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Photoinduced magnetic bound state in an itinerant correlated electron system
with a spin-state degree of freedom
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The photoexcited state in a correlated electron system with a spin-state degree of freedom is studied. We
start from the two-orbital extended Hubbard model where the energy difference between the two orbitals is
introduced. The photoexcited metastable state is examined based on the effective model Hamiltonian derived
using the two-orbital Hubbard model. Spin-state change is induced by photoirradiation in the low-spin band
insulator near the phase boundary, and it is found that a high-spin state is stabilized by creating a ferromagnetic
bound state with photodoped hole carriers. An optical absorption occurs between the bonding and antibonding
orbitals inside the bound state. The time evolution of photoexcited states is simulated in the time-dependent
mean-field scheme. It is found that pair annihilations of photodoped electrons and holes generate the high-spin
state in a low-spin band insulator. We propose that this process is directly observed by the time-resolved
photoemission experiments.
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I. INTRODUCTION

The optical properties and photoinduced phenomena in
solids are subjects of considerable interest in recent solid-state
physics studies. In particular, correlated electron systems are
the principal subject for the investigation of photoinduced
exotic phenomena. These systems exhibit strong electron-
electron interaction and multiple degrees of freedom, e.g., spin,
charge, and orbital, and consequently numerous electronic
and structural phases are realized under a subtle balance
of interactions.1 By irradiating intense laser pulses into one
of the phases, a system can be transferred into a different
phase transiently or permanently. This is termed photoinduced
phase transition (PIPT).2 Several experimental and theoretical
studies have been made on PIPT phenomena in transition-
metal oxides,3–7 low-dimensional organic salts,8–11 and other
materials.

Among the various degrees of freedom, the spin-state
degree of freedom has attracted much attention from the
viewpoint of the optical manipulation of magnetism. In
certain magnetic ions, a different magnitude of spin angular
momentum is realized by changing external fields, such
as temperature, pressure, and photons. This is termed the
spin-state transition and is caused by a competition between
the crystal-field splitting and the Hund’s rule coupling. A
well-known example of a photoinduced spin-state change is
seen in the so-called spin-crossover complexes, such as the
Prussian blue analog complex.12–15 Here, photons cause a
charge transfer from the Fe ions to Co ions, associated with
the spin-state change in the Co ions from the low-spin (LS)
state to the high-spin (HS) state. The main mechanism of the
cooperative spin-state transition in the series of materials is
believed to be an elastic interaction16–19 where a local volume
change of a metal-ligand cluster propagates over a crystal
lattice.

Another material where photoinduced spin-state change
is realized is the perovskite cobaltites R1−xAxCoO3 (R:
rare-earth ion, A: alkaline-earth ion) and their families.20–22

In an undoped compound LaCoO3,23,24 the formal valence of

the Co ion is 3+ with a d6 electron configuration. There are
three possible spin states: the LS state with the (t2g)6(eg)0

configuration, the intermediate-spin (IS) state with (t2g)5(eg)1,
and the HS state with (t2g)4(eg)2. It is inferred from electric
resistivity and magnetic susceptibility measurements that the
LS band insulator at low temperatures changes into the HS
or IS metallic state with increasing temperature (T ).25–28 By
substituting R with A, corresponding to hole doping into
the nonmagnetic insulating ground state, the system shows
ferromagnetic metallic behavior.29–32 One key point for under-
standing the electronic and magnetic properties in cobaltites
is the strong correlation between electron conduction and
magnetism, i.e., the charge and spin degrees of freedom of
the electrons.33

The optical irradiation and manipulation of perovskite
cobaltites and related materials have been examined by ultra-
fast optical pump-probe measurements.34,35 Recently, detailed
experiments and analyses have been made in so-called A-site
ordered perovskite-type RBaCo2O6−δ crystals by Okimoto
and co-workers.34 After pump pulse is introduced into the
LS insulator, a metallic state, which is different from the
high-temperature metallic state, is observed in the optical
conductivity spectra. This photoinduced state strongly depends
on the R species, which is believed to control the ratio
of electron correlation and bandwidth. These experiments
suggest that strong correlation between the electronic and
magnetic states remains even in the photoexcited state, and
indicate that the photoirradiation phenomena in the cobalt
oxides should be reexamined from a different viewpoint
from the photoinduced spin-state change in spin-crossover
complexes.

In this paper, photoinduced spin-state change in correlated
electron systems is studied theoretically. From the two-orbital
Hubbard model, the effective Hamiltonian for the photoexcited
state is derived. The photoexcited metastable state is obtained
through an analysis of the effective Hamiltonian using the
exact-diagonalization method. By the irradiation of photons
into the LS band insulator near the phase boundary, the HS state
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is induced. It is found that the HS state is stabilized by forming
a bound state with a photodoped hole. This bound state causes
a characteristic peak structure in the optical spectra in the
photoexcited state. The time evolution after photoirradiation
is examined in the time-dependent mean-field scheme. The
HS state is created by pair annihilation of photodoped electron
and hole. This mechanism can be confirmed by time-resolved
photoemission spectroscopy experiments.

In Sec. II, the model Hamiltonian and the effective
model for the photoexcited states are introduced. In Sec. III,
numerical results of the electronic states before and after
photoirradiation are presented. In Sec. IV, the time dependence
of the photoexcited states is shown. Section V is devoted to
discussion and concluding remarks. A brief report on previous
studies of the photoinduced metastable state was published in
Ref. 36.

II. MODEL

A. Two-orbital Hubbard model

We start with the two-orbital Hubbard model as a minimal
model to examine photoinduced spin-state change. Two
orbitals, termed A and B corresponding to the eg and t2g

orbitals in a Co ion, respectively, are introduced at each site
in a lattice. The crystal-field splitting between A and B is
represented by � = εA − εB > 0 where εA and εB are the
level energies of the A and B orbitals, respectively. The model
Hamiltonian is given as

H = HU + Ht , (1)

where we define the on-site term,

HU = �
∑
iσ

c
†
iAσ ciAσ + U

∑
iγ

niγ↑niγ↓ + U ′ ∑
iσσ ′

niAσniBσ ′

+ J
∑
iσσ ′

c
†
iAσ c

†
iBσ ′ciAσ ′ciBσ + I

∑
iγ

c
†
iγ↑c

†
iγ↓ciγ̄↓ciγ̄↑,

(2)

and the intersite term,

Ht = −
∑

〈ij〉γ σ

tγ (c†iγ σ cjγ σ + H.c.). (3)

Here, c†iγ σ is the electron creation operator at site i with orbital
γ (=A, B) and spin σ (=↑,↓). We define the number operator
niγ σ = c

†
iγ σ ciγ σ and subscript γ̄ = (A, B) for γ = (B, A).

