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‘We propose a novel coarse-graining tensor renormalization group method based on the higher-order singular
value decomposition. This method provides an accurate but low computational cost technique for studying both
classical and quantum lattice models in two or three dimensions. We have demonstrated this method using the

Ising model on the square and cubic lattices. By keeping up to 16 bond basis states, we obtain by far the most
accurate numerical renormalization group results for the three-dimensional Ising model. We have also applied
the method to study the ground state as well as finite temperature properties for the two-dimensional quantum
transverse Ising model and obtain the results which are consistent with published data.
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I. INTRODUCTION

The simulation of two- or higher-dimensional quantum
lattice models remains a great challenge. This has stimulated
great interest in the investigation of renormalization group
(RG) methods for the tensor-network states.''® The use of
the tensor-network state as a variational wave function for
the classical lattice model was first considered by Nishino
and coworkers.'>"' They, and recently Garcia-Saez et al.,"’
proposed a number of RG approaches to study the thermody-
namic properties of the Ising and other models. However, due
to the heavy computational cost, the maximal truncated tensor
dimension D that can be handled with their methods is small
(between 2 and 5) in three dimensions, and consequently the
accuracy of the results they obtained is low in comparison with
the Monte Carlo ones.

In 2007, Levin and Nave® proposed a coarse-grained
tensor renormalization group (TRG) method for studying
two-dimensional (2D) classical models based on the singular
value decompostion (SVD) of the matrix. Later we proposed a
second renormalization group (SRG) method”® to globally
optimize the truncation scheme and improve significantly
the accuracy of the TRG. The application of these methods
in classical and quantum lattice models has achieved great
success.*>2 However, it is difficult to extend these methods
to three dimensions, not just due to the increase of the order
of local tensors, but also due to the change of lattice topology
in the coarse-graining process.'®

In this paper, we introduce a novel coarse-graining TRG
method based on the higher-order singular value decom-
position (HOSVD)? to study physical properties of 2D or
three-dimensional (3D) lattice models. We will first discuss
a simple TRG method based on the HOSVD (abbreviated
as HOTRG hereafter), and then discuss a more sophisticated
method that incorporates the second renormalization effect
of environment tensors to the HOTRG. The HOSVD takes
into account more accurately the interplay between different
components of a tensor. It provides a better scheme to truncate
a local tensor than the SVD.

This paper is arranged as follows. In Sec. II, a detailed
introduction to the HOTRG and HOSRG for the 2D statistical
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lattice models is given. We have taken the 2D Ising model
to show how accurate the HOTRG and HOSRG can be in
comparison with other methods. In Sec. III, we have extended
the HOTRG and HOSRG to the 3D statistical lattice models.
For the 3D Ising model, we have obtained by far the most
accurate numerical renormalization group results for the 3D
Ising model. Our accuracy is comparable with the best Monte
Carlo results. In Sec. IV, we have applied HOTRG to 2D
quantum lattice models. Our preliminary results show that the
HOTRG provides a powerful tool for studying the ground-state
and thermodynamic properties of 2D quantum lattice models.
A summary is given in Sec. V.

II. TWO-DIMENSIONAL SYSTEMS

A. HOTRG
Let us start by taking the Ising model,

H=-Y oo/, (1)
(i)}

as an example to show how the method works in two
dimensions first. ozi is the Pauli matrix at site i. An extension
of the method to three dimensions will be described later. The
partition function of the 2D Ising model can be represented as
a translation invariant tensor-network state,?

Z=Te[ [ Toxyy- 2

where i runs over all the lattice sites and Tr is to sum over all
bond indices, and the local tensor T is defined at each lattice
site as shown in Fig. 1(a),

Txixi,yiy; = z : WOI,X;‘ W‘Mi’ Wa’)’i Wa,y;a &)
o

where W is a 2 x 2 matrix defined by

W= J/cosh(1/T), «/sinh(1/T) 4
“ \W/cosh(1/T), —/sinh(1/T) |’ “)

and T is the temperature.
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FIG. 1. (Color online) (a) A HOTRG contraction of the tensor-
network state along the y axis on the square lattice. (b) Steps of
contraction and renormalization of two local tensors. The initial tensor
TO =T.

