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We report on the detailed assignment of various features observed in the Raman spectra of SiGe alloys along
the linear chain approximation (LCA), as achieved based on remarkable intensity interplays with composition
between such neighboring features known from the literature but which so far have not been fully exploited. Such
an assignment is independently supported by ab initio calculation of the frequencies of bond-stretching modes
taking place in different local environments, which we define at one dimension (1D) for consistency with the
LCA. Fair contour modeling of the SiGe Raman spectra is eventually obtained via a so-called 1D-cluster version
of the phenomenological (LCA-based) percolation scheme, as originally developed for zincblende alloys, after ab
initio calibration of the intrinsic Si-Si, Si-Ge, and Ge-Ge Raman efficiencies. The 1D-cluster scheme introduces a
seven-oscillator [1 × (Ge-Ge), 4 × (Si-Ge), 2 × (Si-Si)] Raman behavior for SiGe, which considerably deviates
from the currently accepted six-oscillator [1 × (Ge-Ge), 1 × (Si-Ge), 4 × (Si-Si)] behavior. Different numbers of
Raman modes per bond are interpreted as different sensitivities to the local environment of Ge-Ge (insensitive),
Si-Si (sensitive to first neighbors), and Si-Ge (sensitive to second neighbors) bond stretching. The as-obtained
SiGe 1D-cluster/percolation scheme is also compared with the current version for zincblende alloys, using GaAsP
as a natural reference. A marked deviation is concerned with an inversion of the like phonon branches in each
multiplet. This is attributed either to the considerable Si and Ge phonon dispersions (Si-Si doublet) or to a basic
difference in the lattice relaxations of diamond and zincblende alloys (Si-Ge multiplet). The SiGe vs GaAsP
comparison is supported by ab initio calculation of the local lattice relaxation/dynamics related to prototype
impurity motifs that are directly transposable to the two crystal structures.
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I. INTRODUCTION

Since the emergence of semiconductor alloys some six
decades ago, the physical properties of Si1−xGex , the leading
group IV alloy with a diamond structure, have by far attracted
the most attention, both experimentally and theoretically.1 The
current semiconductor technology is essentially based on Si;
therefore, any possible way to play with the intrinsic physical
properties of Si (i.e., by alloying, in the present case) is
potentially interesting and as such is methodically scrutinized.
Moreover, among all possible Si-related group IV (C, Si, Ge,
and Sn) binary alloys, Si1−xGex seems to be the only exception
of a random alloy that retains the diamond structure of the
parents throughout the composition domain. This is because
the contrast in the bond lengths (l) and in the bond-stretching
(α) and bond-bending (β) force constants of the constituent
species remains rather moderate in SiGe (�l ≈ 4%, �α

≈ 15%, and �β ≈ 12%), whereas it becomes prohibitive
for the next SiC candidate (∼34%, ∼58%, and ∼83%,
respectively) and SiSn candidate (∼17%, ∼41%, and ∼53%,
respectively).2,3 On the technical side, a current application of
major importance is that relaxed epilayers of SiGe can serve
as a substrate for strained epilayers of Si,4,5 which are then
used for high-mobility devices (Refs. 6 and 7).

In this work, we are interested in the SiGe vibrational
properties, as detected by Raman scattering. While this
technique operates at the Brillouin zone center (BZC), and as
such restricts the analysis to long-wavelength optical phonons
(q ≈ 0), these are detected with a very high resolution,

sometimes better than ∼1 cm−1. This is less, by at least a
factor of 2, than the typical width at half maximum of the
Raman line of a pure Si crystal.8 As such, Raman scattering is
the best technique when searching to access the detail of the
phonon mode behavior of a complex system such as an alloy.

For direct insight into the Si1−xGex Raman spectra, we
reproduce in the main panel of Fig. 1 a representative set
taken by Alonso and Winer with epitaxial layers covering
well-spanned alloy compositions (x ≈ 0.25, 0.50, and 0.75,
taken from Fig. 2 of Ref. 9). Three main Ge-Ge, Si-Ge, and
Si-Si Raman features, underscored in the main panel of Fig. 1,
emerge at intermediate composition (x ≈ 0.55). When the alloy
composition varies, the low-frequency (∼300 cm−1) and high-
frequency (∼500 cm−1) features connect to the modes of the
pure Si and Ge crystals, respectively. Their assignment in terms
of the main Ge-Ge and Si-Si modes is thus straightforward. The
intermediate mode is intimately related to a mode observed in
Si/Ge superlattices and in multiple quantum well structures
when the Si/Ge interface is rough.10,11 This naturally leads to
an assignment in terms of the main Si-Ge mode.

The main Ge-Ge and Si-Si modes exhibit opposite shifts
when the Ge content increases, i.e., upward and downward,
respectively, while the intermediate Si-Ge mode remains more
or less stationary. Detailed modeling of the composition
dependence of the frequencies of the main Ge-Ge, Si-Ge
and Si-Si Raman features was performed by Sui et al. using
a modified cellular isodisplacement model.12 The opposite
Ge-Ge and Si-Si shifts were investigated by Rücker and
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FIG. 1. Main SiGe Raman features. Representative Si1−xGex

Raman spectra taken by Alonso and Winer (plain symbols, digitalized
from Fig. 2 of Ref. 9) are shown in the main panel. In the minor
panels are summarized the x dependencies proposed by Pezzoli
et al. for the frequency (plain symbols, digitalized from Fig. 2
of Ref. 13, visual guides added) and intensity (in reference to the
indicated fractions of related oscillators) of the main Ge-Ge, Si-Ge,
and Si-Si Raman features (underscored in the main panel). Each of
these is assigned a specific bond-stretching oscillator (refer to the
symbolic notation with two atoms in a box in each minor panel). We
introduce more general labeling of the Raman features, according
to the symbolic notation (X)ZY , covering both the main (underscored
in the main panel) and the minor (not underscored) Raman features
and corresponding to a given bond stretching (X) in a given 1D
environment as characterized by its microstructure (superscript Y :
in reference to Ge-, SiGe-, or Si-like environments) and length
scale (subscript Z: standing for 1 or 2 in reference to first and
second neighbors, respectively). The corresponding oscillators are
represented in the body of Fig. 4 (refer to letters a − f in the figure
image), using the same symbolic notation as in the present figure, for a
direct comparison. The minor (Si-Ge)Si−Ge

2 feature (bottom spectrum
in the main panel) decomposes into a pseudodoublet away from the
Ge-dilute/moderate limit, corresponding to the features highlighted
by asterisks in the upper two spectra. The q-a notation refers to a
parasitical quasiamorphous feature.

Methfessel (Ref. 3) by using a supercell approach and an
anharmonic version of the Keating model, in which changes
in the bond-stretching and bond-bending force constants
depending on the local bond distortion were taken into
account. The confinement and microscopic strain effects were

found to add for the main Si-Si mode, corresponding to
drastic phonon softening (red-shift) when the Ge content
increases. In contrast, the two effects oppose for the main
Ge-Ge mode, to the advantage of the confinement effect,
leading to slight phonon hardening (blue-shift) with increasing
Ge content. Such competition between the confinement and
the microscopic strain effects is discussed later. As for the
intensities of the main Ge-Ge, Si-Ge, and Si-Si Raman lines,
Pezzoli et al.13 proposed empirical laws indicating a basic
scaling with the bond fractions when assuming a random
Si↔Ge substitution, i.e., according to (1 − x)2, 2x · (1 − x),
and x2, respectively. Such scaling implies that at a given alloy
composition, the bonds of a given species vibrate at the same
frequency whatever their local environment, being thus all
equivalent. The individual bond-stretching oscillators behind
such main Ge-Ge, Si-Ge, and Si-Si modes are merely defined at
the bond scale, with no information on the local environment.
A schematic representation is given in specific panels at the
bottom of Fig. 1, in which the frequency (plain circles, taken
from Fig. 2 of Ref. 13) and intensity (see text and Fig. 3 of
Ref. 13) aspects are summarized per mode.

Careful examination of the SiGe Raman spectra in Fig. 1
reveals two minor features (not underscored) besides the main
Ge-Ge, Si-Ge, and Si-Si ones (underscored). An additional
minor feature is discussed later. The assignment of the minor
features has attracted considerable attention over the last four
decades, both experimentally9,14–17 and theoretically.9,17–23

Some representative data are regrouped into a composite
frequency map in Fig. 2(a), with their assignments recapit-
ulated in Fig. 2(b). Such assignments were achieved based
on sophisticated phonon calculations as performed in the
real three-dimensional (3D) crystal, searching for frequency
matching between a given Raman line and the vibration of a
given atom (Si or Ge) taken in some likely 3D environment
at the considered alloy composition. In retrospect, it seems
that is was tacitly admitted that any 3D environment should
be limited to first neighbors only. Accordingly, we adopt a
uniform An notation for all 3D assignments in Fig. 2(b),
corresponding to an atom A (Si or Ge) vibrating in presence
of n (n = 0–4) first neighbors of the like species (Si
or Ge, respectively). The additional information about the
intensities of the main Ge-Ge, Si-Ge, and Si-Si Raman lines,
as empirically derived by Pezzoli et al. (explained earlier),13

is included for completeness in Fig. 2(b) via appropriate
thickening of the relevant phonon branches. As such, we can
say that Fig. 2(b) summarizes the current understanding of the
SiGe Raman spectra.

The pioneering Si1−xGex Raman spectra were obtained
with polycrystals by Feldman et al.14 at moderate Si content
(0.75 � x � 1) and by Renucci et al.24 and Brya15 throughout
the composition domain. Several interesting Raman features
were identified. Preliminary indication regarding the origin
of the emerging features at the Si- and Ge-dilute limits
was given by Dawber and Elliott (Ref. 18), Montroll and
Potts (Ref. 23), and Maradudin19 using theories applicable to
isolated impurities only. In particular, a long-standing enigma,
originally raised by Brya15 and taken up again by Taylor25

in his review on the Raman spectra of alloys, is that the
main Si-Ge line does not connect with any predicted modes
for an isolated Ge atom, in reference to the two potential
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FIG. 2. (Color online) SiGe Raman spectra. Si1−xGex Raman frequency map, including (a) raw experimental data (black symbols; cited
data are from Refs. 9, 13, and 15–17) and theoretical data (gray (red online) symbols; cited data are from Refs. 17–21) from the literature
(straight lines are visual guides), and (b) corresponding assignment of the Raman modes within the current six-oscillator [1 × (Ge-Ge), 1 ×
(Si-Ge), 4 × (Si-Si)] 3D scheme. The like phonon branches, referring to the same bond stretching, are regrouped by ovals. The individual
assignments are recapitulated by adopting a uniform An notation. This refers to an atom A (Si or Ge) vibrating in presence of n A-like atoms
(n = 0–4) in its nearest-neighbor shell. The corresponding vibration patterns, as identified by Grein and Cardona within their mass-defect
Green’s function approach (Ref. 20), are schematically reproduced in panel (b), emphasizing bond stretching. A standard notation is used for
backward (⊕) and upward (�) atomic motions. The NM labeling of these authors, referring to the Mth vibration mode in the sense of increasing
frequency of a cluster of N Si atoms, is preserved for direct correspondence with the original patterns (given in Fig. 4 of Ref. 20). The individual
bond fractions, which monitor the intensities of the main Raman lines (see text) following Pezzoli et al. (Ref. 13), are added for completeness.
They are specified on top of each relevant branch and visualized via appropriate thickening of such branches (gray areas in panel (b)).

candidates predicted by Maradudin19 (Fig. 2) for the local
vibration modes (LVMs) of Ge in Si (Ge-LVM, Ge0). At
intermediate composition, where the existing theories could
not apply, three distinct minor features were identified between
the main Si-Ge and the main Si-Si Raman features. They were
tentatively assigned by Brya15 as reminiscent of modes already
detected in the Si-dilute (∼448 cm−1) and Ge-dilute (∼437 and
∼487 cm−1) limits, which show little change in frequency or
intensity when the composition changes.

The next generation of data or assignments brings together
the considerable experimental9 and theoretical9,20–22 efforts
conducted before the mid-1990s to understand the puzzling
multimode Raman pattern at intermediate composition.15 Such
studies benefited both from the arrival of a novel generation
of samples, grown as single crystals, and from the emergence
of novel theoretical methods that could treat all the statistics
of the atom substitution behind the alloy disorder realistically.
Details follow.