The intraorbital Coulomb interaction U , interorbital Coulomb
interaction U ′, pair-hopping I , and Hund’s rule coupling J

are introduced. The electron transfer integrals between the
nearest-neighboring (NN) sites are set to be diagonal with
respect to the orbital. We assume a relation tB < tA by
considering the transfer integrals in perovskite oxides, and
we take tA = 1 as the unit of energy.

Let us consider the local electronic structure, in which two
electrons occupy each site, and the electron transfers are set
to be zero. The following S = 0 and S = 1 states are the
two possible ground states [see Figs. 1(a) and 1(b)]. The
eigenfunction and eigenenergy for the LS state are given as

|ψL〉 = (fAc
†
A↑c

†
A↓ + fBc

†
B↑c

†
B↓)|0〉 (4)

LS state HS state

A

B

orbital
(a) (b) (c) (d)

electron statehole state

FIG. 1. (Color online) Local electronic configurations.

and EL = U + � − √
�2 + I 2, respectively, with the coeffi-

cients

fB =
⎡⎣1 +

(
�

I
−

√
1 + �2

I 2

)2
⎤⎦−1/2

(5)

and

fA =
√

1 − f 2
B. (6)

The wave functions for the HS state are given by

|ψH+1〉 = c
†
A↑c

†
B↑ |0〉 , (7)

|ψH0〉 = 1√
2

(c†A↑c
†
B↓ + c

†
A↓c

†
B↑)|0〉, (8)

|ψH−1〉 = c
†
A↓c

†
B↓|0〉, (9)

for Sz = +1, 0, and −1, respectively, and the energy in the
HS triplet state is EH = U ′ + � − J . These states are termed
the LS and HS states in the present two-orbital Hubbard
model, although the HS state takes S = 2 in a Co3+ ion in
cobaltites. In the numerical simulations, for simplicity, we
assume the relations U − U ′ = 2J , U = 4J , and I = J , to
reduce the number of free parameters. We confirm that the
qualitative results are robust for a wide parameter region.
The LS and HS states are degenerate at � = J/

√
3. We do

not fix the parameter values for cobaltites, but calculate the
electronic structures for a wide parameter range, since several
simplifications are introduced in the model Hamiltonian to
avoid complications in real materials.

B. Effective Hamiltonian

One of the main purposes of this paper is to examine a stable
steady photoexcited state, defined as the lowest energy state
inside an energy surface, where the density of the photoexcited
electron-hole pairs is fixed. A schematic picture of this state is
shown in Fig. 2. The bold curves represent the adiabatic energy
surfaces before and after photoirradiation as functions of the
number of HS sites. Photons excite the system from the lowest
energy surface to a higher energy surface. Through several
kinds of relaxation processes, the system settles to the lowest
energy state in the higher energy surface. Instead of performing
time-dependent simulations for the photoexcited dynamics,
we examine the lowest energy state inside the energy surface
where there is one electron-hole pair in an N -site system.
This state is termed the photoinduced metastable state. Finally,
the system is fully relaxed from the metastable state to the
initial state through several relaxation processes, although
simulations for these processes are beyond the present study.
We derive the two effective Hamiltonians, where the numbers
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FIG. 2. (Color online) Adiabatic energy surfaces before and after
photoirradiation. Horizontal axis represents the number of the HS
state.

of electron-hole pairs are zero and one in an N -site system,
and obtain the initial and metastable states by analyzing the
lowest energy states in the two Hamiltonians.

The effective Hamiltonians are derived by perturbational
processes from the two-orbital Hubbard model in Eq. (1). The
intersite transfer term Ht is treated as the perturbation term.
As for the effective Hamiltonian before the photoirradiation,
the HS and LS states, defined in Eq. (4) and Eqs. (7)–(9),
respectively, are adopted as the basis states. Other local states,
where two electrons occupy each site, have higher energies
of the order of �, J , and U than the LS and HS sates. By
considering all the second-order perturbational processes, the
Hamiltonian is given as

H0 = HU + JHH

∑
〈ij〉

(Si · Sj − 1)P H
i P H

j

− JLL

∑
〈ij〉

P L
i P L

j − JHL

∑
〈ij〉

(
P L

i P H
j + P H

i P L
j

)
− J++

∑
〈ij〉

[I−
i I−

j (Si · Sj − 1) + (Si · Sj − 1)I+
i I+

j ]

+ J+−
∑
〈ij〉

[I−
j (Si · Sj+ 1)I+

i + I−
i (Si · Sj + 1)I+

j ].

(10)

Here, Si is the spin operator defined by Si =
(1/2)

∑
γ σσ ′ c

†
iγ σσ σσ ′ciγ σ ′ with the Pauli matrices σ , and P L

i

and P H
i are the projection operators for the LS and HS state

defined by

P L
i = |ψLi〉 〈ψLi | (11)

and

P H
i =

∑
l=(+,0,−)

|ψHli〉 〈ψHli | , (12)

respectively. The operators I+
i and I−

i change the spin state as

I+
i = |ψH0i〉 〈ψLi | (13)

and

I−
i = |ψLi〉 〈ψH0i | . (14)

The prefactors in each term in Eq. (10) are the exchange
constants and their explicit forms are presented in Appendix A.

