Raman shifts of the two unique values obtained in such
a way on both sides of the peak maximum constitutes the
effective linewidth. The fitting model is shown in Fig. 2
with a thick red line that overlaps the data. The respective
decompositions are shown underneath: the noninteracting
continuum (thin smoothly using line), the noninteracting TO
phonon (thin curve at about 270 cm−1), the first electronic
continuum peak (thin curve in the 100 cm−1 range), the second
electronic continuum peak (thin curve in the 200 cm−1 range),
and the hybridized configuration (thick blue line below the
data).

In Fig. 4, we compare the effective linewidth of the
broadened LO-phonon (upper panel) with the absolute value
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FIG. 4. (Color online) Absolute value of the scaled coupling
strength |ν̃| = |ν · τ/t |, determined from the fit, juxtaposed with
the effective linewidth γ0 (full width at 40% max.), determined
empirically: upper panel (right scale) refers to γ0, lower panel (left
scale) to ν̃.

of the scaled coupling strength (lower panel), determined from
the fitting model. The scaled coupling strength ν̃, which is a
linearly independent fitting parameter of Eq. (1), is negative
throughout all excitation wavelengths reflecting the fact that
the LO-phonon couples primarily to continuous transitions at
lower energies. This is evident from the fact that the asymmet-
ric broadening occurs towards lower Raman shifts or to the
left side of the spectrum. The EW maximum of the effective
linewidth resonance excitation profile at ca. 1.82 eV coincides
with the maximum of the scaled coupling strength curve. But
the E′

W maximum at about 1.75 eV of the linewidth excitation
profile is not reflected in the scaled coupling strength. For this,
we offer the following explanation: The effective linewidth is
measured only through the Raman intensity at about 290 cm−1

in the immediate vicinity of the LO-phonon maximum.
The coupling strength, however, is determined through the
lineshape of the asymmetrically broadened LO phonon in a
wide range of frequencies including the antiresonance dip to
the right of the LO-phonon maximum. Therefore, we conclude
that the linewidth broadening at EW corresponds to an all
over renormalization of the spectral lineshape reflecting a
resonance in the coupling strength. However, the broadening
at 1.75 eV corresponds to a local intensity increase at about
290 cm−1 without the spectral lineshape renormalization at
other frequencies. Since the coupling strength is determined
by the overall lineshape extending a few tens of wave numbers
to the left and to the right of the LO-phonon peak position,
the fitting procedure would not pick up a local broadening
occurring only a few wave numbers to the left of the peak.
Such a broadening can be produced by a local resonant

electronic scattering mode. Indeed, upon a closer look, we
see evidence for the presence of such a mode in the raw data,
which is indicated by an arrow in Fig. 2(c) and labeled ES3.
By inspection, we find that subtracting a Gaussian mode of
the shape g(ω) = (α/σ

√
π/2) exp[−2(ω − ωES3 )2/σ 2] with

an amplitude α of 40 relative units, a standard deviation σ of
12 cm−1, and a center position ωES3 of 280 cm−1 [Fig. 2(c)
inset], reduces the effective linewidth in the 705 nm spectrum
by approximately 0.5 cm−1, which is of the same magnitude as
the E′

W resonance. We contend that the continuum bands ESi

(i = 1, 2, and 3) arise from hydrogenlike transitions within the
bound states formed by trapped nitrogen impurities.14,15 This
means that, at 0.41% nitrogen concentration, the isoelectronic
impurity wavefunctions continue to retain some of their
local character. This observation of the electronic continuum
in GaAs:N is particularly exciting, because in contrast to
known reports of Raman excitations from shallow donors
in semiconductors like SiC,16 here, we observe neutral deep
impurities in their excited state. Our suggested theoretical
model makes it possible to distinguish between the lineshape
renormalization due to resonance in the coupling strength
of the configurations interaction and an effective linewidth
increase due to a local resonance band. From this, it follows
that EW and E′

W resonances of the LO-phonon linewidth
broadening in the GaAs:N alloy are of different nature: The
EW resonance arises from the Kohn anomaly in the density of
states in the L point of the GaAs Brillouin zone, ca. 1.8 eV
above the � point of the valency band. An increase in the
density of states increases the coupling. In more general terms,
EW is a vestige of a k �= 0 critical point in the Raman response.
In the presence of nitrogen impurities, the degeneracy of the
L point is broken into a singlet and a triplet state, L1c and
L3c.17 The intensity resonance of the LO-phonon in GaAs:N
at EI has been linked to the singlet state.2 Here, we find that
it is only the EW linewidth resonance that is linked to the
triplet state and is of fundamental electronic structure nature.
The E′

W resonance, on the contrary, appears to arise from
an impurity-induced electronic scattering band, making it of
incidental nature. This, among other things, helps to explain
the difference in the magnitude of the two linewidth resonances
at higher nitrogen concentrations (Ref. 2, Fig. 1 therein).