Alonso and Winer (Ref. 9) reported the first detailed Raman
study of intermediate alloy compositions. The interpretation
of their data was supported by a Keating model supercell
(216-atom) calculation assuming stable force constants in a

first approximation. These were estimated from the elastic
constants of the pure Si and Ge crystals,2 taking geometrical
means for the Si-Ge mixed bond. Reference calculations were
performed with an ordered Si0.5Ge0.5 crystal corresponding
to alternate pairs of Si and Ge (111) planes. The crucial
result is that only the disordered supercells generated the
experimentally observed minor features between the main
Si-Ge and the main Si-Si features. The trend was confirmed by
an experimental observation that the minor features show up
with bulk polycrystals,9,14,15 as well as with relaxed epitaxial
layers,9,13,16,17 i.e., independently of the growth process. The
origin of the minor features was further discussed on the
microscopic scale by focusing on the central minor peak at
intermediate composition (x = 0.55). This was attributed to
Si-Si bond stretching in a Si-centered tetrahedron unit with
equal numbers (2) of Si and Ge atoms at the vertices (Si2,
∼450 cm−1). The softening with respect to Si-Si stretching
in the pure Si crystal (Si4, ∼520 cm−1), corresponding to the
main Si-Si Raman feature in the alloy (Si4, ∼480 cm−1), was
attributed to a confinement effect due to the quasi-inert Ge
atoms with a large mass. By extension, the three remaining
minor peaks were assigned, in the sense of decreasing
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frequency, to increasingly confined Si-Si bond stretching in
Si-centered tetrahedron units with increasing numbers of Ge
atoms at the vertices, i.e., from one (Si3, ∼470 cm−1) to
three (Si1, ∼430 cm−1). Altogether, this yields the standard
description of the SiGe Raman pattern with six bond-stretching
oscillators [1 × (Ge-Ge), 1 × (Si-Ge), 4 × (Si-Si)], except that
the order of the Si-Si modes may vary, as described later. The
oscillators of like nature, i.e., referring to the same ultimate
bond stretching, are regrouped using ovals in Fig. 2(b) for a
better insight.

Grein and Cardona (Ref. 20) used a mass-defect Green’s
function approach to calculate the SiGe Raman spectra at
moderate Si content (25 at.%), where the minor Raman
features show up clearly. The alloy was ideally described in
terms of a collection of Si- and Ge-centered tetrahedron units
embedded in a uniform continuum as defined along the virtual
crystal approximation (VCA). A random Si↔Ge distribution
was assumed. Again, changes in the bond force constants due
to local bond distortions, referred to as anharmonic effects,
were neglected. The vibration patterns of the modes that
dominantly contribute to the minor Raman features were
successively identified as 1 (Si0, ∼385 cm−1), 21 (Si1, ∼393
cm−1), 31 (Si2, ∼427 cm−1), 41 (Si3, ∼445 cm−1), 42 (Si3,
∼459 cm−1), and 51 (Si4, ∼471 cm−1). The corresponding
vibration patterns are schematically reproduced in Fig. 2(b).
In doing so, we preserve the original notation NM of Grein
and Cardona20 for direct reference to their work. The main
label indicates the number of Si atoms per Si-centered unit,
the subscript referring to increasing frequencies of the distinct
vibration modes originating from that unit. An important result
noted by Grein and Cardona is that in many cases several
modes from different units contribute to the same Raman line
(refer to x = 0.75 in Fig. 2(b)).

De Gironcoli (Ref. 21) reported a full ab initio calculation
of the Raman spectra on a series of disordered SiGe alloys
using large supercells (512 atoms). Almost-perfect agreement
with the experiment was achieved. This correlates with an
earlier conclusion of Alonso and Winer (Ref. 9) that the
collection of weak Raman features is due to local fluctuations
of the atomic structure in a disordered alloy. De Gironcoli and
Baroni (Ref. 22) provided further insight into the origin of the
minor features by focusing their attention on the disordered
Si0.5Ge0.5 alloy and by tracing the overall Raman signal into
a sequence of Ge- and Si-related partial phonon density of
states being due to all possible Ge- and Si-centered tetrahedron
units. Interestingly, the ab initio calculations reveal that the
Ge atoms do not vibrate in the spectral range covered by the
minor features. Therefore, these are all due to Si vibrations in
different local (Si,Ge)-mixed environments, as anticipated by
Alonso and Winer.9 De Gironcoli and Baroni (Ref. 22) found
a basic correspondence between the minor features and the Sin
units that is opposite that proposed by Alonso and Winer9: the
large n values referring mainly to low-frequency modes, and
vice versa.

What emerges, in a nutshell, is that six oscillators [1 ×
(Ge-Ge), 1 × (Si-Ge), 4 × (Si-Si)] would be sufficient to
catch the SiGe Raman pattern at intermediate composition
(ovals in Fig. 2(b)), as proposed by Alonso and Winer (Ref. 9).
The high-frequency Si-Si oscillator (Si4) evolves into the
main Si-Si feature when the Si content increases, while

the three remaining Si-Si oscillators (Si1−2−3) remain minor
and exhibit little change in frequency or intensity when the
alloy composition changes, as originally observed by Brya.15

Grein and Cardona, on the one hand,20 and de Gironcoli and
Baroni, on the other,21,22 developed phonon calculations at
intermediate composition that have lead to refinement of the
assignment of Alonso and Winer9 without challenging the
basic picture.

Complications arise when entering the Si- and Ge-
moderate/dilute limits. Recent experimental and theoretical
insights, gained by Rath et al.16 and by Franz et al.,17 reveal
unexpected trends. In particular a series of remarkable intensity
interplays (RIs), hereafter referred to as RI1−2−3, was detected
between neighboring Raman features. These play an important
role in our work.

In the Si-Si spectral range, one such RI occurs at moderate
Si content between the main Si-Si mode (underscored) and
the minor mode that grows on its low-frequency side (not
underscored), as apparent in Fig. 1. Such interplay was
briefly mentioned by Alonso and Winer9 and is observable
in the Raman spectra reported by Rath et al. (refer to the
higher-frequency doublet at x = 0.536, 0.70, and 0.86 in
Fig. 11 of Ref. 16). Quasiperfect intensity matching is detected
around the critical Ge content xc1 ≈ 0.70–0.80 (RI1). This is
visible in Fig. 1, as well as in the corresponding theoretical
spectra reported by de Gironcoli (refer to Fig. 5 of Ref. 21). At
lower Si content, the low-frequency peak becomes dominant;
eventually, in the Si-dilute limit, only that mode survives, as
clearly observed in the explicit data of Franz et al. (digitalized
from Fig. 6b of Ref. 17), which are reproduced in Fig. 3(a).
Based on their calculations using an anharmonic version
of the Keating model and disordered large supercells (512
atoms), Franz et al.17 assigned the low- or high-frequency
components of the doublet as being due to Si-Si bond
stretching, with the Si-Si bond either isolated in Ge (Si1) or
vibrating in presence of a third Si atom (Si2), respectively
(see Fig. 2(b)).

Somewhat surprisingly, similar scenarios develop for the
main Si-Ge mode when entering the Ge- and Si-dilute limits,
though within a more restricted composition domain. This is
apparent in the Raman data of both Franz et al. (taken from
Fig. 6b of Ref. 17) and Rath et al. (taken from Fig. 1 of
Ref. 16), as reproduced in Fig. 3(b) and 3(c), respectively. In
each case, the main Si-Ge mode (underscored) is progressively
relayed by a minor mode that grows on its low-frequency (x
≈ 1, Fig. 3(b)) or high-frequency (x ≈ 0, Fig. 3(c)) side (not
underscored). At a certain stage, the side mode turns dominant.
Remarkably, quasiperfect intensity matching between the main
and the side features is achieved at nearly symmetrical contents
of the minor species at the Si-dilute (xc2 ≈ 0.9, RI2, Fig. 3(b))
and Ge-dilute (xc3 ≈ 0.1, RI3, Fig. 3(c)) limits. Explicit contour
modeling of the Raman lineshapes in this respect are reported
by Rath et al. (refer to Fig. 9, left, of Ref. 16, top and bottom
panels).

With small Si content (x ≈ 1), abundant data indicate that,
eventually, the side mode at low frequency remains alone at
high Si dilution (Fig. 3(b)) before total disappearance. The side
mode is thus naturally identified as Si-LVM (Si0). Therefore,
the so-called main Si-Ge feature does not connect with the
Si-LVM. This strongly reminds us of the problem faced by
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FIG. 3. RIs between the main and the minor SiGe Raman features. Si1−xGex Raman spectra representative of the RIs taking place between
the main (underscored) and the minor (not underscored) Raman features in the (a) Si-Si (RI1) and (b) and (c) Si-Ge (RI2 and RI3, respectively)
spectral ranges when entering the (a) and (b) Si- and (c) Ge-moderate/dilute limits. The presented data in all panels were digitalized from
raw experimental spectra taken by Franz et al. at low temperature ((a) and (b)), for better resolution of neighboring Raman features, and by
Rath et al. (c) (i.e., from fig. 7, bottom, of Ref. 17; from fig. 1 of Ref. 16; and from fig. 6b of Ref. 17).In panel (c), the data were reproduced
after proper renormalization using the original factors, as specified within parentheses. In panel (a), the asterisks refer to decomposition of the
original (Si − Ge)Si

2 band into a pseudodoublet (an overview is given in Fig. 1).

Brya in the Ge-dilute limit, in reference to the previously
mentioned long-standing enigma.15 A feature reminiscent
of the so-called main Si-Ge feature at high frequency just
before total disappearance was attributed by Franz et al.17

to the bending mode of an isolated Si-Si pair (Si1). Such an
assignment of the nearby Si0- and Si1-like features ∼400 cm−1

was already achieved by Grein and Cardona (see Fig. 2(b);
also compare Fig. 10b of Ref. 17 with Fig. 3 of Ref. 20).
However, the intensity interplay between the two features was
not commented on. A basic problem is that RI2 brings in an
extra oscillator (outside the ovals in Fig. 2(b)) on top of the
six ones already identified by Alonso and Winer,9 resulting in
a total of seven oscillators. Weak features were observed by
Franz et al. on the low-frequency side of the Si-LVM in the
highly dilute limits, i.e., near x ≈ 0.99 (see Fig. 5 of Ref. 17).
However, these were attributed by Franz et al.17 to the natural
Si isotopes.

With small Ge content (x ≈ 0), the data are rather scarce.
If we refer to the Raman spectrum taken by Rücker and
Methfessel using the Si0.878Ge0.11C0.012 alloy with negligible
C content (refer to Fig. 6 of Ref. 3), the side mode at high
frequency already dominates the so-called main Si-Ge mode
at x = 0.11. The trend is reinforced at x = 0.07 (Fig. 3(c)).
It would have been interesting to see what happens when
approaching the highly Ge-dilute limit, but we are not aware
of any Raman data at a lower Ge content than 7 at.%. By
analogy with RI2, we anticipate that only the side mode at
high frequency will survive, eventually connecting with the
Ge-LVM (Ge0). This would solve the long-standing enigma
raised up by Brya.15

To summarize this brief overview of the literature over the
last four decades, we are left with seven oscillators—not six,
as is usually admitted (refer to the ovals in Fig. 2(b)). A further
basic problem relates to the traditional assignment of the Si-Ge
Raman signal, by searching for it, to a single Si-Ge candidate
mode, which, however, falls neither to Ge-LVM (x ≈ 0) nor to
Si-LVM (x ≈ 1) in corresponding dilution limits. Moreover,
three interesting intensity interplays, involved with the main
Si-Si and Si-Ge features in reference to RI1 and RI2−3,
respectively, remain unexplained. Finally, one remarkable
feature arises: the critical x values for RI2 and RI3 are nearly
symmetrical (corresponding to ∼10 impurity at.%), which
cannot be merely fortuitous.

To our view, the latter point (xc2 ≈ 1 − xc3), which has
attracted no attention so far, appeals to strictly similar assign-
ment of the two side features within the same global scheme.
This cannot be achieved within the current six-oscillator
scheme shown in Fig. 2(b), because RI2 involves a seventh
oscillator. More generally, any formalization of the observed
RIs seems forbidden if we start from the current 3D assignment
of the individual Raman lines in terms of the Sin and Gen

units (Fig. 2(b)). This is because each Raman line is usually
due to several units, not to a single one, as noted by Grein
and Cardona.20 This makes it difficult, in principle, to derive
explicit laws for the composition dependence of the intensities
of the individual Raman lines. Such explicit laws are still
missing.