The effective Hamiltonian after photoirradiation is derived
in the same way. As the unperturbed states, in addition to the
LS and HS states, we introduce the states where the number
of electrons in a site is one or three [see Figs. 1(c) and 1(d)].
These local states are termed the hole state and the electron
state, respectively. The wave functions are given as

|ψhσ 〉 = c
†
Aσ |0〉 (15)

and

|ψeσ 〉 = c
†
Aσ c

†
B↑c

†
B↓ |0〉 , (16)

respectively. The eigenenergies are Ee = � + U + 2U ′ − J

for the electron state and Eh = 0 for the hole state. We assume
that the number of both the electron state and the hole state is
one in an N -site cluster. The calculated effective Hamiltonian
is classified by the electronic states in the NN sites as

H1 = H̃0 + Heh + He + Hh. (17)

The first term H̃0 corresponds to H0 in Eq. (10), where neither
the electron or hole state is involved in the interactions. The
second term applies for the interactions between the electron
state and the hole state. The third and fourth terms describe the
interactions between the electron state and LS or HS, and the
interactions between the hole state and LS or HS, respectively.
Explicit forms for the Hamiltonian are given in Appendix B.

The ground state before photoirradiation and the pho-
toinduced metastable state are obtained with the effective
Hamiltonians in Eqs. (10) and (17), respectively, which are
analyzed by the exact-diagonalization method based on the
Lanczos algorithm. The time evolutions in the photoinduced
dynamics are calculated in the two-orbital Hubbard model in
Eq. (1).

III. ELECTRONIC STATES BEFORE AND AFTER
PHOTOIRRADIATION

A. Ground state

The electronic structure in the ground state is examined
by analyzing the effective Hamiltonian H0 in a finite size
cluster system. Several physical quantities are plotted in Fig. 3
as a function of the Hund’s rule coupling J at �/tA = 10.
We introduce the number density of the HS states which is
estimated from the electron number in the orbital A defined by

nHS = 1

N

∑
i

〈niA〉 , (18)

the spin correlation function,

S(q) = 1

2N2

∑
ij

e−iq·(r i−rj )〈Si · Sj 〉, (19)

and the spin-state correlation function defined by

I (q) = 4

N2

∑
ij

e−iq·(r i−rj )
〈
I z
i I z

j

〉
. (20)
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FIG. 3. (Color online) (a) The number density of the HS state nHS,
(b) the spin correlation function S(q), and (c) the spin-state correlation
function I (q) in the ground state. The parameters are chosen to be
U = 4J , U ′ = 2J , � = 10tA, and tB = 0.05tA. A two-dimensional
cluster of the N = 8 sites with the periodic boundary condition is
adopted.

Here, we define the spin-state operator as a projection operator
by

I z
i = 1

2

∑
m=±1,0

(|ψHmi〉 〈ψHmi | − |ψLi〉〈ψLi |), (21)

which takes 1/2 and −1/2 for the HS and LS states,
respectively. With increasing J , three different phases appear
in Fig. 3. In the region of small J , both nHS and S(q)
are zero, and I (0,0) is almost one. On the other hand,
in the region of large J , nHS and I (0,0) are one, and
S(π,π ) takes its largest value. Two phases are identified as
the LS band insulator and the HS antiferromagnetic Mott
insulator. Between the two, there is an intermediate phase
where nHS = 0.5, and I (π,π ) is one. These data imply that
the HS and LS states are aligned alternately. This phase is
termed the spin-state ordered phase.37 This alternate ordering
of the HS and LS states is caused by the fourth term on
the right-hand side in Eq. (10); JHL given in Eq. (A3)
represents the attractive interaction between the LS and HS
states.

The numerical data for several J and � are summarized
in the phase diagram shown in Fig. 4, where the phase
boundaries in the ground state and those in the photoinduced
metastable state are plotted in one figure. The detailed results

FIG. 4. (Color online) Phase diagram in the plane of the crystal-
field splitting � and the Hund’s rule coupling J . The broken and bold
lines represent the phase boundaries in the ground state and in the
photoinduced metastable state, respectively. The abbreviations HS,
LS, and H/L represent the HS phase, the LS phase, and the HS-LS
mixed phase, respectively. The vertical dotted line represents the
parameter region where the data in Figs. 3 and 5 are calculated. The
parameters are chosen to be U = 4J , U ′ = 2J , and tB = 0.05tA. A
two-dimensional cluster of the N = 8 sites with a periodic boundary
condition is adopted.

in the metastable state will be presented in Sec. III B. Here,
we identify the LS and HS phases as states, where the
electron numbers of the A orbital are smaller or larger
than 0.3, respectively. We confirm that the size dependence
of the phase boundaries is of the order of 0.01tA. It is
observed that the LS and HS phases are stabilized in regions
of large � and large J , respectively, and the spin-state
ordered phase denoted by H/L appears between the two
phases.

B. Photoinduced metastable state

Several physical quantities in the photoinduced metastable
state are presented in Fig. 5 as a function of the Hund’s rule
coupling J at �/tA = 10. The number density of HS states is
estimated from the number of electrons in the orbital A defined
by

nHS = 1

N − 2

(∑
i

〈niA〉 − 1

)
, (22)

where the electron and hole states are subtracted in the denom-
inator. It is shown in Fig. 5(a) that nHS in the photoinduced
metastable state is finite within 3.25 < J/tA < 3.30 where
nHS = 0 in the ground state. The different values between
the two states implies that one HS state is generated in the
N -site cluster. This phase in the photoinduced metastable
state is distinct from the spin-state ordered phase observed in
the ground state; the spin-state correlation functions at any q
are not remarkable, and a weak spin correlation at q = (0,0) is
observed. Detail properties of this phase are introduced latter.
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FIG. 5. (Color online) (a) Number density of the HS states nHS,
(b) spin correlation function S(q), and (c) spin-state correlation
function I (q) in the photoexcited metastable state. In comparison,
results of nHS in the ground state are also plotted in (a). The parameters
are chosen to be U = 4J , U ′ = 2J , � = 10tA, and tB = 0.05tA.
A two-dimensional N = 8 site cluster with a periodic boundary
condition is adopted.

The phase diagram in the photoexcited metastable state is
presented in Fig. 4, together with that in the ground state.
The phase boundary between the LS and LS-HS mixed phases
shifts to a region of the LS phase. There is a parameter region
where the LS phase in the ground state is changed into the LS-
HS mixed phase in the photoexcited metastable state. That is to
say, the photoirradiation induces the HS state in the LS phase at
the vicinity of the phase boundary. We note that the spin-state
change also occurs from the HS phase to the mixed phase.