To coarse grain, we contract the lattice alternatively along
the horizontal (x axis) and vertical (y-axis) directions. This
scheme of coarse graining is simple to implement. Figure 1(a),
as an example, shows how the contraction along the y axis is
done. At each step, two sites are contracted into a single site
in the coarse-grained lattice [Fig. 1(b)], and the lattice size is
reduced by a factor of 2.

The contracted tensor at each coarse-grained lattice site is
defined by

(n) _ (n) (n)
Mxx’yy’ - Z Txlx;yi szxéi_v” (5)

i

where x = x; @ x, x’ = x| ® x5, and the superscript n de-
notes the nth iteration. The bond dimension of M along the
x axis is the square of the corresponding bond dimension of
T®™. To truncate M®™ into a lower rank tensor, we first do a
HOSVD for this tensor,°

M =Y SuuULUS ULUp, (6)

xx'yy yb
ijkl

where U’s are the unitary matrices. S is the core tensor of
M™_ which possesses the following properties for any index,
say index j:

(1.) all orthogonality,

if j#j', 0

where (S.;..|S. j..) is the inner product of these two
subtensors.
(2.) pseudodiagonal,
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where [S. ; . .| is the norm of this subtensor which is the square
root of all elements’ square sum. These norms play a similar
role as the singular values of a matrix.

In M, the two vertical bonds, y and y’, do not need to be
renormalized. Thus in the practical calculation, UV and UP
are not needed to be determined. Moreover, the right bond of
M is linked directly to the left bond of an identical tensor
on the right neighboring site, thus to truncate any one of the
horizontal bonds of M will automatically truncate the other
horizontal bond. The truncation can be done by comparing the

values of
er=Y IS ®)

and
& = Z |S:,j,:,:|2- (9)

If &1 < &, we truncate the first dimension of S or the second
dimension of UL to D. Otherwise, we truncate the second
dimension of S or the second dimension of U to D. This
kind of truncation scheme provides a simple and optimal
approximation to minimize the truncation error.”! It has been
successfully applied to many fields such as data compression,
image processing, pattern recognition, etc.??

After the truncation, we can update the local tensor using
the following formula:

= YU Ut a0
ij

where U1 = UL (or UR) if &, is smaller (or larger) than ;.

The above HOTRG calculation can be repeated iteratively
until the free energy and other physical quantities calculated
are converged. The cost of the calculation scales as D’ in
the computer time and D* in the memory space. This is
comparable with the cost of TRG.”8

The key step in the above HOTRG iteration is to determine
the four unitary matrices on the right-hand side of Eq. (6).
In our calculation, we determine these matrices by taking the
singular value decomposition of matrices. As an example, let
us consider how to evaluate UL. We first convert M.,y into

N !/
amatrix M, .,

/ —
M, oy = Moy,

with the first index x as the row index and the rest indices
(x’,y,y’) as the column index of this matrix. Then from the
theory of HOSVD, we know that U is equal to the left unitary
matrix of M under the singular value decomposition. Thus U*
can be simply determined from the canonical transformation
of the unitary matrix M'M 1,

MM = UAL UM, (11)

where AL is the eigenvalue of M’M’T. Furthermore, it can be
shown that

P = AR (12)

......

The cost for evaluating these U matrices scales with D°.
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B. HOSRG

The HOTRG is a local optimization method. It minimizes
the error in the truncation of a local tensor. However, it
ignores the renormalization effect of environment. To develop
a global optimization method, it is necessary to consider
the environment contribution in the renormalization of local
tensors. In Refs. 7 and 8, we proposed a SRG appraoch to
incorporate the environment contribution in the optimization
of local tensors. This kind of SRG approach can be also used to
improve the performance of HOTRG, which leads to a global
optimized HOTRG method, referred to as HOSRG below.

The HOSRG follows the same coarse-graining steps as in
the HOTRG. However, at each step, one needs to calculate a
bond density matrix defined on a bond whose basis space will
be truncated. This bond density matrix is defined by tracing
out all environment tensors.

The SRG introduced in Refs. 7 and 8 is an infinite lattice
algorithm. In the calculation of the bond density matrix, the
size of the environment is always assumed to be infinite.
At each step of coarse graining, a combined forward and
backward iteration is performed. In the forward iteration,
the TRG is applied to determine all transformation matrices
and local tensors. A backward iteration is then performed to
determine the bond density matrix. This scheme can be readily
extended to the HOSRG. We have done this kind of calculation
and find that it does provide much more accurate results than
the HOTRG.