The main objective of this work is to design a simple
scheme that provides a consistent assignment of the whole
set of Raman lines over the composition domain and that
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naturally accounts for the observed composition dependence
of the intensities of various modes, in reference to RI1−2−3.

To achieve this objective, we take advantage of a specificity
of Raman scattering: that it operates at the BZC (q ≈ 0). Such
a restriction is interesting on the theoretical side, because
at this limit the space phase term (�q · �r) of the plane wave
that ideally describes a phonon disappears, along with all
information on the actual position (�r) of an atom in the real
(3D) crystal. Therefore, a phenomenological description of the
lattice dynamics in one dimension (1D), along the so-called
linear chain approximation (LCA), should, in principle, be
sufficient. In this case, the Raman active mode of a pure
diamond crystal, say, Si, which corresponds to out-of-phase
motions of the two intercalated face-centered cubic (fcc)
sublattices in the 3D diamond lattice, each being considered
quasirigid (q ≈ 0), simply transposes at 1D into Si-Si bond
stretching. Generalizing to the SiGe alloy, this means that
the related Raman lines should be discussed in terms of
Ge-Ge, Si-Ge, and Si-Si bond stretching at 1D. The same
bond may give rise to distinct Raman features, which comes to
distinguish among various local LCA-type (1D) environments
of that bond. Such a 3D→1D change of scope for the basic
understanding of the 1-bond → multimode SiGe Raman
pattern remains unexplored.

Three phenomenological, i.e., LCA-based (1D), schemes
are available in the literature for the description of the Raman
spectra of alloys, as originally worked out for A1−xBxC

zincblende crystals (C denoting indifferently a cation or
an anion). The first two, i.e., the modified random-element
isodisplacement (MREI, Ref. 26) and cluster (Ref. 27)
schemes, were developed at the emergence of such alloys in the
mid-1960s. In the MREI scheme the bonds of a given species,
i.e., AC- or BC-like, are all supposed to contribute to the same
unique Raman line at a given alloy composition (1 bond →
1 mode), irrespective of their local environment. In contrast,
the cluster scheme distinguishes among like bonds depending
on their first-neighbor environment at 3D out of four possible
clusters in a zincblende alloy (1 bond → 4 modes). In each
case, the equivalence between like elementary oscillators at a
given alloy composition, i.e., the chemical bond in the MREI
scheme and the chemical bond in its first-neighbor sphere in
the cluster scheme, is formalized by considering that such
oscillators are immersed into the same uniform VCA-type
continuum. This provides smooth composition dependence of
the phonon frequencies by construction. As for the intensity
of a given Raman line, this simply scales as the fraction
of corresponding elementary oscillator in the crystal. The
remaining scheme, i.e., the so-called percolation scheme,28

introduces a description of a random A1−xBxC alloy in terms
of a composite of the AC- and BC-like host regions, not in
terms of a uniform VCA-type continuum as with the MREI
and cluster schemes. This naturally leads to distinguish among
vibrations of like bonds depending on two environments
(1 bond → 2 modes). Schematic comparisons between the
contents of the cluster and MREI schemes, on the one hand,
and of the percolation scheme, on the other hand, are available,
e.g., in Figs. 1 of Refs. 28 and 29, respectively. Persistent
shortcomings in the current version of the percolation scheme
are concerned with the nature of the AC- and BC-like host
regions, regarding both the composition and the length scale.

As far as SiGe is concerned, the 1-bond → 1-mode
MREI scheme is clearly undersized in view of the natural
complexity of the Raman spectra. Besides, some of us have
shown that the 1-bond → 4-mode cluster scheme is not
devoid of conceptual ambiguities and seems thus misleading
regarding the nature of the alloy disorder.30 What remains is
the percolation scheme. The second objective of this work
is to see whether the percolation scheme, successfully used
for A1−xBxC zincblende alloys,28,29 may further apply to the
diamond-type Si1−xGex alloy.

In an attempt to extend the percolation scheme to SiGe,
we are aware that certain adaptation might be needed with
respect to the original 1-bond → 2-mode version because of
the zincblende → diamond change in the crystal structure.
Moreover, the number of bond species enlarges from two
in a ternary A1−xBxC zincblende alloy (A-C and B-C) to
three in the binary Si1−xGex diamond alloy (Ge-Ge, Si-
Ge, and Si-Si). This is because all sites are likely to be
occupied by the two-atom species in Si1−xGex , while the C

sublattice remains unperturbed in A1−xBxC zincblende alloys.
Additional complications might arise in that the dispersion of
the optical phonon is dramatically large in the pure Si and
Ge crystals, i.e., on the order of several tens of reciprocal
centimeters,31 while it is almost negligible for the parents of
all re-examined zincblende alloys so far, i.e., usually less than
several reciprocal centimeters.28 Finally, we anticipate, in view
of the unusually high complexity of the SiGe Raman spectra,
that the percolation scheme may not be adaptable to SiGe as
long as the percolation-type environments of a bond remain
undetermined at the microscopic scale (explained earlier). In
view of such positioning of SiGe with respect to A1−xBxC

zincblende alloys, we feel it is useful, at any stage of the
development of the SiGe version of the percolation scheme, to
establish a comprehensive comparison with the original and
well-established version for A1−xBxC zincblende alloys for
reference purpose.

The manuscript is organized as follows. In Sec. II, we
introduce an improved version of the percolation scheme
for the reference A1−xBxC zincblende alloys, in which the
existing shortcomings regarding the exact nature of the AC-
and BC-like environments of a bond are overcome. Based on
this, we design in Sec. III A a seven-oscillator [1 × (Ge-Ge),
4 × (Si-Ge), 2 × (Si-Si)] version of the percolation scheme
for random Si1−xGex that naturally accounts for all observed
intensity interplays (RI1−2−3). This deviates considerably from
the prevalent six-oscillator [1 × (Ge-Ge), 1 × (Si-Ge), 4 ×
(Si-Si)] picture reported in Fig. 2(b) (refer to the ovals). The
percolation-type reassignment of the individual Raman lines
realized in Sec. III A, based on the composition dependence
of their intensities, is independently secured in Sec. III B, via
an ab initio insight into the frequencies of bond-stretching
modes along selected 3D-impurity motifs. These are taken as
pseudolinear so as to remain in the spirit of the LCA, upon
which the percolation scheme relies. In Sec. III C, we give
an overview of the SiGe percolation-type Raman lineshapes
over the composition domain, after ab initio calibration of the
Ge-Ge, Si-Ge, and Si-Si Raman efficiencies. In Sec. IV, we
compare the SiGe and zincblende versions of the percolation
scheme. A natural zincblende reference is GaAsP due to its
lattice mismatch similar to that in SiGe. A striking difference
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between the two schemes is an inversion of the order of
the like phonon modes in the Si-Si (Sec. IV A) and Si-Ge
(Sec. IV B) multiplets with respect to the well-resolved Ga-P
doublet. Such inversions are discussed via a comparative
ab initio insight into the bond lengths and BZC phonons of
prototype impurity motifs that are directly transposable to the
two crystal structures. Conclusions are summarized in Sec. V.

II. MODIFIED VERSION OF THE PERCOLATION
SCHEME FOR THE REFERENCE ZINCBLENDE

ALLOYS

Our aim in this section is to identify the microstructure
of the AC- and BC-like percolation-type environments of a
bond in the reference A1−xBxC zincblende alloys, in terms
of composition and length scale. In doing so we focus on the
non-polar transverse optical (TO) modes of such alloys, which
assimilate in nature with the optical modes of SiGe.

A. Raman intensity aspect

The intensity of a given Raman mode is monitored by its
oscillator strength. In the current version of the percolation
scheme, the available oscillator strength per bond, which scales
as the corresponding bond fraction, divides between the two
like modes of a given percolation doublet in proportion of
the scattering volumes of the AC- and BC-like host regions.
These are simply assumed to scale as the related bond fractions.
Accordingly the intensities of the two like Raman features that
form the AC- and BC-like percolation doublet, referring to
A-C and B-C vibrations in the AC- and BC-like environ-
ments, respectively, scale as follows: (1 − x)2 and (1 − x) · x

for A-C and B-C vibrations, respectively, in AC-like envi-
ronments and x · (1 − x) and x2for A-C and B-C vibrations,
respectively, in BC-like environments.The two like modes
from the same doublet thus have similar intensities near x

≈ 0.5, and the dominant mode at one end of the composition
domain (x ≈ 0,1) turns minor at the other end. Such RI was
unambiguously observed with the Raman signal of the short
Be-based bond of both ZnBeSe32,33 and ZnBeTe34 alloys.

In our search to identify the microstructure (composition
and length scale) of the AC- and BC-like environments, we
face a double constraint. First, regarding the length scale, it
is remarkable that most phonon dispersion curves of a pure
crystal, e.g., Ge or Si, can be reproduced by considering
central and noncentral interatomic force constants between
first neighbors only.35 Accordingly, any assignment of the AC-
and BC-like environments in the alloy beyond the second or
third neighbors of a bond might not be realistic. Second, such
environments should be defined at 1D, not at 3D as in the
cluster model. This is to remain consistent with the LCA upon
which the percolation scheme relies.

The previously mentioned scaling of the Raman intensities
on the alloy composition is preserved simply by considering
that the percolation model distinguishes between the stretching
of a bond depending on its AC- or BC-like first-neighbor
environment at 1D. For example, C(AC)B is identified as
the 1D oscillator for the A-C bond stretching in the BC-like
environment. The corresponding fraction of oscillator then
expresses as the probability of finding B (x) next to A

(1 − x) on the 1D (A,B)-like substituting sublattice, the two
probabilities being independent in case of random A↔B

substitution. The 1D oscillators for A-C bond stretching in the
AC-like environment and for B-C bond stretching in the AC-
and BC-like environments are likewise identified as C(AC)A,
C(BC)A, and C(BC)B, respectively.

B. Raman frequency aspect

The two possible AC- and BC-like environments of a
bond undergo a major transition when the alloy composition
changes. This concerns their spatial organization in the crystal.
Such a transition occurs at the so-called A-C and B-C bond
percolation thresholds (BPT’s). The BPT’s correspond to
critical alloy compositions at which the bond species that form
the minor environment, i.e., the A-C ones with small A content
and the B-C ones with small B content, connect spontaneously
into a pseudoinfinite treelike continuum spreading throughout
the crystal.36 This is a pure statistical effect of the random
substitution on the (A,B) sublattice.36 Below the BPT the
minor bonds are only connected into finite treelike chains,
with dispersion in size. In a random A1−xBxC zincblende
alloy, the B-C BPT is identified near xB ≈ 0.19, while the
symmetrical composition xA ≈ 0.81 refers to the A-C BPT.36

The crucial point is that the internal structure of the treelike
chains of a given type, i.e., AC- or BC-like, drastically changes
when turning from finite to infinite, as detailed later. Because
the phonon frequency depends on the local environment, this
gives rise to a percolation-type singularity in the frequency of
the stretching modes of the hosted bonds.

We focus on the BC-like 1D environment for clarity. A
key result of the percolation site theory is that the BC-like
treelike continuum that forms right at the BPT (x = xB) is
a pure fractal. This means that if we take a given B atom
from this pseudoinfinite cluster and put it at the center of an
imaginary cube with variable edge L, then the fraction of the
cube occupied by the B atoms from the pseudoinfinite cluster
decreases regularly according to a scaling law with a stable
exponent smaller than the dimension of the lattice, i.e., three
in the present case, when L increases (see Ref. 36, chapter 3).
This introduces a basic notion behind the concept of fractal:
the arrangement of the B atoms forming the pseudoinfinite
continuum is self-similar, i.e., stable, at all scales.36

Now, consider what happens on each side of a BPT. Another
key result of the percolation site theory is that as soon as
the alloy composition has departed from the BPT, the fractal
character is lost.36 Below the B-C BPT (x < xB), where
the BC-like region merely consists of a dispersion of finite
clusters with different sizes, the fractal behavior somehow
survives; however, some deviation with the original scaling
law (explained earlier) should be taken into account, and
the deviation increases when the size of the finite clusters
decreases.36 Nevertheless, in such a regime, which we refer to
as “fractal-like,” the local environment of the A-C and B-C
bonds vibrating within the fine-size BC-like clusters remains
quasistable, i.e., quasi-independent on the alloy composition
x,36 leading to quasi-invariance of the corresponding TO
frequencies (0 < x < xB). In contrast, above the B-C BPT
(x > xB), the BC-like continuum that results from the coa-
lescence of the finite-size clusters enters a so-called normal

045201-7
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regime. This means that, at a given alloy composition, the
fraction of the previously mentioned cube that is occupied by
the B atoms from the pseudoinfinite cluster basically scales
as the volume L3 of the cube, just as for a homogeneous
object, justifying the terminology “normal behavior”. Accord-
ingly, in the percolation scheme, we assimilate the BC-like
continuum (x > xB) with a submesoscopic alloy within the
main macroscopic A1−xBxC alloy by using a renormalized
MREI description. In this description, the BC-like continuum
takes a pseudoalloy composition y that is linearly rescaled with
respect to the actual alloy composition x. It varies between 0
and 1 when x varies between the pure BC-like fractal (x =
xB), taken as a pseudoparent (y = 0) and the pure BC crystal
(x = y = 1).32 A smooth x variation generates in turn a smooth
y variation, with concomitant impact on the TO frequencies
of the A-C and B-C bonds vibrating in the BC-like suballoy
(xB � x � 1).