V. CONCLUSION

In summary, we have reported an excitation energy res-
onance in the low Raman shift signal of electronic origin
from a dilute GaAs:N alloy with a nitrogen concentration of
0.41%. By fitting the spectral lineshape to the functional form
of the continuum-discrete configuration interaction, we have
established in a quantitative way that there is coupling between
the GaAs LO phonon and this continuous Raman signal, which
leads to an asymmetric lineshape of the LO phonon and an
antiresonance in Raman intensity. The resonant excitation
profile of the coupling parameter correlates with the 1.8 eV EW

effective LO-phonon linewidth resonance, which corresponds
to the L critical point of the GaAs:N band structure. The
E′

W resonance is attributed to an electronic scattering mode
resonating at 1.75 eV. Investigation of this resonance behavior
towards more dilute nitrogen concentrations is a promising
endeavor for future research.
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APPENDIX

1. Solution of the Dyson equation

The Fano problem of an interacting configuration in Raman
scattering can be solved analytically. The transition from the
initial state to an excited state is achieved by means of the
transition vector

ϒ =
(

τ

t

)
,

where τ denotes the light interaction strength with the
discrete mode and t denotes the light interaction strength
with the continuum of states. Here, τ and t have to be
viewed as phenomenological “effective” interaction strengths
that indirectly translate into the respective amplitudes of the
continuum portion and the discrete portion of the hybridized
Fano response [Eq. (1)]: t determines the asymptotic behavior
of the flat portion of the curve and τ determines how high the
LO phonon peak spikes above that flat portion. In reality, under
resonant Raman light does not interact directly with phonons
or other excitations on the energy scale of tens of meV, instead,
it causes interband transitions, and the resulting electrons and
holes interact with these excitations.

The Raman susceptibility χ ′′ is calculated as:

χ ′′(ω) = −	[ϒ†G(ω)ϒ] , (A1)

where G(ω) is the Green’s function of the interacting system
defined through the noninteracting Green’s function G0 and
the interaction matrix

V =
(

0 ν

ν∗ 0

)

as the solution of Dyson’s equation:5

G(ω) = G0(ω) + G0(ω)V G(ω). (A2)

Both G(ω) and G0(ω) are 2 × 2 matrices. Off-diagonal matrix
elements are zero for G0(ω), with the diagonal elements
being the single valued Green’s functions of the respective
subsystems.

For simplicity, the Green’s function of the discrete state is
taken to be the one generating the Lorentzian response:

d(ω) = 1

ω − ω0 + ıγ
, (A3)

and the continuum Green’s function c(ω) is assumed to be of
the general form:

c(ω) ∼ R(ω) − ıπr(ω) . (A4)

Given that a Green’s function G(z) = �[g(z)] + ı	[g(z)] real
and imaginary parts are related to each other through the

Hilbert transformation:18

P

∫ ∞

−∞

�[G(z)]

z − a
dz = −π	[G(z)] and (A5)

P

∫ ∞

−∞

	[G(z)]

z − a
dz = π�[G(z)] , (A6)

the notation of Eq. (A4) allows for a convenient calculation of
the real part of the continuum Green’s function if the imaginary
part has been determined from the experiment:

R(ω) = �[c(ω)] = 1

π
P

∫ ∞

−∞

	[c(ω′)]
ω′ − ω

dω′

= 1

π
P

∫ ∞

−∞

−πr(ω′)
ω′ − ω

dω′ = −HT [r(ω)] ,

(A7)

where HT denotes the Hilbert transform. The tradeoff in the
above convention is that the rescaling factor of π now appears
in the calculation of the imaginary part:

πr(ω) = −	[c(ω)] = −
(

− 1

π
P

∫ ∞

−∞

�[c(ω′)]
ω′ − ω

dω′
)

= 1

π
HT [R(ω)] . (A8)

Since it is the imaginary part πr(ω) that is obtained by Raman
scattering, this latter inverse transformation [Eq. (A8)] is not
used in the following derivations. Solving Eq. (A2) for G(ω)
gives

G(ω) = (1 − G0(ω)V )−1G0(ω) . (A9)

Here, we work with

G0 =
(

d(ω) 0
0 c(ω)

)
and V =

(
0 ν

ν 0

)
, ν ∈ R.