Now we examine the electronic structure in the photoin-
duced HS state in more detail. We introduce the electronic-state
distribution function defined by

gM (n) = z−1
n

∑
j∈nNN

∑
i

〈
P M

i+jP
h
i

〉
, (23)

where
∑

j∈nNN implies a summation of j connecting the nth
NN sites of i, and zn is the number of the nth NN sites. The
operator P M

i (M = L,H,e) is the projection operator for the
M state at site i. The operators for the LS and HS states are
defined in Eqs. (11) and (12), respectively, and those for the
electron and hole states are defined as

P e
i =

∑
σ

|ψeσi〉 〈ψeσi | (24)

hole

n = 1

n = 2

n = 3

(b)

0
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1

HS 

elect ron

LS 

2 dim.
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0.6

 10
  8
  6

1 dim. N =

0 1 2 3 4 n

(a)

FIG. 6. (Color online) (a) Schematic definition of the distribution
function gM (n). (b) Distribution function of the electronic states as
a function of the distance from the hole state. The bold, broken,
and dotted lines represent the distribution functions for the HS, LS,
and electron states, respectively. A two-dimensional N = 10 site
cluster with a periodic boundary condition is adopted. The inset
shows distribution functions for the HS state in one-dimensional
N = 6, 8, and 10 site clusters with a periodic boundary condition. The
parameters are chosen to be J = 3.3tA, U = 4J , U ′ = 2J , � = 10tA,
and tB = 0.05tA.

and

P h
i =

∑
σ

|ψhσi〉 〈ψhσi | , (25)

respectively. This function, gM (n), describes the distribution
of the local electronic states at the nth NN sites from the
photoinduced hole state, as shown in Fig. 6(a). The numerical
results of the distribution functions in a two-dimensional
cluster are shown in Fig. 6(b). The parameters are chosen to
be J = 3.3tA and � = 10tA in which the HS state is induced
by photoirradiation. A characteristic feature is observed in the
HS distribution function; gH (n) is nearly 0.25 at n = 1 and
zero at n � 2. This implies a local bound state between the
HS state and a photodoped hole state. The size dependence of
gH (n) is checked in the one-dimensional clusters, and results
are shown in the inset of Fig. 6(b). The HS distribution is
located at the NN sites of the hole state, and almost no size
dependence is seen in the results. Different numerical values of
gH (n) in one- and two-dimensional clusters, i.e., 0.25 and 0.5,
are attributed to a difference of zn. The spin structure in this
bound state is monitored by the correlation function defined
by

∑
i 	=j 〈Sj · SiP

H
j P h

i 〉 which represents the spin correlation
between the hole and HS states. The calculated value is about
0.5 which implies a ferromagnetic spin correlation. Figure 6
also shows that ge(n) monotonically increases with n. This is
due to the kinetic-energy gain of the photoexcited electron. A
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FIG. 7. (Color online) Left: Schematic picture of the HS-hole
bound state. Right: Energy levels inside the HS-hole bound state.

schematic electronic structure in the photoinduced metastable
state is presented in Fig. 7.

Here we discuss the mechanism of the ferromagnetic
HS-hole bound state. In the ground state, the energy difference
per site between the LS and HS states is given by �EHS−LS ≡
EHS − ELS = (U ′ + � − J ) − (U + � − √

�2 + I 2) in the
local limit. We consider the photoexcited state, where electrons
and holes are introduced in the LS phase at the vicinity of
the phase boundary. When the HS-hole bound state is not
generated, the kinetic energy of the hole state is −zf 2

BtB where
z is the number of the NN sites, and f 2

BtB is the exchange
constant between the hole state and the LS state [see Eq. (B2)].
On the other hand, when the HS-hole bound state is generated,
the energy gain is given by the bonding orbital energy in the
bound state as −tA (see Fig. 7). Thus, the energy difference
between the two cases is �EBS = (−tA) − (−zf 2

BtB). When
this energy gain overcomes the energy cost for the HS
generation, �EHS−LS, the HS-hole bound state is realized.

The above consideration for the energy balance is confirmed
in the bandwidth dependence of the phase diagram. In Fig. 8,
the phase diagrams in the ground state and the photoinduced
metastable state are plotted as functions of the ratio of the
bandwidths for the A and B bands, i.e., tB/tA. In the region
of tB/tA < 0.1, there is a phase space where the LS phase in
the ground state is changed into the HS-LS mixed phase in
the photoinduced metastable state. With increasing tB/tA, this

0 0.1 0.2 0.3 0.4 0.5
3

3.1

3.2

3.3

3.4

3.5

LS

H/L

before

after

FIG. 8. (Color online) Phase diagrams in the ground state and
the photoexcited metastable state in the plane of tB/tA and J/tA.
The shaded area shows the parameter region where the HS state is
induced by photoirradiation. A two-dimensional N = 8 site cluster
with a periodic boundary condition is adopted. The parameters are
chosen to be U = 4J , U ′ = 2J , and � = 10tA.

phase space shrinks and disappears. This is explained from the
above consideration where the stability of the photoinduced
HS state is controlled by a factor �EBS = (−tA) − (−zf 2

BtB).

C. Optical spectra

In this subsection, we present the optical spectra in the
photoinduced metastable state. The optical absorption spectra
are defined by

ααβ (ω) = − 1

Nπ
Im 〈ψ0| jα 1

ω − Heff + E0 + iη
jβ |ψ0〉 ,

(26)

where Heff is taken to be H0 in Eq. (10) and H1 in Eq. (17)
for the ground state and the photoinduced metastable state,
respectively, |ψ0〉 and E0 are the corresponding lowest energy
state and energy, respectively, and α and β represent Cartesian
coordinates. We introduce the current operator

jα = i
∑
iγ σ

tγ (c†iγ σ ci+αγσ − H.c.), (27)

which is defined in the restricted Hilbert space in each effective
Hamiltonian. A damping constant is introduced as η. The
optical spectra are calculated by the exact-diagonalization
method based on the recursion procedure. Two-dimensional
finite-size clusters with a periodic boundary condition are
adopted.