We admit that the previously mentioned spectacular change
in the nature of the composition dependence of the TO
frequencies on each side of the BPT (i.e., from quasistable in
the dispersion regime, referred to as quasifractal, to smoothly
x dependent in the continuum regime, referred to as normal)
could so far be observed only with the ZnBeSe32,33 and
ZnBeTe34 alloys that exhibit a unusually large contrast in their
bond physical properties (Ref. 37). For less contrasted alloys,
the percolation-type singularities in the Raman frequencies
do not show up that evidently.28,29 Such singularities are the
only justification for the terminology of a percolation scheme.
If they cannot be detected, we may as well abandon the
Raman frequency aspect38 and replace the terminology of
a percolation scheme with that of a 1D-cluster scheme (by
opposition with the 3D-cluster scheme of Verleur and Barker,
Ref. 28), in reference to the Raman intensity aspect only (see
Sec. II A).

C. Ab initio protocol

We must verify that the novel 1D assignment of the AC- and
BC-like environments of a bond (see Sec. II A) is technically
consistent with our simple ab initio protocol used to access
the two input parameters as needed per bond to implement
the 1D-cluster/percolation scheme, i.e., the frequency of the
impurity mode ωimp, plus the splitting � between the like TO
modes of the same percolation doublet.29

We consider the BC-like percolation doublet. To determine
ωimp, we use a large AC-like supercell containing a unique B

impurity. This is the ultimate configuration that refers to an
impurity (B) vibrating in the environment of the other species
(AC-like). We then search for the vibration frequency of that
impurity. There is only one triply degenerate (triplet) mode
for the isolated B atom. At 1D, this naturally identifies with
the C(BC)A oscillator. To determine �, we consider a pair of
B impurities sitting nearby on the fcc substituting sublattice,
forming a B–C–B pseudolinear chain. This is the ultimate
configuration that refers to an impurity (B) vibrating in its own
environment (BC-like). The vibration pattern of the B–C–B

pseudolinear chain divides into two distinct series of BZC-like
modes. The first series reduces to a singlet, corresponding to
in-phase motion of the B atoms along the axis of the chain,
against the intermediary C atom (q ≈ 0). Basically, this refers

to B-C bond stretching along the pseudolinear B-C-B chain,
thus identified with C(BC)B at 1D. The second series consists
of a multiplet including all possible bending modes of the
B–C–B chain near q ≈ 0 in their in-plane and out-of-plane
variants. Such bending modes of the BC-like chain correspond
to B-C bond-stretching perpendicular to the chain, i.e., inside
the surrounding AC-like environment. As such, they identify
with the C(BC)A oscillator at 1D. We checked that the bending
modes of the B–C–B chain emerge close to ωimp. (e.g., Fig. 3
in Ref. 28). � is then estimated as the frequency gap between
the C(BC)A impurity mode and the C(BC)B mode from the
pair.

Incidentally, we checked that a pseudolinear continuum of
B-C bonds, i.e., the natural percolation-type motif for B-C
bonds vibrating in a BC-like environment, provides a Raman
pattern similar to that for the finite B-C-B chain mentioned
previously (compare the spectra in Figs. 9 and 3 of Refs. 39
and 40, respectively). In practice, the ab initio protocol is thus
operated using the latter, simpler motif.

The reactualized version of the percolation scheme is not
a predictive one but instead offers a versatile framework
for the interpretation of any 1-bond → multimode Raman
pattern of any alloy. The 1D oscillators can be expanded
at will, in principle, depending on the number of observed
Raman lines per bond and on the observed composition
dependence of the Raman intensities. Such flexibility is crucial
in our interpretation of the SiGe Raman spectra, as shown
later.

III. PERCOLATION SCHEME FOR RANDOM SIGE

In our review of the SiGe Raman spectra, we did not find any
hint of singularity in the composition dependence of the Raman
frequencies at any BPT.41 This is not surprising because of the
rather small contrast in the bond physical properties of the Si
and Ge crystals (see Sec. I). This also means that understanding
of such curves falls beyond the scope of our simple percolation
scheme. Thus, in our work, we emphasize the Raman intensity
aspect and adopt, from now on, the terminology of a 1D-cluster
scheme for SiGe (see Sec. II B).

A. 1D-cluster assignment of the individual Raman lines:
An intensity-based approach

In practice, we proceed as follows for the reassignment of
the SiGe Raman pattern at 1D.

First, we investigate roughly which Raman lines refer to
which bond species. This is already known for the three main
Raman features (see minor panels in Fig. 1), which are thus
used as references. The assignment of the remaining four
minor features is then inferred from the subtle inversions of
dominance observed between the main or reference features
(underscored in Figs. 1 and 3) and the minor or unknown
ones (not underscored), in reference to RI1−2−3. The basic
idea is that the features involved in such interplays are
coupled in some way and hence basically relate to the same
bond stretching. Accordingly, the low-frequency feature that
counterbalances the main Si-Si one in RI1 (near xc1 ≈ 0.70,
Fig. 3(a)) and the two satellite ones challenging the main Si-Ge
feature in RI2−3 (near xc2 ≈ 0.9 and xc3 ≈ 0.1, Fig. 3(b)
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and 3(c), respectively) would relate to Si-Si and Si-Ge bond
stretching, respectively. In this case, the Si-Si doublet and the
Si-Ge triplet indicate that the corresponding bond stretching
distinguishes between two and three types of 1D environments,
respectively. Only three RIs are identified for four minor
modes. One minor mode should thus remain unassigned, the
one corresponding to the dotted line in Fig. 2. More detail is
given later.

The next issue is to identify the microstructure of the
distinct 1D environments per Si-Si and Si-Ge bond in terms
of both length scale and composition. We use two criteria:
(1) simplicity, in view of BZC phonons essentially proceeding
from short-range interactions (see Sec. II A), and (2) an ability,
behind the corresponding fractions of elementary “bond +
environment” 1D oscillators (as estimated on the basis of
random Si↔Ge substitution), to reproduce the corresponding
RIs at the observed alloy compositions, i.e., at xc1 for the Si-Si
doublet (RI1) and at the symmetrical xc2 and xc3 values for the
Si-Ge triplet (RI2 and RI3, respectively).

1. Si-Si spectral range

First, we consider the Si-Si doublet. At the Si-dilute limit,
most Si-Si bonds are isolated in the Ge-like matrix. Only a
small fraction of these are sitting near other Si impurities.
The trend is progressively reversed when increasing the Si
content until at a certain stage, the second environment
becomes dominant.36 Our view is that RI1 simply reflects such
an inversion of population. This naturally leads to a crude
assignment of the low- and high-frequency components of the
Si-Si doublet as resulting from Si-Si bond stretching in Ge-
and Si-like environments, respectively.

For deeper insight, we investigate whether it is possible to
define such 1D environments at the minimum length scale of
first neighbors, in reference to criterion 1. There are three
possible Si-Si oscillators then: Si(SiSi)Si, Si(SiSi)Ge, and
Ge(SiSi)Ge, corresponding to Si-Si bond stretching in pure-Si,
(Si,Ge)-mixed, and pure-Ge 1D environments, respectively.
The fractions of such “bond + environment” 1D oscillators
simply express by weighting the Si-Si bond fraction (in
reference to the atom species within the brackets), i.e.,
(1 − x)2, by the corresponding fractions of 1D environments
(in reference to the atom species outside the brackets), i.e.,
(1 − x)2, 2x · (1 − x), and x2,assuming a random Si↔Ge
substitution. If we assume further that the Raman polarizability
of the Si-Si bond does not depend on its local neighborhood, in
a first approximation,42 then quasiperfect intensity matching
at xc1 (cf. RI1), in reference to criterion 2, is achieved simply
by assigning the low- and high-frequency Raman lines of
the Si-Si doublet to the individual Ge(SiSi)Ge oscillator and
to the couple of [Si(SiSi)Ge, Si(SiSi)Si] oscillators taken as
indiscernible, respectively. Perfect intensity matching is then
expected at 70 at.% Ge. This is consistent with experimental
findings (refer to the Si-Si doublet at x = 0.77 in Fig. 1),
especially those of Rath et al. (refer to the morphological
changes within the broad Si-Si band in Fig. 11 of Ref. 16),
and with theoretical ones (in reference to the bottom panel
of Fig. 5 in Ref. 21). Accordingly, Si-Si bond stretching
distinguishes between full-Ge and alternative first-neighbor
1D environments. The corresponding modes are labeled

hereafter as (Si − Si)Ge
1 and (Si − Si)SiGe+Si

1 . In this compact
notation, introduced from Fig. 1, the main label specifies the
nature of the bond stretching, while the subscript and the
superscript refer to the length scale and the composition of
the 1D environment, respectively.

2. Si-Ge spectral range

We proceed in the same way for the Si-Ge triplet. To
our view, the striking similarity between the scenarios that
develops for the main Si-Ge feature when entering the Si- and
Ge-moderate/dilute limits implies assignments that are strictly
similar in nature for the two Si-Ge side features involved
in RI2−3. In Fig. 3(b) and 3(c), the two side features (not
underscored) dominate the main one (underscored) in the Ge-
and Si-dilute limits, where the environments of any Si-Ge
bond are dominantly of the Si and Ge types, respectively. The
corresponding side features are thus attributed to Si-Ge bond
stretching in Ge- and Si-like environments, respectively. This
is consistent with our basic view that the Si-Ge side features,
not the main one, should connect to the Ge (x ≈ 0) and Si (x ≈
1) LVMs (see Sec. I), thus resolving the long-standing enigma
pointed out by Brya.15

Based on criterion 1, we consider first the possibility
that Si-Ge bond stretching might distinguish among its three
possible first-neighbor environments in 1D, as was the case
for Si-Si bond stretching. The 1D oscillators associated with
the top, intermediate, and bottom Si-Ge branches, mostly
apparent at moderate/dilute Ge, intermediate composition, and
moderate/dilute Si, would then be identified as Ge(GeSi)Ge,
Si(GeSi)Ge, and Si(GeSi)Si, respectively. However, coming
to criterion 2, no opportunity exists, with the corresponding
fractions of oscillators, to achieve intensity matching at the
observed xc2 (RI2) and xc3 (RI3) values. Intensity matching
would occur at 33 at.% of the minor species, not ∼10 at.%,
in contradiction with experimental findings. We thus push
the assignment to second neighbors, keeping in mind that
the Ge- and Si-like 1D environments should be identical in
nature. In reference to criterion 2, intensity matching at xc2

and xc3 is then achieved simply by considering that the top,
intermediate, and bottom Si-Ge branches distinguish among
full-Si, all possible (Si,Ge)-mixed variants, and full-Ge 1D
environments, respectively. Accordingly, in the case of random
Si↔Ge substitution, the related fractions of oscillators are
expressed as [2 · x · (1 − x)5,2 · x · (1 − x) · {[x + (1 − x)]4

−[x4 + (1 − x)4]},2 · (1 − x) · x5], corresponding to intensity
matching between the central and the peripheral features when
entering the last 16 at.% of the composition domain. This is
consistent with the data reported in Fig. 2(a) and 2(b) and with
the experimental findings of Rath et al. (ideally corresponding
to xc2 ≈ 0.86 and xc3 ≈ 0.14, as apparent in their detailed
contour modeling of the Si-Ge Raman signals using Lorentzian
functions in Fig. 9(1) and 9(3) of Ref. 16, respectively).
The corresponding series of 1D oscillators are written as
[SiSi(GeSi)SiSi, GeSi(GeSi)SiSi + . . . + GeGe(GeSi)SiSi
+ . . . + GeGe(GeSi)GeSi, GeGe(GeSi)GeGe] with extended
notation or [(Si − Ge)Si

2 ,(Si − Ge)SiGe
2 ,(Si − Ge)Ge

2 ] with com-
pact notation (see Fig. 1).