Since the inverse of a 2 × 2 matrix

A =
(

a11 a12

a21 a22

)
,

is

A−1 = 1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)

= 1

det A

(
a22 −a12

−a21 a11

)
, (A10)

it follows that

(1 − G0(ω)V )−1G0(ω)

= 1

det[1 − G0(ω)V ]

(
1 νd

νc 1

)(
d 0
0 c

)

= (1 − ν2cd)−1

(
d νcd

νcd c

)
. (A11)

Finally,

( τ t)

(
d νcd

νcd c

)(
τ

t

)
= dτ 2 + 2νcdτ t + ct2 (A12)

and

(1 − ν2c(ω)d(ω))−1

= ω − ω0 + ıγ

(ω − ω0 − ν2R(ω)) + ı(ν2πr(ω) + γ )
. (A13)
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So,

ϒ†G(ω)ϒ =
(ω − ω0 + ıγ ) × (

τ 2

ω−ω0+ıγ
+ t2(R(ω) − ıπr(ω)) + 2ν R(ω)−ıπr(ω)

ω−ω0+ıγ
τ t

)
(ω − ω0 − ν2R(ω)) + ı(ν2πr(ω) + γ )

= τ 2 + 2ν(R(ω) − ıπr(ω))τ t + t2(R(ω) − ıπr(ω))((ω − ω0) + ıγ )

(ω − ω0 − ν2R(ω)) + ı(ν2πr(ω) + γ )

= (τ 2 + 2ντ tR + Rt2(ω − ω0) + γ t2πr) + ı(γ t2R − πrt2(ω − ω0) − 2ντ tπr)

(ω − ω0 − ν2R) + ı(ν2πr + γ )
. (A14)

The Raman susceptibility is determined by taking the imaginary part of Eq. (A14):

	[ϒ†G(ω)ϒ] = N

D
, (A15)

with

D = (ω − ω0 − ν2R(ω))2 + (ν2πr(ω) + γ )2 (A16)

and

N = 	{[(τ 2 + 2ντ tR + Rt2(ω − ω0) + γ t2πr) + ı(γ t2R − πrt2(ω − ω0) − 2ντ tπr)][(ω − ω0 − ν2R) − ı(ν2πr + γ )]}
= −[(ν2πr + γ )(τ 2 + 2ντ tR + Rt2(ω − ω0) + γ t2πr)] + [((ω − ω0) − ν2R)(γ t2R − πrt2(ω − ω0) − 2ντ tπr)].

(A17)

N = −{[ν2τ 2πr
............

+
1.︷ ︸︸ ︷

2ν3τ tπrR +
2.︷ ︸︸ ︷

ν2t2πr(ω − ω0)R + ν2t2γ (πr)2 + γ τ 2 + 2γ ντ tR +
3.︷ ︸︸ ︷

γ t2 (ω − ω0) R + γ 2t2πr]

+[−
4.︷ ︸︸ ︷

γ t2 (ω − ω0) R + t2πr (ω − ω0)2

........................
+ 2ντ tπr (ω − ω0)

..............................
+ γ ν2t2R2 −

5.︷ ︸︸ ︷
ν2t2πr (ω − ω0) R −

6.︷ ︸︸ ︷
2ν3τ tπrR]}

= −t2

{
πr

[(
ω − ω0

)2

+ 2ν
τ

t
(ω − ω0) + ν2

(
τ

t

)2

............................................................................