Similar as in the DMRG, one can also introduce a finite
lattice algorithm to perform the HOSRG calculation. In this
case, the whole size of the system is fixed and the number
of tensors in the environment is reduced at each step of
coarse graining. Again the second renormalization effect of
the environment is handled by performing forward-backward
iterations. But now this kind of forward-backward iterations
can be repeated for many times, similar as in doing a finite
size sweeping in the DMRG. This provides a self-consistent
approach to treat the system as well as environment tensors.
It can further improve the accuracy of the HOSRG. Below we
give an introduction to this method.

In the first round of forward iteration, we carry out a
standard HOTRG calculation to determine iteratively all the
transformation matrices U™ and local tensors 7. This
iteration ends when the system reaches a desired size, say
2N lattice points with N = 30 ~ 50. One then carries out a
backward iteration to calculate the environment tensor E®
iteratively, starting from EV*D which is set to be a unit tensor.
The iteration formula for determining E™ is given by
= > ESVTY ot Puety (13)

iy jaal = ivia,i 7 jijaJ”

(n)
Ekﬂjl i

ijlizjra
A graphical representation of this equation is shown in Fig. 2.
This backward iteration is terminated after E® is determined.

The above forward-backward iteration determines all
coarse-grained system and environment tensors that are needed
for carrying out the second renormalization calculation. From
these tensors we can perform another forward and backward
iteration to improve their accuracy. But starting from this round
of iteration, the HOTRG is no longer needed. Instead, at each
step of coarse graining we evaluate the bond density matrix
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FIG. 2. (Color online) Graphical representation of Eq. (13) for

determining the environment tensor E,(\,';}]il from El.(}’,j,l) in the
backward iteration.
Pzw,xy using the following formula:
) _ p0A2) 41D (1) g (n42) 7 (n+2)
pzw,xy - Eijkl Uiligi Ujljzj Uklkzk Ulllzl
(n) (n) (n) (n)
X 7}1xk1a ’Ivizyal] szlkszwjzblz' (14)

The repeated index summation is assumed. A graphical
representation of this formula is shown in Fig. 3.
To diagonalize this bond density matrix,>

p(ﬂ) — U(n+1)A(U(n+1))T’ (15)

we can find its eigenpair, (A,U"*"). Same as in the density
matrix renormalization group,’* the eigenvalues of this density
matrix determine the probabilities of the corresponding eigen-
vectors in the virtual bond basis space. By keeping the largest
D eigenvalues of A and the corresponding eigenvectors of
U"*D, one can update the local tensor 7"+ using Eq. (10).
After finishing this forward iteration, we can take a backward
iteration to update all environment tensors with Eq. (13). This
forward-backward iteration is then repeated until all system
and environment tensors are converged.

Figure 4 compares the relative errors of free energy with
respect to the rigorous solution®® for the 2D Ising model
obtained with four different methods. By keeping just 24
states, we find that the relative error of the HOTRG result

FIG. 3. (Color online) Graphical representation of Eq. (14) for

determining the bond density matrix p)  through E{’;;>.
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FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature

T. =2/In(1 + v/2).

is already less than 1077 even at the critical temperature,
much more accurate than the TRG result.”® The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M™ not only the transformation matrix for the
x-direction bonds U™, but also the transformation matrix
for the y-direction bonds V. After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U™ and V™. The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A
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FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D'' and the memory scales with DS. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.''"'7!* We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with
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FIG. 6. (Color online) Graphical representation for the deter-
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mination of the environment tensor E,, ;. from E; ., in three
dimensions.
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FIG. 7. (Color online) Graphical representation for the determi-
nation of the bond density matrix p") = from the environment tensor

2) . . .
E,(;'ﬁu)d in three dimensions.

the Monte Carlo result.”” Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, 7, =
4.511544, the internal energy is found to be U, = —0.995592
for D = 14. This value of U,, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C~1t", (16)

where t = |1 — T /T,.|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent o
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U=U.+at+bt'™, 17)

00

0000

Internal Energy U
Specific Heat

Temperature

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.
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TABLE 1. Comparison of the internal energy at the critical
temperature U, for the 3D Ising model obtained by different methods.