We turn to the last minor oscillator, which remains
unassigned (refer to the dotted line in Fig. 2). It was detected
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theoretically by de Gironcoli from x = 0.28 (Fig. 2(a)),21

emerging at intermediary frequency between the Si-Si and
the Si-Ge spectral ranges. We may thus hesitate a priori
to assign this mode in terms of Si-Si stretching or Si-Ge
stretching. The first option would be to consider that Si-Si
bond stretching is sensitive to its local environment at a
length scale beyond first neighbors, in contradiction to our
previous explanation of RI1. Our preliminary attempts to
explain RI1, along with the overall composition dependence
of the unassigned minor oscillator, presuming the latter is of
the Si-Si type, remained unsuccessful. Our present view is that
the unassigned minor oscillator relates to the top (Si − Ge)Ge

2
branch. Basically, soon after departing the Ge-dilute/moderate
limit, this branch would split into a sort of pseudodoublet;
the corresponding features are highlighted by asterisks in
Figs. 1 and 3(a). Such decomposition does not challenge RI3,
because it occurs afterward (xc3 < 0.28). Within the scope
of the 1D-cluster scheme, such decomposition would reveal
that the Si-Ge bonds vibrating in the Si-like environment
turn sensitive to their 1D environment at a length scale
beyond second neighbors. However, we are unable to assign
the actual microstructure or the length scale of such a 1D
environment. This is because the intensity interplay between
the two components of the pseudodoublet is obscured by
the side (Si − Ge)SiGe

2 and (Si − Si)Ge
1 features that become

strong starting with moderate Ge content. The low-frequency
component is weaker than its high-frequency counterpart with
large Si content (compare the intensity of the two features
highlighted by asterisks in the top spectrum of Fig. 1).
Such intensity interplay suggests that the two components
may refer to Ge- and Si-like 1D environments, respectively,
with the latter 1D environments remaining full-Si-like up
to second neighbors, in reference to the native (Si − Ge)Ge

2
mode.

3. 1D-cluster SiGe scheme

The resulting 1D-cluster scheme for SiGe is displayed
in Fig. 4. The dotted line manifests the decomposition
of the (Si − Ge)SiGe

2 branch into the previously mentioned
pseudodoublet away from the Ge-dilute limit (refer to the oval
on the left-hand side of Fig. 4). Otherwise, each individual
branch is ideally represented by a straight solid line,the slope
being defined so as to best adjust the experimental frequencies
(see Fig. 2(a)). A significant deviation with respect to linearity
is only observed for the central Si-Ge branch at moderate Ge
content (see Sec. III C).

Altogether the SiGe 1D-cluster scheme shown in Fig. 4
provides a description of the Raman pattern of a random
SiGe alloy in terms of seven modes [1 × (Ge-Ge), 4 ×
(Si-Ge), 2 × (Si-Si)], as covered by six generic 1D oscillators
(refer to letters a–f in the figure image). This considerably
deviates from the currently admitted six-oscillator [1 ×
(Ge-Ge), 1 × (Si-Ge), 4 × (Si-Si)] picture at 3D reported
in Fig. 2(b), in which the (Si − Ge)Ge

2 oscillator is omitted.
In particular, the 3D→1D reassignment is apparent in the
way the like oscillators are regrouped, as schematically
indicated by ovals in the two figures. The gain behind
such 3D→1D reassignment is that the 1D-cluster scheme is
explicit regarding the intensity aspect, apart from the presumed

decomposition of the (Si − Ge)Si
2 branch. This applies in

particular to RI1−2−3 (rectangles in Fig. 4). The intensity
information is made apparent via appropriate thickening of the
individual branches in Fig. 4, in accordance with the individual
fractions of oscillators as specified on top of each branch.
The corresponding information in Fig. 2(b) is restricted to the
three main Ge-Ge, Si-Ge, and Si-Si branches and is notably
different with respect to Fig. 4, at least regarding the latter two
branches.

B. Ab initio insight at dilution limit phonon frequencies
(x ≈ 0,1)

Independent insight into the 1D-cluster reassignment of the
phonon branches is gained by ab initio phonon calculations
using prototype impurity motifs taken as representative of the
considered branches in their dilute limits (x ≈ 0,1), realized
by large (64-atom) supercells including one or two impurities
(gray/red online triangles in Figs. 2(a) and 4). The impurity
motifs are taken to be as simple as possible, with any impurity
atom staying within the second-neighbor sphere of any other
impurity atom from the same motif and each motif remaining
beyond the second-neighbor sphere of the like motif from the
next supercell. Altogether, this ensures that our supercells are
sufficiently converged in size to mimic the phonon behavior
of the motif as immersed into the infinite crystal.43 Whenever
the considered impurity motif does not merely reduce to an
isolated impurity, it is designed as a pseudolinear chain (LCA
type), and we focus on the bond-stretching mode along the
chain (‖ chain) for consistency with the LCA upon which the
1D-cluster model relies (see Sec. II). Such impurity motifs
provide not only a ‖ chain mode but also ⊥ chain ones
(referring to atom displacements perpendicular to the chain),
with in-plane and out-of-plane variants. Nevertheless, we
checked that the frequencies of the ⊥ chain modes related
to a given LCA-type motif roughly replicate, within less than
7 cm−1, the frequency of the ‖ chain mode of another such
motif.44 With this, no vibration mode of any motif is left
unassigned, in principle. The assignment of a given 1D-cluster
branch is eventually validated by a convergence of that branch
onto the frequency of the ‖ chain mode of the related LCA-type
motif. Such modes, as sketched out on each side of Fig. 4, are
labeled by adding a subscript (0 or 1, in reference to the x

value) to the letter (a–f) representing each branch.
The phonon calculations are done after full relaxation of

the supercells, i.e., of the lattice constant and of the atom
positions, along the procedure detailed (e.g., in Ref. 28,
using more specifically Eq. (2) therein). We use density
functional theory and local density approximation through
the Ceperley-Alder45 functional for the exchange-correlation
energy in the SIESTA code (Ref. 46). We take the separable
Troullier-Martins47 norm-conserving pseudopotentials with a
basis set generalized to include double-zeta with polarization
orbitals. The cutoff energy and k-grid cutoff are 360 Ry and
10 Å, respectively. When tested with the pure Si and Ge
crystals, the obtained values of bond length, bulk modulus,
and BZC-phonon frequency with the SIESTA code compare
fairly well with the experimental data and with earlier ab initio
values given by the AIMPRO code, as shown in Table I. Details
regarding the AIMPRO code are given in the next subsection.
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FIG. 4. (Color online) 1D-cluster scheme for random SiGe. This supports a seven-oscillator [1 × (Ge-Ge), 4 × (Si-Ge), 2 × (Si-Si)]
Raman pattern for Si1−xGex . The individual 1D oscillators, identified as letters (a, b, etc.) are schematically represented in the body of the
figure, using the same symbolic notation as in the minor panels of Fig. 1 for a direct comparison. The like phonon branches, referring to the
same ultimate bond stretching (as emphasized in the symbolic notation of each oscillator), are regrouped by ovals. Altogether, the resulting 1D
assignment considerably deviates from the current 3D one, as summarized in Fig. 2(b), in both the nature and the number of oscillators. When
available, the individual fractions of oscillators, which monitor the Raman intensities (see text), are specified on top of each relevant branch
and visualized via appropriate thickening of such branches (gray area), using the same scale as in Fig. 2(b), for a direct comparison. The overall
1D assignment, based on RI1−2−3 (see rectangles) at the theoretical critical Ge contents (xc1 = 0.70, xc2 = 0.86, and xc3 = 0.14) between
like Raman features (as regrouped by the same oval), is independently validated by a direct ab initio insight into the frequencies of prototype
vibration modes (identified by a letter, in reference to the considered oscillator, plus a subscript, in reference to the x value), as indicated on
each side of the figure. In the two represented supercells, containing a unique impurity atom, a simple color code is used for Si (white) and
Ge (dark gray) and to materialize the impurity-induced strain in the host medium (light gray). The (Si − Ge)Si

2 mode (refer to the oval on the
left-hand side) decomposes into a distinct doublet away from the Ge-dilute/moderate limit (the two components of the doublet are identified
by asterisks in Fig. 1), which is taken into account by the adjunction of a dashed line.

1. Si-Si spectral range

The1-bond → 2-mode Si-Si doublet requires an ab initio
insight into four limit frequencies. For the top (Si − Si)SiGe+Si

1
branch, referring to Si-Si stretching in an undetermined SiGe-
or Si-like environment, we consider two limit supercells, i.e., a
pure-Si one, providing the bulk Si frequency (x ≈ 0, mode a0,
522 cm−1), plus a Ge-like one containing three quasialigned
Si impurities, searching then for Si-Si stretching along the

Si-Si-Si chain. This refers to Si-Si stretching in a (Si,Ge)-
mixed LCA-type first-neighbor (1) environment (x ≈ 1, mode
a1, 460 cm−1). For the bottom (Si − Si)Ge

1 branch due to Si-Si
stretching in a full-Ge (1) environment, we consider a Ge-
like supercell with an isolated Si-Si bond, searching for its
stretching mode (x ≈ 1, mode b1, 464 cm−1), plus a Si-like
supercell with an isolated Ge atom, being interested then in Si-
Si stretching close to that impurity (x ≈ 0, mode b0, 502 cm−1).
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TABLE I. Ab initio bond lengths, bulk moduli, and optical phonon frequencies of the pure Si and Ge crystals presently obtained with the
SIESTA code, as compared with experimental values and with earlier ab initio values obtained with the AIMPRO code (cf. italics) (Ref. 48).

Nearest-neighbor distance (Å) Bulk modulus B (GPa) ωO (cm−1)

Ab initio Exp. Ab initio Exp. Ab initio Exp.

Si 2.089 2.327b 100.4 99.9c 522 520.2e

2.335a 99.7b 518.1a

Ge 2.183 2.443b 70.1 78.1d 304 300.7e

2.417a 75.2a 300.9a

aReference 48.
bReference 49.
cReference 50.
dReference 51.
eReference 52.

In theSi-dilute limit (x ≈ 1), the two Si-Si stretching modes
a1 and b1 converge to 462 cm−1 within less than 2 cm−1, which
is globally consistent with the trend observed in Fig. 2(a).
However, in contrast with earlier calculations of Franz et al.
(refer to Sec. V C of Ref. 17), we are not able to resolve the
experimental splitting of ∼9 cm−1 between the two branches
(see Fig. 2(b)). For more decisive insight, we turn to the Ge-
dilute limit (x ≈ 0), where the splitting is expected to be much
larger, i.e., ∼30 cm−1, based on the experimental observations
of Brya.15 Our ab initio calculations reveal a distinct Si-Si
stretching mode close to the isolated Ge (b0, the vibration
pattern is schematically represented in Fig. 6(b)). This emerges
∼502 cm−1, i.e., ∼20 cm−1 below the bulklike Si-Si stretching
far from Ge (a0), in reasonable agreement with experimental
findings (see Fig. 2(a)). For completeness, we extended the ab
initio calculations to the localized stretching mode of a Si-Si
bond taken between two Ge impurities in a Si-like matrix
(x ≈ 0), so as to form a pseudolinear . . .SiGe(SiSi)GeSi. . .
chain immersed in Si. Again, such a mode is expected to refer
to b0 in principle (see the basic representation of motif b in the
body of Fig. 4). The phonon frequency of this mode is identi-
fied at 502 cm−1, ideally matching the predicted value. Again,
in the latter additional test, the ab initio calculations are strictly
constrained to 1D, not to 3D, so as to remain fully consistent
with the LCA upon which the 1D percolation scheme relies.
Altogether, the preceding series of ab initio insights supports
the 1D-cluster assignment of the Si-Si doublet.