The absorption spectra in the photoinduced metastable
state, where the HS state is induced by photoirradiation, are
shown in Fig. 9. The system size is taken to be N = 8 and 10.
Two characteristic peaks appear in the spectra at ω = 2.1tA
and ω = 2.8tA in the case of N = 8. These are termed the
peaks B and D, and their energies are denoted ωB and ωD ,
respectively. In order to assign these peaks, we calculate the
bond correlation function in the excited states given as

B(l,m)(ωn)

= −
∑

〈ij〉γ σ

〈ψ(ωn)|(P m
i P l

j c
†
iγ σ cjγ σ P l

i P
m
j +H.c.

)|ψ(ωn)〉,

(28)

where |ψ(ωn)〉 is the eigenfunction of the Hamiltonian H1

corresponding to the final state of the nth optical absorption
peak, and ωn is its eigenenergy. The eigenfunctions and
eigenenergies are obtained by the conjugate gradient method.
This function measures the bond correlation between the l and
m local electronic states in the photoexcited state.

Numerical results of this correlation function together with
the optical absorption spectra are presented in Fig. 9(a),
where we set (l,m) = (h,HS) and (e,LS). In the ground state,
i.e., ω = 0, B(h,HS)(ω = 0) ∼ −1, and B(e,LS)(ω = 0) ∼ −3.
These values are consistent with the picture presented in
Fig. 7, where a photodoped hole forms a bound state with
HS, and a photodoped electron is located at the bottom of
the A-orbital band. In the excited state corresponding to peak
B, B(e,LS)(ωB) � B(e,LS)(0) and B(h,HS)(ωB) ∼ 1 > B(h,HS)(0).
This value of B(h,HS)(ωB) is interpreted as indicating that
an electron occupies the antibonding orbital in the HS-hole
bound state, and peak B is assigned as an excitation between
the bonding and antibonding orbitals inside of the bound
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FIG. 9. (Color online) Optical absorption spectra in the photoin-
duced metastable state, where the HS state is induced. The bond
correlation function B (l,m)(ω) is also plotted. The red broken lines
and blue dotted lines are for (l,m) = (h,HS) and (l,m) = (e,LS),
respectively. The cluster size is N = 8 in (a) and N = 10 in (b).
The parameters are chosen to be J = 3.3tA, U = 4J , U ′ = 2J ,
� = 10.0tA, tB = 0.05tA, and η = 0.2tA.

state. For peak D, B(e,LS)(ωD) > B(e,LS)(0) and B(h,HS)(ωD) �
B(h,HS)(0), which implies that a change in the photodoped
electron motion is involved with this peak.

Results for clusters of size N = 10 are shown in Fig. 9(b).
The numerical values of B(h,HS) and B(e,LS) are almost the same
as those for N = 8. The energy of peak B is almost unchanged,
but that of peak D decreases with increasing N . These size
dependencies are consistent with the assignments that peak B
is attributed to the local excitation, and peak D is related to
the kinetic motion of the photoexcited electron. We further
examine the size dependence of the peak positions in the one-
dimensional clusters, and observe that the energy of peak D
decreases with the system size.36 This peak is interpreted as a
Drude-like component in the thermodynamic limit.

The optical absorption spectra in the photoinduced
metastable state, where HS is not induced, are presented in
Fig. 10 (see bold lines). A two-peak structure is observed
for N = 10, and the peaks almost overlap around ω = 3.7tA
for N = 8. The optical absorption spectra obtained in the
hard-core (HC) fermion model are shown by broken lines
in Fig. 10. An explicit form of the HC fermion model and
a derivation are presented in Appendix C. The spectra in the
effective Hamiltonian are well reproduced by the HC model.
The size dependencies of the peak positions are examined in
detail in this model. Two-dimensional clusters with N = 8,
10, 4 × 4, 6 × 6, 8 × 8, 10 × 10, 12 × 12 with a periodic
boundary condition are adopted. The peak energies for the
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FIG. 10. (Color online) Optical absorption spectra in the photoin-
duced metastable state, where HS state is not induced. The broken
lines represent the spectra obtained by the hard-core (HC) fermion
model. The cluster sizes are N = 8 and 10. The inset shows the size
dependencies of the peak energies in the optical absorption spectra
calculated in the HC fermion model. The parameters are chosen
to be J = 3.1tA, U = 4J , U ′ = 2J , � = 10.0tA, tB = 0.05tA, and
η = 0.2tA in the original model, and tB = 0.05tA, tex = 10−10tA, η =
0.2tA in the HC fermion model.

lowest three peaks are plotted in the inset of Fig. 10 as functions
of N−1. The energies tend to be zero in the thermodynamic
limit. We interpret that these peaks originate from the metallic
behaviors of photodoped electron and hole.

IV. TIME DEPENDENCE OF PHOTOEXCITED STATE

In this section, we show the real-time evolution of the
photoexcited state calculated in the mean-field scheme38,39

and reveal the mechanism of the photoinduced HS state.

A. Formulation

The time evolution of the photoexcited state is analyzed.
A mean-field type decoupling is applied to the Coulomb and
exchange interaction terms in the two-orbital Hubbard model
in Eq. (1) as follows:

HMF =
∑
iγ σ

niγ σ

[
U 〈niγ σ̄ 〉 − U ′ ∑

σ ′
〈niγ̄ σ ′ 〉 − J 〈niγ̄ σ 〉

]

−U
∑
iγ

〈niγ↑〉〈niγ↓〉 + U ′ ∑
iσσ ′

〈niAσ 〉〈niBσ ′ 〉

+ J
∑
iσ

〈niAσ 〉〈niBσ 〉 −
∑

〈ij〉γ σ

tγ (c†iγ σ cjγ σ + H.c.)