Method U.
HOTRG (D = 16) —0.990842(3)
Series expansion®” —0.991(1)
Series expansion®! —0.9902(1)
Series expansion’? —0.99218(15)
Monte Carlo®’ —0.990604(4)
Monte Carlo® —0.9904(8)
Monte Carlo®* —0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be o = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,?® 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.*> From the
singular behavior of M, we find that the critical temperature
T, = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ~17, (18)

we find that the exponent y = 0.3295, consistent with the
Monte Carlo? (0.3262) and series expansion®® (0.3265)
results.

Figure 11 shows the critical temperature 7, determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of T, obtained from
these two quantities agree with each other. For D = 16, T,
obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 107®. But 7, does not vary monotonically with

T T T
-
> -1o0f 1
en
=
0]
=
88}
E
g 137 o HOTRG 1
A= Fitting curve (0=0.1023, T > T))
Fitting curve (¢=0.1137, T<T) ]
-2.0 L L
4.0 4.5 5.0 5.5
Temperature

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
o is the critical exponent for the specific heat.
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FIG. 10. (Color online) Temperature dependence of the magne-
tization for the 3D Ising model (D = 14). The Monte Carlo result is
from Ref. 35. (Inset) Logarithmic plot of the magnetization around
the critical point. The slope of the fitting curve gives the critical
exponent of the magnetization, y = 0.3295.

D. It becomes converged only when D > 13, indicating the
importance of keeping a large D in the 3D TRG calculation.
The error in T,, estimated from the difference between the
values of T, for D = 15 and D = 16, is also less than 107°. A
comparison of the values of 7, obtained by different methods
is shown in Table II. Our results agree with the Monte Carlo
data. 3%

The above discussion indicates that the HOTRG works
very well in 3D. The accuracy of the results can be further
improved by applying the HOSRG. However, the HOSRG
calculation costs much more CPU time. A thorough study
with the HOSRG on the 3D Ising model is still in progress
and the results will be published separately.

IV. GROUND STATE AND THERMODYNAMICS OF 2D
QUANTUM LATTICE MODELS

A d-dimensional quantum lattice model is equivalent
to a (d 4+ 1)-dimensional classical model, the HOTRG and

T T T T T T T
4.54 + —eo— from U
o  fromM
453 + -
&~ 452 -
451 + -
4.50 - -
1 " 1 " 1 " 1 " 1 " 1
6 8 10 12 14 16

D

FIG. 11. (Color online) The critical temperature 7, as a function
of the bond dimension D for the 3D Ising model obtained from the
internal energy (U) and magnetization (M), respectively.

PHYSICAL REVIEW B 86, 045139 (2012)

TABLE II. Comparison of the critical point 7, for the 3D Ising
model obtained by different methods.

Method T.
HOTRG (D = 16, from U) 4511544
HOTRG (D = 16, from M) 4511546
Monte Carlo®’ 4.511523
Monte Carlo®® 4.511525
Monte Carlo™® 4511516
Monte Carlo® 4.511528
Series expansion*’ 4.511536
CTMRG'? 4.5788
TPVA" 4.5704
CTMRG™ 4.5393
TPVA'® 4.554
Algebraic variation*! 4.547

HOSRG methods above introduced can be also extended
to study the ground-state and thermodynamic properties of
d-dimensional quantum lattice models. For one-dimensional
quantum lattice models, there are already many mature meth-
ods for studying the ground state as well as the thermodynamic
properties. For example, the ground state can be studied by
the DMRG?* and the thermodynamics can be studied by the
quantum transfer matrix renormalization group (TMRG).*4
Here we will only discuss how to apply the HOTRG/HOSRG
to a 2D quantum lattice model.