2. Si-Ge spectral range

In principle, an insight into six limit frequencies is required
to test the basic 1-bond → 3-mode Si-Ge pattern, if we
omit the decomposition of the (Si − Ge)Si

2 branch. However,
our limitation to simple impurity motifs, so as to fulfill a
basic condition regarding the convergence of our ab initio
calculations (explained earlier), excludes the analysis of those
Si-Ge branches referring to 1D environments formed with
impurities only, such as (Si − Ge)Si

2 near x ≈ 1 and (Si − Ge)Ge
2

near x ≈ 0. The remaining four limit frequencies are accessed
by using two symmetrical pairs of impurity motifs. An isolated
Si atom in Ge gives access to Si-Ge stretching in a full-Ge
environment (x ≈ 1, mode e1, 385 cm−1), corresponding to
the LVM of Si in Ge. Its counterpart on the Si side, i.e., the
Ge-LVM, is likewise accessed by considering an isolated Ge

atom in Si, focusing on the actual impurity vibration (x ≈ 0,
mode c0, 451 cm−1). The limit frequencies of the intermediate
Si-Ge branch, due to Si-Ge stretching in a (Si,Ge)-mixed
environment, are determined using a pair of impurities in
second-neighbor positions, searching for the in-pair impurity
stretching against the intermediate host atom (refer to the d0

and d1 modes at 401 and 400 cm−1, respectively).
Altogether, each branch benefits from at least one ab initio

insight, and the related frequencies match remarkably well
the limit frequencies of the three Si-Ge branches near x ≈
0 or x ≈ 1. This secures the Si-Ge 1D-cluster pattern. The
d1–e1 splitting ∼400 cm−1 has already been identified by Franz
et al.,17 using a different motif for d1. In contrast, the d0–e0

counterparts remained unexplored so far. As we anticipated
(see Sec. III A), the Ge-LVM c0 and Si-LVM e1 are connected
with the top and bottom Si-Ge branches, respectively, not with
the central or main one. In particular, near x ≈ 0, where the two
Si-Ge branches are well separated, the central or main Si-Ge
branch unambiguously extrapolates to d0 (see Fig. 2(a)). This
brings decisive insight into the nature of this branch, solving at
the same time the long-standing enigma raised up by Brya.15

3. (Si-Ge)Si
2 fine structure

The presumed collapse of the (Si − Ge)SiGe
2 branch into a

pseudodoublet away from x ≈ 0 cannot be checked directly via
our present ab initio calculations, as discussed previously. For
preliminary insight, we refer to the dominant vibration patterns
sketched in the body of Fig. 2(b), as identified by Grein and
Cardona.20 In each case, the bond stretching is emphasized by
an oval for clarity. As expected, the extreme (1, 21) and (42, 51)
pairs of vibration patterns basically refer to Si-Ge and Si-Si
stretching, respectively. Moreover, in each case, the phonon
frequency increases when the local environment becomes more
Si-like. This is consistent with our generic 1D-cluster assign-
ment of such doublets in terms of [(Si − Ge)Ge

2 ,(Si − Ge)SiGe
2 ]

and [(Si − Si)Ge
1 ,(Si − Si)SiGe+Si

1 ], respectively. The key ques-
tion then is whether the features between, corresponding to the
vibration patterns (31, 41), basically refer to Si-Ge stretching,
as we presume, or to Si-Si stretching. Clearly, both patterns
refer to Si-Ge stretching (see the ovals) in a Si-like environment
(pay attention to the local composition), the environment
being more Si rich for the upper branch, as anticipated (see
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Sec. III A). Apparently this conforms to our view that such
modes basically proceed from the original (Si − Ge)Si

2 branch.

4. Ge-Ge spectral range

The two limit frequencies of the apparently unique Ge-Ge
branch are accessed by considering a pure-Ge supercell (x
≈ 1, mode f1, 304 cm−1), plus a Si-like supercell containing
a pair of first-neighbor Ge impurities, searching then for the
Ge-Ge stretching (x ≈ 0, mode f0, 281 cm−1). The as-obtained
ab initio values match the experimental ones within less than
5 cm−1.

We have run further ab initio calculations in search of a
possible extra Ge-Ge mode. In doing so, we considered a
Ge-like supercell containing a unique Si impurity, in reference
to the symmetrical supercell successfully used to evidence
the a0–b0 splitting for Si-Si. The Si-induced tensile strain
generates local Ge-Ge stretching near Si at significantly
lower frequency (x ≈ 1, unlabeled mode, ∼280 cm−1) than
the bulklike Ge-Ge stretching far off Si (x ≈ 1, mode f1,
304 cm−1), as schematically indicated in Fig. 4 (refer to the
bottom arrow on the right side of the figure). The vibration
pattern of such Ge-Ge stretching close to Si is identical to that
found for the local Si-Si mode b0 close to an isolated Ge atom
in Si, as schematically represented in Fig. 6(b). We deduce
that the single-mode Ge-Ge behavior apparent in the Raman
spectra may not be intrinsic but due to a screening of an actual
multimode pattern similar to the Si-Si one. The reason the
Ge-Ge Raman signal does not develop into a proper multimode
pattern is not yet clear. We simply note along with Rath
et al.16 that the Ge-Ge spectral range is quasiconstantly blurred
by a parasitical disorder-induced phonon density of states.
This materializes into a distinct quasiamorphous (q-a, refer to
Fig. 1) band covering a broad frequency range (120–310 cm−1)
from low Si content (see Fig. 2 of Ref. 16).

In brief, our simple frequency-based ab initio protocol,
as focused on the bond-stretching modes along selected 1D-
like impurity motifs, secures the intensity-based 1D-cluster
assignment of the phonon branches (see Sec. III A) reported
in Fig. 4. Furthermore, it reveals a predisposition of the
Ge-Ge bond to exhibit a multimode Raman pattern, like Si-Si.
However, this seems to be hampered by parasitical disorder-
induced effects. Additional ab initio phonon calculations,
not restricted to 1D-like impurity motifs, would be useful
to provide a final answer to the problem of the fine-feature
assignment of the SiGe Raman spectra or simply to refine
the present 1D-cluster scheme. For example, the apparent
decomposition of the (Si − Ge)Si

2 mode into a pseudodoublet
far off the Ge-dilute limit has not yet been firmly established.

C. Contour modeling of the Raman lineshapes within
the 1D-cluster scheme

An overview of the 1D-cluster Raman lineshapes of the
random Si1−xGex alloy is derived by taking the imaginary
part of a sum of six Lorentzian functions representing the
six basic [1 × (Ge-Ge), 3 × (Si-Ge), 2 × (Si-Si)] harmonic
oscillators, using the frequency (solid lines) and intensity (in
reference to the fractions of oscillators specified on top of
each branch) information available per oscillator in Fig. 4.
In the case of the central (Si − Ge)SiGe

2 line, whose frequency

shift vs composition significantly deviates from linearity when
x < 0.4, we substitute to the crude linear curve corresponding
to the plain line in Fig. 2(a) an empirical one obtained by
interpolation of the abundant experimental data. In addition,
we neglect the decomposition of the (Si − Ge)Si

2 branch away
from the Ge-dilute/moderate limit, where the contribution of
this mode to the overall Raman signal becomes negligible.

The fractions of 1D oscillators merely act as weighting
factors, applying to the intrinsic Si-Si, Si-Ge, and Ge-Ge
Raman efficiencies. These remain to be determined. Experi-
mental probing is problematic, because the perfect zincblende
SiGe crystal, formed with Si-Ge bonds only, does not exist.
We thus turn to a direct ab initio calculation of the Raman
spectra of the diamond Si and Ge crystals and of the
zincblende SiGe compound. These calculations are done by
using a pseudopotential spin density-functional supercell code
(AIMPRO),53 along the lines of the local exchange-correlation
parameterization by Perdew and Wang,54 taking the potentials
for Si and Ge as proposed by Hartwigsen et al. (Ref. 55). In
doing so, we follow the exact procedure optimized earlier for
SiGe in Ref. 48. Supercells of the same size were used for the
three types of crystals for a direct comparison of the intrinsic
(Ge-Ge, Si-Ge, Si-Si) Raman efficiencies. The resulting Si,
Ge, and SiGe ab initio Raman spectra, uniformly damped for
a direct comparison of the Raman efficiencies via the Raman
intensities, are reported in the inset of Fig. 5. These scale
approximately as (1, 2/3, 1/2).

The only remaining parameter for the calculation of
the Raman spectra of the disordered SiGe alloy within the
1D-cluster scheme is the phonon damping per mode. This
refers to the linewidth at half height of the corresponding
Raman line. We use the composition dependencies of the
linewidths of the main Ge-Ge (γGe−Ge), Si-Ge (γSi−Ge),
and Si-Si (γSi−Si) Raman lines, as measured by Brya over
extended composition domains (refer to Fig. 2 of Ref. 15).
Such a systematic study of the SiGe phonon dampings
covering simultaneously the Ge-Ge, Si-Ge, and Si-Si
spectral ranges and large composition domains is quite
unique in the literature. The available data suggest linear
composition dependencies of the Ge-Ge and Si-Si linewidths,
corresponding to γGe−Ge ∼ (−12.5x + 15.0) cm−1 for x <∼ 0.7
and γSi−Si ∼ (5.0x + 3.0) cm−1 for x <∼ 0.5, respectively.
For our use, we extrapolate such linear trends over the full
composition domain, in a crude approximation. Interestingly,
Brya could detect the main Si-Ge line throughout the entire
composition domain.15 The Si-Ge linewidth γSi−Ge appears to
remain quasistable at the two ends of the composition domain,
i.e., corresponding to γSi−Ge ∼ 8cm−1 near x <∼ 0.5 and to
γSi−Ge ∼ 12cm−1 near x <∼ 0.7, and varies linearly between.
In a crude approximation, we take identical linewidths for
the like Raman lines of a given 1D-cluster multiplet, simply
because such lines ultimately refer to the same bond stretching.
Experimental support arises in that the like Si-Si (see Fig. 3(a))
and Si-Ge (Fig. 3(b) and 3(c)) Raman peaks exhibit similar
linewidths when they coexist with similar intensities.

A representative set of as-obtained 1D-cluster Raman
lineshapes for random Si1−xGex is displayed in Fig. 5.
Globally, our calculated curves compare fairly well with the
experimental ones, referring to the extended sets of Raman data
independently collected at well-spanned alloy compositions
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FIG. 5. (Color online) 1D-cluster SiGe Raman lineshapes. Ref-
erence 1D-cluster Raman lineshapes for random Si1−xGex as derived
by taking the imaginary part of a classical six-oscillator [1 ×
(Ge-Ge), 3 × (Si-Ge), 2 × (Si-Si)] dielectric function, using the
phonon frequencies (solid black lines) and fractions of oscillators (as
specified on top of each branch) available in Fig. 4. The interval
of alloy composition between consecutive curves corresponds to
δx = 0.1. In the case of the central Si-Ge line, the composition
dependence of the phonon frequency is directly interpolated from the
abundant experimental data displayed in Fig. 2(a) for more realistic
insight. Decomposition of the (Si − Ge)Si

2 mode is neglected in a first
approximation. The fractions of oscillators, which monitor the Raman
intensities, merely act as weighting factors, applying to the Ge-Ge,
Si-Ge, or Si-Si intrinsic Raman efficiencies (see text). The latter are
determined from ab initio calculation of the Raman spectra of pure
Ge (diamond), Si (diamond), and SiGe (zincblende) supercells (SCs)
with the same size. The corresponding curves are displayed in the
inset, using the same phonon damping for a direct comparison of
the Raman efficiencies via the Raman intensities. In the main panel,
the individual Ge-Ge, Si-Ge, and Si-Si phonon dampings are taken
identical to those measured by Brya for the corresponding main lines
(refer to fig. 2 of Ref. 15), assuming the same damping for the like
Raman lines of a given 1D-cluster multiplet (Si-Ge or Si-Si) at a
given alloy composition. RI1−2−3between like Raman lines of a given
1D-cluster multiplet are emphasized by hatched areas (refer to Fig. 3
for a comparison with the experiment).

by Brya (see Fig. 1 of Ref. 15), by Alonso and Winer (as
reproduced in Fig. 1 of this work), by Rath et al. (see Fig. 1
of Ref. 16), and by Pezzoli et al. (see Fig. 1 of Ref. 13). No
adjustable parameter is used in our calculations. For example,
the reference experimental signal near x ≈ 0.5, corresponding
to comparable intensities of the main Ge-Ge, Si-Ge, and Si-Si
Raman features, is well reproduced. In addition, the RIs near
xc1 ≈ 0.70 (RI1), xc2 ≈ 0.90 (RI2), and xc3 ≈ 0.10 (RI3), as
pointed out by the shaded areas and opposite arrows in Fig. 5,
are naturally accounted for.