]
+ γπr(ν2πr + γ )

+ γ

[
ν2R2 + 2

τ

t
νR +

(
τ

t

)2]}
(after 3. and 4., 2. and 5.,and 1. and 6. cancel)

= −t2

{
πr(ω)

[(
ω − ω0 + ν

τ

t

)2

+ γ (ν2πr(ω) + γ )

]
+ γ

(
νR(ω) + τ

t

)2}
. (A18)

Altogether,

χ ′′(ω) = t2 πr(ω)
[(

ω − ω0 + ν τ
t

)2 + γ (ν2πr(ω) + γ )
] + γ

(
νR(ω) + τ

t

)2

(ω − ω0 − ν2R(ω))2 + (ν2πr(ω) + γ )2
. (A19)

2. Comparison to the parameterized Fano lineshape

In the limit γ → 0, corresponding to the δ-function-like
discrete state described by Fano, expression (A19) for the
Raman susceptibility of the coupled modes,

lim
γ→0

{
χ ′′(ω)

πr(ω)t2

}
=

(
ω − ω0 + ν τ

t

)2

(ω − ω0 − ν2R(ω))2 + (ν2πr(ω))2

= 1

(ν2πr(ω))2

(
ω − ω0 + ν τ

t

)2

1 + (
ω−ω0−ν2R(ω)

ν2πr(ω)

)2 ,

(A20)

can be compared to the classical expression, parameterized by
ε and q as described by Klein.5 By setting � = ω0 + ν2R and
�ε = πν2r , we find that Eq. (A20) corresponds to the classical
equation if ε = ω−�

�ε
. With ε = − cot �, it follows that � =

−arc cot[ω−�
�ε

] = −arc cot[ω−ω0−ν2R(ω)
ν2πr(ω) ] for the phase shift �.

The ratio q is determined from the condition

q + ω − ω0 − ν2R(ω)

ν2πr(ω)
!= 1

ν2πr(ω)

(
ω − ω0 + ν

τ

t

)
,

so that q = ν τ
t
+ ν2R(ω)

ν2πr(ω)
=

1
ν

τ
t
+ R(ω)

πr(ω)
.

(A21)

3. Analytical expression for the continuum

We approximate the constant continuum by a Lorentzian
with a very large linewidth. This choice of r(ω) allows us
to model an almost flat continuum in an exceedingly wide
frequency range and, at the same time, to have an expression
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that yields a Hilbert integral in analytical form:

r(ω) ∼ �C

(ω − ωC)2 + �2
C

, (A22)

so that r(ω) = ar̃(ω). Here, an additional parameter a, the
experimentally observed amplitude of the electronic conti-
nuum, is introduced. For the real part of the electronic Green’s
function as it is used in Eq. (A19) this gives

R(ω) = −HT [r(ω)] = −aHT [̃r(ω)]

= a

∫
r̃(ω′)

ω − ω′ dω′ = aR̃(ω), (A23)

with

R̃(ω) = ω − ωC

(ω − ωC)2 + �2
C

. (A24)

In the above equations, ωC is the central frequency of the
Lorentzian shape and �C its linewidth. Since the Raman
susceptibility of the hybridized lineshape needs to be fitted
to the experimental data, it is important to realize which
parameters in Eq. (A19) are in fact independent, once the
equation is adjusted for the phenomenological input of
the experimentally observed electronic continuum, that is after
the introduction of the amplitude a. With the electronic Green’s
function approximated by expressions (A22) and (A24),

χ ′′(ω) = at2πr̃(ω)
[(

ω − ω0 + ν τ
t

)2 + γ (aν2πr̃(ω) + γ )
] + γ (aνtR̃(ω) + τ )2

(ω − ω0 − aν2R̃(ω))2 + (aν2πr̃(ω) + γ )2
. (A25)

By observing that

aνt = ν
τ

t
· at2 and aν2 = ν2 τ 2

t2
· at2 · 1

τ 2
,

it is found that there are only three independent parameters: the amplitude of the continuum A = at2, the ratio of the phonon and
continuum transition matrix elements weighted by the coupling strength B = ν τ

t
≡ ν̃, and the square of the phonon transition

matrix element C = τ 2. Accordingly, the fitting function is written as

χ ′′(ω) = Aπr̃(ω)
[
(ω − ω0 + B)2 + γ

(
AB2

C
πr̃(ω) + γ

)] + γ (ABR̃(ω) + C
1
2 )2(

ω − ω0 − AB2

C
R̃(ω)

)2 + (
AB2

C
πr̃(ω) + γ

)2 . (A26)

This is the expression that is coded in a fitting module of a
commercial mathematical package. It is important to note that
due to the stated choice of the Green’s functions our description
remains phenomenological. However, if analytic expressions
for the Green’s functions describing the local phononic mode

and the continuous electronic excitations from impurity levels
to the conduction band could be found based on a microscopic
physical model, then this exercise can be readily extended
to develop a microscopic theory of the Breit-Wigner-Fano
interference in resonant Raman scattering.
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