As an example, we will take the 2D quantum Ising model
with a transverse field to show how these methods work. The
Hamiltonian of this model is defined by

H=->Y olol—h) ol (19)
(i) i

We start by representing the partition function of this model

as a tensor-network model in the 2 + 1 dimensions. By using

the Trotter-Suzuki decomposition formula, we can express the

partition function as'’

Z = Tre PH ~ Tr[e e "ML 4 O(z2), (20
where
H, = - olo], )}
(ij)
H,=-h) ol. (22)

i
B = Lt is the inverse temperature and 7 is a small Trotter
parameter. This partition function can be also expressed as a
product of evolution matrix V,

Z=TrVE, (23)
where
V = e*fo/ZeﬂHzeffo/Z (24)

is the evolution operator between two neighboring Trotter
layers. To insert the complete basis set between any two of
the exponential terms on the right-hand side of Eq. (20), it is
straightforward to show that V' can be expressed as a product of
local tensors. From this, we can express the partition function
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FIG. 12. (Color online) The ground-state energy Ej, the magne-
tization M, = (o,), and M, = (o) versus the applied field & for the
2D quantum Ising model obtained by the HOTRG with D = 14.

as a 3D tensor-network model:

Z =~ Te[ [ T g + O, (25)

where the six-indexed local tensor is defined by

Tirfoun = Z W W, Wz/rf W Poy Pov, (26)
with
W — v/cosht, +/sinht @7
~ \Wcosht, —+/sinht /’
and
1 [eth/2, o=th/2
P = E (eth/Z _e—th2 ) (28)

The operator V governs the basis state evolution along the
Trotter direction. The matrix element of V between two sets
of basis states, ({v;}| and |{u;}), is defined by tracing out all
spatial indices of local tensors T in a given Trotter layer,

VI =TT | T s (29)

where T is to trace out all spatial indices only.

The transverse field & appears only in the P matrix. When
h =0, it is simple to show that PP’ = I. In this case, the
Hamiltonian returns to the 2D classical Ising model and
Eq. (20) is reduced to a product of L 2D tensor-network model
for the Ising model with an inverse temperature 7.

At zero temperature, L — oo, the partition function is a
product of infinite many tensors along all three directions. The
3D HOTRG or HOSRG method introduced previously can be
directly applied to study physical properties of the ground state.
In this case, there is no need to evaluate the ground-state wave
function. This is an advantage of this approach in comparison
with other methods which are based on the tensor-network
representation of the ground-state wave function.

Figure 12 shows the field dependence of the ground-
state energy Ey, the transverse magnetization M,, and the
longitudinal magnetization M, for the transverse Ising model
obtained by the HOTRG with D =14 and v = 0.01. In
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TABLE III. The critical field 4, for the 2D quantum Ising model
with transverse field obtained by different methods.

Method he
HOTRG (D = 14) 3.0439
Monte Carlo*? 3.044
Series expansion*’ 3.044
iPEPS® 3.06
VDMA®D 3.2
TERG® 3.08
iPEPSY 3.04
CTM" 3.14

agreement with other calculations, we find that this model
exhibits a phase transition at a finite field. The critical field is
found to be . = 3.0439, consistent with other published data,
as shown in Table III.

At finite temperature, the lattice dimension of the tensor-
network model is finite along the imaginary time direction.
Now two approaches can be used to evaluate the partition
function. The first is to follow the steps of 3D HOTRG to
contract the tensors alternatively along the three directions.
The contraction along the Trotter direction is terminated if all
bond variables along that direction are contracted. The iteration
is then carried out purely along the two spatial directions
as for a pure 2D classical model. This is an accurate and
efficient approach for evaluating physical quantities. However,
the number of temperature points that can be studied with this
approach is quite limited for a given t, since the temperature
is reduced by a factor of 2 at each contraction along the Trotter
direction.

The second approach is to do the imaginary time evolution.
In this case, one starts from a one-Trotter layer tensor product
system, whose tensor operator is defined by V. At each step
of evolution, one more Trotter layer (i.e., one V operator)
is added to the system and the truncation for the spatial
bond dimension is done using the HOTRG. By performing
this imaginary time evolution up to a certain temperature,
physical quantities are then evaluated at that temperature

10t ]

Internal Energy U

FIG. 13. (Color online) Temperature dependence of the internal
energy in three different fields. The solid dots and open circles are
obtained with the 3D coarse-graining HOTRG with D = 14 and the
imaginary time evolution approach with D = 24, respectively.
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FIG. 14. (Color online) The specific heat versus temperature
obtained by the imaginary time evolution approach with D = 24
for the 2D quantum Ising model.

by tracing out all bond variables with the HOTRG. The
inverse temperature increases linearly with the evolution
number. This allows us to collect more temperature points.
However, as the truncation error is accumulated with the
evolution, the results such obtained would become less and
less accurate with decreasing temperature. Thus this approach
should be used only for evaluating thermodynamic quantities
in high temperatures. A similar imaginary time evolution
approach was recently proposed for evaluating thermodynamic
quantities by Ran et al.*® based on the bond entanglement
mean field approach proposed in Ref. 4. In our calculation,
both approaches have been used. The first approach (i.e., the
3D coarse-graining HOTRG) is more accurate than the second
one (i.e., the imaginary time evolution approach) especially in
low temperatures. It is used for collecting the low-temperature
data. The second approach allows more temperature points
to be evaluated and is applied to evaluate thermodynamic
quantities in high temperatures.