More precisely, the comparison between the experimental
and the theoretical curves is straightforward in the Ge-poor
half of the composition domain (x � 0.6), because the
available experimental data mentioned previously converge
to stable trends, irrespective of the types of samples used.
The intensity ratios of the main Ge-Ge, Si-Ge, and Si-Si

lines are reproducible from one set of data to another one.
In contrast, there exists considerable variation among the
available experimental spectra in the Ge-rich half of the
composition domain (x > 0.6), where the Ge-Ge Raman
line becomes largely dominant. The theory vs experiment
comparison is thus more uncertain. For example, if we focus on
the representative range of Ge content ∼77 at.%, the intensity
ratio between the main Si-Ge mode and the dominant Ge-Ge
mode varies as much as 2:3 (x = 077, epitaxial layers grown
by liquid-phase epitaxy, Ref. 9 and Fig. 1 of the present work),
1:2 (x = 0.70, epitaxial layers deposited by molecular beam
epitaxy, Ref. 16), 1:3 (x = 0.80, bulk polycrystals, Ref. 15), and
1:5 (x = 0.85, epilayers obtained by using the so-called low-
energy plasma-enhanced chemical vapor deposition technique,
Ref. 13). This may be due to a considerable variation in
the value of the Ge-Ge phonon damping depending on the
type of samples used. The damping values recently measured
by Rath et al. with their extended set of epitaxial layers
(see Fig. 5 of Ref. 16), corresponding to the composition
dependence γGe−Ge ∼ (−12.5x + 23.5)cm−1, overestimate by
a factor as large as ∼1.6 the original values found by Brya with
polycrystals (see Fig. 2 of Ref. 15).

In addition, the Si-Ge phonon damping is largely over-
estimated in our calculations, at least in the Ge-rich half
of the composition domain, with concomitant impact on the
intensity of the related Raman lines. This comes from a certain
ambivalence of the dominant Si-Ge Raman signal. In the
Ge-poor half of the composition domain, this unambiguously
consists of a unique Raman line, the central line of the
1D-cluster Si-Ge triplet, i.e., (Si − Ge)SiGe

2 , which appears
as a distinct and well-resolved feature far off its (Si − Ge)Si

2
satellite (Fig. 5). The situation is not as clear when entering
the Ge-rich half of the composition domain. Within the
1D-cluster scheme, the Si-Ge Raman signal then consists of
a doublet resulting from the added contributions of the main
(Si − Ge)SiGe

2 line and of its novel (Si − Ge)Ge
2 satellite, which

points out at a slightly lower frequency (Fig. 5). The damping
value for each component of the Si-Ge doublet is smaller than
that measured by Brya,15 which refers to the doublet as a
whole. This was neglected in our calculations.

The previously mentioned approximations have no impact
on the RIs. They only modify the relative strengths of Raman
lines due to distinct bond stretching, while the RIs take
place between like Raman lines referring to the same bond
stretching.

To summarize, despite its simplicity, our 1D-cluster
scheme, based on random Si↔Ge substitution, provides a
fair quantitative understanding of the natural complexity of
the Si1−xGex Raman spectra in their composition dependence,
apart from the (Si − Ge)Si

2 decomposition. On the practical
side, this brings the important information that clustering, as
well as anticlustering, effects can be neglected in SiGe, as
suggested earlier by Pezzoli et al. (Ref. 13).

IV. SIGE (DIAMOND) VERSUS GAASP (ZINCBLENDE)
VERSIONS OF THE PERCOLATION SCHEME

An interesting question, then, is how the present version
of the 1D-cluster scheme for diamond SiGe compares with
the current 1-bond → 2-TO version of a zincblende alloy. A
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natural zincblende reference in this respect is GaAsP because
of a lattice mismatch similar to that of SiGe, i.e., ∼3–4%. The
local relaxations are thus comparable, as are the microscopic
strains. Precisely, it appears in retrospect that the microscopic
strain is the crucial ingredient that governs the ordering of
the like phonon sub-branches in the 1D-cluster doublets of all
re-examined zincblende alloys so far (details are given later).
Additional interest arises in that SiGe and GaAsP are highly
contrasted regarding the dispersion of their optical modes.
These are nearly dispersionless in GaAs (∼15 cm−1, Ref. 56)
and GaP (∼1.5 cm−1, Ref. 57) and strongly dispersive in Si
(∼60 cm−1, Ref. 31) and Ge (∼30 cm−1, Ref. 31). This offers
a unique opportunity to appreciate the extent to which the
dispersion effect might challenge the zincblende version of the
1D-cluster scheme, based on the sole microscopic strain effect.

A basic difference between the SiGe (see Fig. 4) and GaAsP
(see Fig. 7 of Ref. 29) 1D-cluster schemes is the opposite
order of the like phonon branches in each multiplet. If we
consider the well-resolved Ga-P doublet of GaAsP, the low-
frequency (high–frequency) branch refers to the host region
mainly formed with the short (long) bond, i.e., the GaP-like
(GaAs-like) one. In contrast, the like phonon branches in each
of the Si-Ge and Si-Si multiplets are ranked from bottom
to top in the sense of more Si-rich host environments, as
mainly formed with short Si-based bonds. Such Si-Si and
Si-Ge inversions with respect to the reference Ga-P doublet
are successively discussed hereafter.

A. Inversion of the Si-Si branches with respect to the reference
Ga-P doublet: A dispersion effect discussed at the Si-parent

limit (x ≈ 0)

We tackle the issue of the Si-Si inversion with respect
to Ga-P at the Si/GaP-parent limit (x ≈ 0), where the Si-Si
doublet is best resolved, via ab initio calculations. The ultimate
supercell providing simultaneous access to the two modes of
a given doublet is a Si/GaP-like one containing a single Ge/As
impurity, as sketched in Fig. 6(a). Our aim is to compare
the lattice relaxation and dynamics of the host medium close
to the impurity and far from it in the two systems after full
relaxation of the supercells. The medium-related bond-length
distributions and BZC-phonon curves of the (Ge,As)-doped
(Si,GaP)-like supercells are shown in Fig. 6(a) and 6(b),
respectively. Corresponding features in the two panels are
identified using the same simplified labeling, with no subscript,
for a direct link.

The (Si-Si)Ge/(Ga-P)As host bonds near the Ge/As impurity
(refer to the superscript) suffer local compression due to the
long (Ge-Si, Ga-As) impurity bonds (refer to the gray area
around the isolated impurity in Fig. 6(a)). This gives rise to
a distinct shoulder on the short-bond side of the main (Si-
Si)Si/(Ga-P)P bulklike feature in Fig. 6(a). Transposed to the
lattice dynamics (Fig. 6(b)), we would expect the host bonds
close to the impurity to generate a distinct localized phonon at
a higher frequency than the BZC-like (q ≈ 0) mode from the
bulk. Indeed, an intuitive rule at 1D is that the force constant
of a bond reinforces when the bond is shortened, leading to
hardening (blue-shift) of the phonon mode, and vice versa. This
is so for GaAsP, where the blue-shift is on the order of 10 cm−1,
but not for SiGe, where a red-shift of ∼25 cm−1 is detected
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FIG. 6. SiGe (diamond) vs GaAsP (zincblende) comparison.
Inversion of the Si-Si doublet: (a) Ab initio bond-length distributions
and (b) phonon density of states at the Brillouin zone-center (BZC
Ph-DOS) referring to the host Ga-P and Si-Si bonds of similar
GaP- and Si-like (left and right, respectively) supercells containing
a unique As/Ge impurity (x ≈ 0), as sketched in panel (a). The
isolated As/Ge impurities produce a local compression of the host
medium, as schematically represented by the gray area. The ab
initio vibration pattern of the corresponding localized matrix-like
(Ga − P)As

/
(Si − Si)Ge modes (in reference to b0 in Fig. 4 for SiGe)

is schematically represented in panel (b). The host atoms beyond the
second neighbors of the impurity (not shown) remain motionless.
Corresponding bond-length and phonon features in panels (a) and
(b), respectively, are labeled using the same simplified 1D-cluster
terminology, with no subscript, for a direct link.

instead. Such an apparent anomaly for SiGe can be explained
only if the compression-induced hardening effect (blue-shift)
is compensated for by a larger confinement-induced softening
effect (red-shift).

As extensively discussed by Rücker and Methfessel
(Ref. 3), the central idea behind the confinement effect is that
the host medium constitutes an obstacle to the propagation
of a “foreign” (impurity) mode, simply because it does
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not naturally vibrate at the same frequency. Therefore, the
impurity mode remains confined onto the impurity motif.
As such, it cannot be described in terms of a nominal
q ≈ 0 Raman-allowed mode, corresponding to a quasi-
infinite correlation length. It is currently decomposed into a
series of elementary plane waves involving disorder-induced
theoretically forbidden q �= 0 modes. A dominant q ≈ 0 (BZC)
character is nevertheless presumed, corresponding to out-of-
phase vibration (optical character) of the two intercalated fcc
sublattices taken as quasirigid (BZC character). Such a picture
has been formalized into the well-known spatial correlation
model (SCM),58,59 in which the series runs over all possible
q values from the BZC to the Brillouin zone edge (BZE),
with decreasing weight of the elementary modes when q gets
closer to the BZE. In most semiconductors, the optical phonons
exhibit negative dispersion, so the confinement effect usually
leads to a red-shift with respect to the nominal BZC mode of
a pure crystal.

Such a drastic red-shift as ∼25 cm−1 cannot be explained
within the SCM, i.e., by assuming that the impurity mode
retains a dominant BZC-like character. Indeed, even for
confinement of the highly dispersive Si-Si optical mode at the
ultimate scale of the lattice constant, the red-shift predicted by
the SCM does not exceed ∼5 cm−1 (see Fig. 1 of Ref. 58).

The only way to take full advantage of the phonon
dispersion is to suppose that the localized Si-Si impurity mode
behaves more like a BZE mode than like a BZC one. Just
such a BZE mode can be identified via its vibration pattern,
considering that not only the two fcc sublattices (optical
character) but also the first neighbors on each fcc sublattice
(BZE character) should vibrate out of phase. For a direct
insight, we sketched in Fig. 6(b) the ab initio vibration pattern
of the Si-Si stretching mode close to Ge. We checked that
the Ga-P vibration pattern close to As is similar. The atom
displacements are negligible beyond the second neighbors
of the isolated impurity (not shown), which establishes the
local character of such impurity-induced modes. Furthermore,
we observe that the Si (P) atoms immediately connected to
the isolated Ge (As) impurity, thus located on the same fcc
sublattice, exhibit two-to-two antiphase displacements. The
same holds true for the Si/P atoms sitting in second-neighbor
positions on the same Ge/As-like fcc sublattice. Altogether,
this testifies to an effective BZE-like character of the Si-Si and
Ga-P local modes close to the Ge/As impurities, as expected.

The dispersion-induced phonon softening is maximum for
BZE phonons, i.e., of the same order of magnitude as the
BZC-BZE dispersion. In the case of GaAsP, the hardening
effect due to the impurity-induced compressive strain is not
challenged, due to the absence of Ga-P dispersion. In contrast,
the dispersion-induced softening should easily screen the
strain-induced hardening in SiGe, a rather moderate one (i.e.,
merely of ∼10 cm−1), if we refer to GaAsP because of the
large Si dispersion (∼60 cm−1). In this case, the Si-Si local
mode near Ge (BZE-like) would fall over the Si-Si parent-like
one far off Ge (BZC-like) when x ≈ 0. This, we believe, is the
origin of the spectacular Si-Si inversion with respect to Ga-P
at the Si-parent limit.

When departing from this limit, both the lower and the
upper modes are red-shifted. This is because, first, the short

Si-Si bonds experience tensile strain due to the progressive
dilation of the host lattice with Ge incorporation. At the same
time, the upper mode, originally a BZC-like one, becomes
increasingly confined, which, in turn, generates an additional
red-shift, as accounted for by the SCM (explained earlier)
and discussed in detail by Rücker and Methfessel (Ref. 3, see
Sec. I). In contrast, the confinement of the lower mode, which
is already maximum (BZE-like) near x ≈ 0, remains basically
invariant. Accordingly, the two modes progressively converge
when x increases. A quasiperfect coincidence seems to be
eventually achieved near x ≈ 1, supported by our ab initio
phonon calculations (refer to a1–b1 in Fig. 4). The two Si-Si
branches are then represented by similar series of Si-impurity
motifs, thus suffering comparable strain and dispersion effects.