+�
∑

i

nia, (29)

where 〈· · ·〉 implies the average calculated by the time-
dependent mean-field wave function, and the subscript σ̄

is defined by σ̄ = (↑, ↓) for σ = (↓, ↑). We note that the
pair-hopping interaction in the Hamiltonian and the Fock terms
are not taken into account. This is essential to reproduce
the electronic states in the case of tA = tB = 0. The initial
electronic wave function before the photoexcitation is obtained
by solving the self-consistent equations. The photoirradiation
is simulated by excitations of electrons from the highest
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FIG. 11. (Color online) Phase diagram in the ground state
obtained by the mean-field (MF) approximation. A two-dimensional
N = 10 × 10 site cluster with a periodic boundary condition is
adopted. As a comparison, phase boundaries obtained by the exact-
diagonalization method on the effective Hamiltonian (N = 8) are
plotted by broken lines. The abbreviations HS, LS, and H/L represent
the HS phase, the LS phase, and the HS-LS mixed phase, respectively.
The parameters are chosen to be U = 4J , U ′ = 2J , and tB = 0.05tA.

occupied levels to the lowest unoccupied ones at time τ = 0
where the z component of the total spin-angular momentum
and the total momentum are conserved. The time evolution
of the wave function is calculated in the time-dependent
mean-field scheme. The time-dependent Schrödinger equation
for the νth level, |φν(τ )〉, is given as

|φν(τ )〉 = P exp

[
−i

∫ τ

0
dτ ′HMF(τ ′)

]
|φν(0)〉 , (30)

where HMF(τ ) is the time-dependent Hamiltonian given in
Eq. (29), and P is the time-ordering operator. The wave
function at time τ + dτ , where dτ is a short-time increment,
is calculated from the wave function at time τ by expanding
the exponential factor as

|φν(τ + dτ )〉 =
∑

μ

〈ϕμ(τ )|φν(τ )〉e−iεμ(τ )dτ |ϕμ(τ )〉, (31)

where |ϕμ(τ )〉 is the eigenstate ofHMF(τ ) with the eigenenergy
εμ(τ ). In the numerical calculation, we take dτ tA = 10−3 ∼
10−4, and check that the total energy is conserved within the
order of 10−2 percent.

The phase diagram in the ground state is presented in
Fig. 11. The phase boundaries are determined by the HS
density. We also plot the results obtained by the exact-
diagonalization method applied to the effective Hamiltonian
shown in Fig. 4. The two results are qualitatively similar to
each other, although the LS phase in the present calculation
shifts to a low-J region.

0 200 400 600 800 1000
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(a)

holeelectron

HSLS

HS LS

(b)

hole
electron

HS

FIG. 12. (Color online) (a) Time evolutions of the numbers of the
HS state, the electron state, and the hole state. (b) Schematic picture of
the electron-hole pair annihilation processes. A two-dimensional N =
10 × 10 site cluster with a periodic boundary condition is adopted.
The parameters are chosen to be U = 4J , U ′ = 2J , J = 3.1tA, � =
10tA, tB = 0.05tA, and Nph = 10.

B. Numerical results

The time evolution of the photoexcited electronic state is
examined in a two-dimensional N = 10 × 10 site cluster with
a periodic boundary condition. The number of photons in the
cluster is chosen to be Nph = 10, which is introduced into the
LS phase near the boundary at J = 3.1tA, � = 10tA, which
is indicated by a cross symbol in Fig. 11. We monitor the
numbers of the HS state, the photodoped electron state, and
the photodoped hole state by the following physical quantities,
NHS = ∑

iσ NHS
iσ , Ne = ∑

iσ Ne
iσ , and Nh = ∑

iσ Nh
iσ with

Ne
iσ = 〈niAσ 〉 (1 − 〈niAσ̄ 〉) 〈niBσ 〉 〈niBσ̄ 〉 , (32)

Nh
iσ = (1 − 〈niAσ 〉)(1 − 〈niAσ̄ 〉) 〈niBσ 〉 (1 − 〈niBσ̄ 〉), (33)

and

NHS
iσ = 〈niAσ 〉 (1 − 〈niAσ̄ 〉) 〈niBσ 〉 (1 − 〈niBσ̄ 〉), (34)

respectively. We note that these are defined as products of the
mean-field number density in each orbital and spin, instead of
the projection operators such as P e

i [Eq. (24)], P h
i [Eq. (25)],

and P H
i [Eq. (12)], which cannot be calculated directly in the

mean-field scheme.
The time dependence of these numbers is plotted in

Fig. 12(a). Except for time below τ tA = 10, where all three
are almost constant, NHS increases, and Ne and Nh decrease
monotonically. That is, changes in the three numbers are
correlated with each other. This result can be interpreted as
indicating that the HS states are created by annihilation of
the photoinduced electron and hole states. Let us consider a
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FIG. 13. (Color online) Snapshots of the electron state, the hole
state, and the HS state. The time is chosen to be 10t−1

A , 100t−1
A ,

500t−1
A , and 900t−1

A . A two-dimensional N = 10 × 10 site cluster
with a periodic boundary condition is adopted. The parameters are
chosen to be U = 4J , U ′ = 2J , J = 3.1tA, � = 10tA, tB = 0.05tA,
and Nph = 10.

situation where the electron and hole states adjoin, as shown
in Fig. 12(b). When an electron in the A orbital transfers
to the hole state, a LS-HS pair is generated. This pair is
also generated by the electron transfer in the B orbital. This
is termed the electron-hole pair annihilation process. The
HS-creation process is visualized in Fig. 13. At τ = 10t−1

A , the
three numbers are almost homogeneous. At τ = 100t−1

A , the
distributions for the electron states start to be inhomogeneous
and a vertical shape domain appears, whereas the holes are still
itinerant. After that, the electron states in the vertical-shape
domain begin to be localized and the hole states are also
localized simultaneously. The HS states are created at the sites
where both Ne

i↑ and Nh
i↑ are large. After the HS states are

generated, Nh
i↑ and Ne

↑ at the same sites still remain large. This
observation does not contradict electron-hole annihilation,
but rather is due to the definitions of Nh

i↑ and Ne
i↑ [see

Eqs. (33) and (32)]; these are represented by the products
of the mean-field number density, instead of the projection
operators.