10 T T T T T T T T T T

FIG. 15. (Color online) Transverse magnetization as a function
of temperature for the 2D quantum Ising model. The solid dots and
open circles are obtained with the 3D coarse-graining HOTRG with
D = 14 and the imaginary time evolution approach with D = 24,
respectively.
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10 T T T T

0.8

FIG. 16. (Color online) Longitudinal magnetization as a function
of temperature for the 2D quantum Ising model. The solid dots and
open circles are obtained with the 3D coarse-graining HOTRG with
D = 14 and the imaginary time evolution approach with D = 24,
respectively.

Figures 13—-16 show the internal energy, the specific heat,
and the transverse and longitudinal magnetization as a function
of temperature for the 2D quantum Ising model in three differ-
ent applied fields, respectively. The solid and open circles are
results obtained by the 3D HOTRG (D = 14) and the imagi-
nary time evolution (D = 24) approaches, respectively. The re-
sults obtained with these two approaches agree with each other
in the intermediated temperature range. In higher temperature,
the truncation error of the imaginary time evolution is relatively
small and the results obtained with this method are more accu-
rate. In low temperature the results obtained by the 3D HOTRG
are much more accurate than those obtained by the imaginary
time evolution, since the error is accumulated at every step
of coarse graining or time evolution and the 3D HOTRG can
reach low temperatures in much fewer coarse-graining steps.
In all calculations, the Trotter step is set to T = 0.01.

When & < h,, as the ground state is spontaneously sym-
metry broken with a finite magnetic order, a finite temperature
phase transition is expected. Such phase transition is confirmed
by our calculation, which can be clearly seen from the
temperature dependence of the longitudinal magnetization M,
(Fig. 16). The critical temperature decreases with increasing
field h for h < h.. The specific heat is obtained from
the numerical derivative of the internal energy shown in
Fig. 13. It shows a singular behavior around the critical point
for h = 2.

The above discussion indicates that the HOTRG (including
the imaginary time evolution approach) provides a simple
and powerful method for studying the ground-state and finite
temperature properties of 2D quantum lattice models. By
applying the HOSRG to the above calculation, we believe
that the accuracy of results can be further improved. But this
takes a longer time to do the calculation.

V. SUMMARY

In summary, we have proposed the HOTRG and HOSRG
methods for studying physical properties of classical or

045139-8
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quantum lattice models in two or three dimensions. By
comparison with the exact solution of the 2D Ising model,
we have shown that the simple HOTRG calculation can
already produce very accurate numerical results. The HOSRG
takes into account the second renormalization effect of the
environment tensors, and it can significantly improve the
accuracy of the HOTRG. These methods allow us to retain an
unprecedentedly high bond dimension in the basis truncation
and yield by far the most accurate numerical RG results for
the 3D Ising model. We have also applied the HOTRG to
study the ground-state and thermodynamic properties of the
2D quantum Ising model with a transverse magnetic field. Our
results agree well with all published data. Symmetry or good
quantum number of the tensor-network state for these models
can be used to reduce the computational and storage cost. This
will allow us to retain more basis states to reduce the truncation
error and further improve the accuracy of results.

In this work, we have taken two translation invariant tensor-
network models, namely the Ising model and the transverse

PHYSICAL REVIEW B 86, 045139 (2012)

Ising model, as examples to show how the methods work.
However, it should be emphasized that our methods work
more generally. They can be extended to a system which is
translation invariant by shifting two or more lattice sites, or
even to a random system, such as a spin glass model. By
combining with the local update method of the quantum tensor
product wave function introduced in Ref. 4, one can also use
this method to study ground-state properties of 3D quantum
lattice models.
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