B. Inversion of the Si-Ge branches with respect to the reference
Ga-P doublet: A lattice relaxation effect discussed at the

Si-dilute limit (x ≈ 1)

We now discuss the Si-Ge inversion with respect to Ga-
P at a dilute limit. All Si-Ge modes are of the impurity
type, thus suffering a similar dispersion effect. As such, the
dispersion effect is virtually excluded from the discussion.
Only the microscopic strain needs to be considered. Everything
comes down to a comparison of the lattice relaxations in the
zincblende (GaAsP) and diamond (SiGe) lattices, from the
point of view of the dilute (Si-Ge)/(Ga-P) bonds. The lattice
dynamics immediately follows in principle, using the basic
rule highlighted with italics in the previous section. At the
(Ga-P)-dilute limit, the short Ga-P bonds are dispersed into
the GaAs-like host medium with a large lattice constant. The
equivalent situation for the Si-Ge bond is achieved at the
Si-dilute limit only, the minor Si-Ge bonds being shorter than
the host Ge-Ge ones. The Si-Ge vs Ga-P confrontation is thus
placed at this limit.

For a direct Si-Ge vs Ga-P comparison, we use impurity
motifs that are transposable from the diamond structure to the
zincblende one. An inevitable drawback is that this comparison
is limited to the bottom and intermediate Si-Ge branches only.
The top Si-Ge branch cannot be addressed, because the related
impurity motif, i.e., a pseudolinear chain of five Si atoms with
an intermediate Ge atom (see Fig. 4), does not transpose to the
zincblende structure. In practice, we select those two motifs
currently used to run the zincblende version of our ab initio
protocol (see Sec. II). These consist of one isolated (Si/P)
impurity (1 imp) plus one pair of second-neighbor impurities
(2 imp), to be immersed in Ge/GaAs-like supercells. The
impurity-related distribution of bond lengths and BZC-phonon
curves after full relaxation of the supercells are shown in
Fig. 7(a) and 7(b), respectively. Again, corresponding features
in the two data sets are identified by using the same simplified
labeling, with no subscript, for a direct link. As expected,
there is a striking difference between the zincblende and the
diamond lattice relaxations, with concomitant impact on the
lattice dynamics.

The short Si-Ge bonds in Ge are shorter (clouds of dense
dots) in the Si-rich (2-imp) region and longer (clouds of
dispersed dots) in the Si-poor (1-imp) one (Fig. 7(a), right),
thus vibrating at higher and at lower frequency (recall the
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FIG. 7. SiGe (diamond) vs GaAsP (zincblende) comparison. In-
version of the Si-Ge multiplet: (a) Ab initio bond-length distributions
and (b) phonon density of states at the Brillouin zone-center (BZC
Ph-DOS), referring to the impurity bonds of similar GaAs- and
Ge-like (left and right, respectively) supercells (x ≈ 1) containing
either an isolated P/Si impurity (gray curves) or a pair of such
impurities sitting in second-neighbor positions (clear curves), as
sketched in panel (a). Clouds of dense and dispersed dots refer
to shorter and longer impurity bonds, respectively. The situations
are opposite for the GaAsP and SiGe schemes. Corresponding
bond-length and phonon features—or set of features—in panels (a)
and (b), respectively, are labeled using the same simplified 1D-cluster
type terminology, with no subscript, for a direct link. In panel (b),
only schematic vibration patterns are displayed, for a direct SiGe
vs GaAsP comparison (qualitative). A standard notation is used for
backward (�) or ⊗) and upward (�) atomic motions.

basic rule in italics in Sec. IV A), respectively (Fig. 7(b),
right). This conforms to intuition. Indeed, the connection of the
Si-impurity motifs to the surrounding Ge-like matrix involves
eight short Si-Ge bonds for 2 imp against four only for 1 imp.
The Si-rich (2-imp) domain thus offers stronger resistance to
the medium-induced tensile strain, and as such retains more
efficiently the naturally short Si-Ge bond length.

Surprisingly, the trend is opposite for Ga-P, the short
Ga-P bonds being longer (clouds of dispersed dots) inside
the P-Ga-P (2-imp) chain and shorter (clouds of dense dots)
at its extremities, or around an isolated P (1-imp) atom
(Fig. 7(a), left), with concomitant impact on the Ga-P phonon
frequencies (Fig. 7(b), left). The latter two series of Ga-P bonds
exhibit similar bond length, indicating that the local relaxation
outside a given P-impurity motif does not depend on the
arrangement of the P atoms inside that motif. This is consistent
with a current observation by extended x-ray absorption
fine-structure measurements in zincblende alloys that the
substituting fcc sublattice remains nearly undistorted.60–63 The
local strain is merely accommodated by a distortion of the
invariant fcc sublattice. This was formalized into a model by
Balzarotti et al. (Ref. 64). As the P atoms stay at the nodes
of the undistorted fcc GaAs-like sublattice, with a large lattice
constant, the local tensile strain inside the P–Ga–P (2-imp)
motif can only be accommodated by a mere in-plane motion
of the central Ga atom toward the P pair. Such relaxation
is not as efficient as that achieved at the two extremities of
the P–Ga–P chain or around the isolated P atom (1 imp),
where three and four unconstrained Ga atoms are available per
P atom, respectively. Accordingly, the former in-chain Ga-P
bonds remain longer than the latter ones.

In summary, we attribute the opposite order of the Si-Ge and
Ga-P branches to a difference in nature between the local lattice
relaxations in the diamond and those in the zincblende alloys.
In the first case, all sites are equivalent in the relaxation process,
so an impurity motif tends to shrink or expand as a whole
to retain the native bond lengths of its constituting species.
In contrast, the zincblende relaxation process is constrained
to a strict condition that the substituting fcc sublattice should
remain undistorted. This suffices to generate a counterintuitive
trend in the lattice relaxation that short bonds tend to be
longer in their own environment than in the environment of
the other (long) species, transposed onto the order of the two
sub-branches of a 1D-cluster doublet. This, we believe, is the
origin of the Si-Ge inversion with respect to Ga-P.

V. CONCLUSION

A reactualized version of the phenomenological, i.e.,
LCA-based, percolation scheme, which has recently led to
a unification of the classification of the Raman spectra of the
random III–V and II–VI A1−xBxC zincblende semiconductor
alloys,28,29 is applied to random Si1−xGex , the leading group
IV semiconductor alloy with diamond structure. In this so-
called 1D-cluster version, the current shortcomings regarding
the assignment of the individual Raman lines, which relate to
the composition and length scale of the 1D environment of a
bond, are overcome.

RIs within both the Si-Si (RI1) and the Si-Ge (RI2−3)
spectral ranges when reaching the Si- and Ge-dilute/moderate
limits, known from the literature, are used to reassign the
individual SiGe Raman lines into a proper seven-oscillator [1
× (Ge-Ge), 4 × (Si-Ge), 2 × (Si-Si)] version of the 1D-cluster
scheme, assuming a random Si↔Ge substitution. This strongly
deviates from the currently admitted six-oscillator [1 × (Ge-
Ge), 1 × (Si-Ge), 4 × (Si-Si)] picture. In particular, the Si-Ge
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multimode pattern supported by the 1D-cluster version solves
a long-standing enigma originally pointed out by Brya15 as
to why the presumably unique Si-Ge mode in the traditional
assignment of the SiGe Raman lines does not converge onto
the Ge-LVM or onto the Si-LVM when reaching the Ge- or
Si-dilute limits, respectively.

The 1D-cluster reassignment of the SiGe Raman lines is
independently secured by ab initio insight into the frequency
of bond-stretching modes along prototype impurity motifs.
These are taken as pseudolinear so as to remain consistent
with the LCA, upon which the 1D-cluster scheme relies. Fair
contour modeling of the multimode SiGe Raman lineshapes
is eventually achieved on this basis after ab initio calibration
of the intrinsic Ge-Ge, Si-Ge, and Si-Si Raman efficiencies
and proper weighting of such efficiencies by the fractions
of related multioscillators in the crystal. Such fractions are
likewise estimated within the LCA, assuming a random
Si↔Ge substitution. This result points out that clustering and
ordering effects play a minor role in SiGe alloys, as suggested
by Pezzoli et al. (Ref. 13). We mention, nevertheless, that
additional fully 3D ab initio calculations would be useful to
provide a final answer to the problem of the fine-structure
assignment of the SiGe Raman spectra.

More precisely, a predisposition of the Ge-Ge bond to
exhibit a multimode Raman pattern, as evidenced by ab initio,
seems to be impeded by parasitical disorder-induced effects.
A unique Raman mode is currently detected in the Ge-Ge
spectral range, indicating a basic insensitivity of the Ge-Ge
bond stretching to its local environment. In contrast, significant
fine structuring exists for both Si-Si and Si-Ge bond stretching,
revealing sensitivities to their first- and second-neighbor 1D

environments, respectively. However, none of these is able to
discriminate among all possible variants of such environments.
Si-Si merely distinguishes between all-Ge (bottom branch)
and other environments (top branch), i.e., including at least
one Si atom. Regarding Si-Ge, the extreme Raman features
refer to all-Ge (bottom branch) and all-Si (top branch)
environments, the other (mixed) ones providing a common
feature between (intermediate branch). A decomposition of the
top Si-Ge branch soon after departing from the Ge-moderate
limit suggests some sensitivity beyond the second neighbors.
Nevertheless, we are not able to identify the microstructure
of such environments. For comparison, the zincblende version
of the 1D-cluster scheme merely distinguishes between the
two possible first-neighbor 1D environments of a bond, as
discussed in this work.

Another major deviation between the SiGe and the
zincblende versions of the 1D-cluster scheme, taking GaAsP
as a reference, is concerned with an inversion of the order of
the like phonon branches in each 1D-cluster multiplet. This
is attributed either to the considerable phonon dispersion of
the Ge and Si crystals (Si-Si doublet) or to a basic difference
between the diamond and the zincblende lattice relaxations
(Si-Ge triplet). The SiGe vs GaAsP comparison is supported
by ab initio bond-length and BZC-phonon calculations us-
ing impurity motifs that are directly transposable from the
zincblende structure to the diamond one.

Generally, this work constitutes the first extension of the
percolation/1D-cluster scheme for the basic understanding of
the Raman spectra of mixed crystals beyond the zincblende
structure. We hope that it stimulates further extension to other
crystal structures.
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Czyyk, and M. Podgórny, Phys. Rev. B 31, 7526 (1985).

045201-19

http://dx.doi.org/10.1103/PhysRevB.77.125208
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevB.65.035213
http://dx.doi.org/10.1103/PhysRevB.70.155319
http://dx.doi.org/10.1063/1.2183349
http://dx.doi.org/10.1103/PhysRevLett.33.371
http://dx.doi.org/10.1103/PhysRevB.15.4789
http://dx.doi.org/10.1103/PhysRevB.15.4789
http://dx.doi.org/10.1103/PhysRevB.71.115206
http://dx.doi.org/10.1103/PhysRevB.71.115206
http://dx.doi.org/10.1103/PhysRevB.81.115207
http://arXiv.org/abs/arXiv:0909.2922
http://dx.doi.org/10.1103/PhysRevB.73.245215
http://dx.doi.org/10.1103/PhysRevB.36.2092
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1016/j.tsf.2008.08.041
http://dx.doi.org/10.1016/j.tsf.2008.08.041
http://dx.doi.org/10.1103/PhysRevB.60.10831
http://dx.doi.org/10.1103/PhysRevB.12.1172
http://dx.doi.org/10.1103/PhysRevB.12.1172
http://dx.doi.org/10.1103/PhysRevB.25.1151
http://dx.doi.org/10.1016/0022-3697(91)90183-Z
http://dx.doi.org/10.1016/0022-3697(91)90183-Z
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<131::AID-PSSB131>3.0.CO;2-M
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1088/0953-8984/2/6/006
http://dx.doi.org/10.1088/0953-8984/2/6/006
http://dx.doi.org/10.1103/PhysRevB.59.2881
http://dx.doi.org/10.1016/0038-1098(81)90337-9
http://dx.doi.org/10.1016/0038-1098(81)90337-9
http://dx.doi.org/10.1016/0038-1098(86)90513-2
http://dx.doi.org/10.1016/0038-1098(86)90513-2
http://dx.doi.org/10.1103/PhysRevB.48.8694
http://dx.doi.org/10.1103/PhysRevB.48.8694
http://dx.doi.org/10.1103/PhysRevB.28.7130
http://dx.doi.org/10.1103/PhysRevB.28.7130
http://dx.doi.org/10.1063/1.1763989
http://dx.doi.org/10.1063/1.3483944
http://dx.doi.org/10.1103/PhysRevB.31.7526