The electron-hole pair annihilation processes are also
examined by the time-dependent density of states (DOS). We
define the DOS as

A(ω) = Ae(ω) + Ah(ω), (35)

with the electron part

Ae(ω) =
∑

ν

δ[ω − εν(τ )]〈c†νcν〉 (36)

and the hole part

Ah(ω) =
∑

ν

δ[ω − εν(τ )]〈cνc
†
ν〉. (37)

The operator c†ν is the creation operator obtained by diagonal-
izing the Hamiltonian at time τ , εν(τ ) is the corresponding
mean-field energy, and 〈· · ·〉 is the average in terms of the
wave function of |ψ(τ )〉. In the numerical calculation, the delta
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FIG. 14. (Color online) Density of states (DOS). The electron
part and the hole part of the DOS are represented by pink solid and
blue solid lines, respectively. The time is taken to be 10t−1

A , 100t−1
A ,

500t−1
A , and 900t−1

A . A two-dimensional N = 10 × 10 site cluster
with a periodic boundary condition is adopted. The parameters are
chosen to be U = 4J , U ′ = 2J , J = 3.1tA, � = 10tA, tB = 0.05tA,
η = 0.1tA, and Nph = 10.

functions in Eqs. (36) and (37) are replaced by the Lorentz
function with a damping constant η = 0.1tA.

The numerical results of the time-dependent DOS are
shown in Fig. 14. At τ = 10t−1

A , an energy gap exists between
the narrow B band and the wide A band. Tiny weights of the
hole and electron parts of the DOS are observed at the top of
the B band and the bottom of the A band, respectively. At time
τ = 500t−1

A , the top of the B band and the bottom of the A band
start to separate from the main bands. Finally, at τ = 900t−1

A ,
the original gap is almost filled by in-gap states originating
from the localization of the electron and hole states.

Based on these results, we consider the energy balance
in the electron-hole pair annihilation processes. The on-site
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mean-field energies of the LS, HS, electron, and hole states are
given by ELS

MF = U , EHS
MF = U ′ + � − J , Ee

MF = U + 2U ′ +
� − J , and Eh

MF = 0, respectively. When one electron-hole
pair is changed into one LS state and one HS state, the energy
is changed as �Eeh→LH ≡ (ELS

MF + EHS
MF) − (Ee

MF + Eh
MF) =

−U ′ which is negative, i.e., an energy loss. This energy is
compensated for by the kinetic energy of the hole and electron
states, which are not related to the pair-annihilation processes.
This is confirmed in the DOS at τ tA = 900 [see Fig. 14(d)];
the hole part of the DOS in the B-orbital band distributes not
only to the top of the band, but also down to the middle of
the band. This indicates an increasing of the kinetic energy of
holes with time.

In the last part of this section, we examine, on the
time-evolution of the photoinduced HS generation, roles of
the relativistic spin-orbit (SO) interaction which breaks the
spin angular-momentum conservation. Here we mimic the SO
interaction in the 3d orbitals as follows:

HSO = iξ
∑

i

(c†ia↑cib↓ + c
†
ia↓cib↑ − c

†
ib↑cia↓ − c

†
ib↓cia↑),

(38)

with the SO interaction constant ξ . It is demonstrated that when
this interaction acts on the LS state, the HS state is created as
follows:

HSOc
†
ib↑c

†
ib↓|0〉 = −iξ (c†ia↑c

†
ib↑ − c

†
ia↓c

†
ib↓)|0〉. (39)

Numerical results of the time evolutions of NHS and Nh are
presented in Fig. 15, where the SO interaction constant is taken
to be ξ = 0 and 0.3tA. Before τ = 200t−1

A , the SO interaction
effects are not seen in NHS. However, beyond τ = 200t−1

A ,
NHS starts to decrease in the case of a finite ξ . The observed
reduction of the HS state in the case of finite ξ is due to the
transition from the HS to LS states through the SO interaction,
as shown schematically in Fig. 15(b). This result indicates
that effect of the SO interaction on the spin-state transition is
destructive rather than constructive.

V. DISCUSSION AND CONCLUSION

In this section, we remark on (i) the connection between
the calculated results in the photoexcited metastable state
and the time-dependent simulation in the photoexcited state,
which are presented in Secs. III and IV, respectively, and (ii)
the implications of the present theoretical results for recent
experiments.

In Sec. IV, we show in the time-dependent simulation that
a pair annihilation of photodoped electron and hole generates
an HS state. In this scheme, we consider the stability of the
HS state and the role of the photodoped hole. The correlation
between the local HS state and the hole state around the local
HS state is examined numerically. We focus on the relationship
between the number density of the local HS state at time τ ,
NHS

iσ (τ ), and that of the hole state around the site i at time τ ′
denoted as ρiσ (τ ′) ≡ ∑′

j Nh
jσ (τ ′), where

∑′
j is a summation

for the NN sites of i. Data sets of ρiσ (τ ) and NHS
iσ (τ + �τ )

with �τ = 10t−1
A are obtained in 100 times simulations with

different initial states. Figure 16 shows a positive correlation
between them. In particular, in the region of high hole density,
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FIG. 15. (Color online) (a) The numbers of the HS state and
the hole state in the model with the spin-orbit (SO) interaction. A
two-dimensional N = 10 × 10 site cluster with a periodic boundary
condition is adopted. The parameters are chosen to be U = 4J , U ′ =
2J , J = 3.1tA, � = 10tA, tB = 0.05tA, and Nph = 10. Ten data sets
with different initial values for the time evolutions are averaged. (b)
Schematic picture of the transition between the HS state and the LS
state due to the SO interaction.

ρiσ (τ ) � 0.1, there are little data for small NHS
iσ (τ + �τ ). On

the other hand, in the region of low hole density, ρiσ (τ ) �
0.1, the value of NHS

iσ (τ + �τ ) distributes. These results are
interpreted as indicating that in the case where the hole density
around the photoinduced HS state is low, the probability of the
survival of the HS state number is randomly distributed. On
the other hand, the HS states surrounded by many holes have
a long lifetime. These relations between the photodoped hole
and the HS state are consistent with the results in Sec. III,
where the HS state is stabilized by forming the HS-hole bound
state.

Next we compare the present calculated results with the
experimental data reported in Ref. 34. As introduced previ-
ously, the key points in the optical pump-probe experiments
in RBaCo2O6−δ are (a) a photoinduced metallic state that is
different from the high-temperature metallic state, and (b) that
this photoinduced state strongly depends on the R species.
From the calculated results, we propose that the observed
metallic state can be attributed to the HS-hole bound state.
We note that since the HS-hole bound state is a local object,
the present results obtained in small clusters are considered
to be applicable to cobalt oxides. The experimental spectral
weight induced by the photon pumping is interpreted to be the
dipole transition in the bound state. We have checked using
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FIG. 16. (Color online) Correlation between the number density
of the local HS state at time τ + �τ , NHS

iσ (τ + �τ ), and the number
density of the hole state around the site i at time τ , ρiσ (τ ). We take
�τ = 10/tA. A two-dimensional N = 10 × 10 site cluster with the
periodic boundary condition is adopted. The parameters are chosen to
be U = 4J , U ′ = 2J , J = 3.1tA, � = 10tA, tB = 0.05tA, Nph = 10,
and �τ = 10t−1

A .

the exact-diagonalization method for a small-size cluster that
a clear bound state between thermal hole carriers and the HS
states is not stabilized at finite temperatures.36 It is well known
that in perovskite crystal, the electron transfer intensity is
systematically controlled by the R species through a changing
of the Co-O-Co bond angle. The smaller the ionic radius
of the R ion, the smaller the eg bandwidth. With increasing
ionic radius from Tb to Sm, the photoinduced metallic state
is increasingly evident in experimental optical conductivity
spectra. These data correspond to the calculated results in
the phase diagram in Fig. 4. The increasing of the transfer
integral of the A band, equivalent to the decrease of �/tA, is
indicated by the arrow in this phase diagram. The system is
transferred from the phase, where the spin-state is not changed
by photoexcitation, to the phase, where the HS state is induced
by photoirradiation. This consistency between the theory and
the experiments is further evidence of the existence of the
photoinduced HS-hole bound state.

Finally, we briefly discuss the relation between the present
photoinduced HS-hole bound state and the phase separation
in cobaltites induced by chemical carrier doping. A number of
experiments have suggested spatial segregation of the hole-rich
FM metallic and hole-poor insulating regions in lightly hole
doped La1−xSrxCoO3. This is believed to be the origin of

observed giant magnetoresistance phenomena. Theoretical
calculations have shown that an inhomogeneous electronic
structure is unstable against a phase separation of the HS
FM and LS insulating phases.33,40,41 As well as the present
finding of the photoinduced HS-hole bound state, the phase
segregation induced by chemical doping is attributed to the
energy balance where the crystal-field energy and the magnetic
and kinetic energies due to the double exchange interactions
are fully gained in the LS insulating phase and the HS metallic
phase, respectively, in comparison with the homogeneous
mixed spin-state phase. We found in our previous work33

that the bandwidth in the B band is essential to stabilize
the chemically induced phase separation. This tendency is
similar to the present results shown in Fig. 8 where the
photoinduced bound state is realized in the region of small
tB . In contrast, there is a discrepancy between the two results,
i.e., a macroscopic scale of the phase separation and the local
bound state. Further investigations will be required to reveal
detailed connection between the two phenomena.

In conclusion, we have studied the photoinduced spin-state
change in a correlated electron system. The photoinduced
metastable state was examined in the effective Hamiltonian
which is derived by the two-orbital Hubbard model. By
photoirradiation into the LS phase near the phase boundary
with a mixed phase, the HS state is induced and is stabilized by
forming a bound state with a photodoped hole state. An optical
transition inside this bound state appears. A time-dependent
simulation of the photoexcited state was also performed on the
two-orbital Hubbard model in the time-dependent mean-field
scheme. A pair annihilation of the photodoped electron and
hole states generates the HS state. This process is reflected in
the time-dependent DOS. The present results propose a new
state of photoexcited matter in correlated electron system with
multiple degrees of freedom.
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APPENDIX A: EXCHANGE CONSTANTS IN EFFECTIVE
HAMILTONIAN FOR THE INITIAL STATE

In this appendix, explicit formulas of the exchange con-
stants in the effective Hamiltonian for the initial state, given in
Eq. (10), are presented. These are represented by the energy
parameters in the original two-orbital Hubbard model as

JHH = t2
A + t2

B

U + J
, (A1)
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JLL = 4f 2
Bf 2

A

(
t2
A + t2

B

)
2U ′ + 2�J − U − J

, (A2)

JHL = (t2
A + t2

B)

(
f 2

B

U ′ + �J − �
+ f 2

A

U ′ + �J + �

)
, (A3)

J++ = 2tAtBfBfA

(
1

U + J
+ 1

2U ′ − U − J + 2�J

)
, (A4)

J+− = 2tAtB

(
f 2

B

U ′ + �J − �
+ f 2

A

U ′ + �J + �

)
, (A5)

where we define �J = √
�2 + J 2.

APPENDIX B: EFFECTIVE HAMILTONIAN FOR THE
PHOTOEXCITED METASTABLE STATE

In this appendix, explicit formulas of the effective Hamil-
tonian for the photoinduced metastable state are presented.
Matrix elements in terms of the electronic states in NN sites are
shown. These are classified by the electron number n and the z

component of the total spin-angular momentum Sz as H(n,Sz).
The wave functions in the two sites are denoted as |ψi,ψj 〉. In
the following notation, each term in the Hamiltonian in Eq. (17)
is given as Heh = H(4,0) + H(4,1), He = H(5,3/2) + H(5,1/2),
and Hh = H(3,3/2) + H(3,1/2).

(1) (n = 3, Sz = 3/2)

H(3,3/2) =
(

0 tA

tA 0

)
. (B1)

The basis set is {∣∣ψh↑,ψH+1
〉 ∣∣ψH+1,ψH↑

〉}.
(2) (n = 3, Sz = 1/2)

H(3,1/2)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−JhH
JhH√

2
0 tA√

2
0 0√

2JhH − JhH

2
tA√

2
tA
2 0 0

0 tA√
2

−JhH
JhH√

2
0 0

tA√
2

tA
2

√
2JhH − JhH

2 0 0
0 0 0 0 −JhL f 2

BtB

0 0 0 0 f 2
BtB −JhL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(B2)

where

JhH = t2
A

4J
+ t2

B

U + U ′ + t2
Bf 2

B

� + J + U − U ′ − �J

+ t2
Bg2

B

� + J + U − U ′ + �J

, (B3)

JhL = t2
Bf 2

Bg2
B

2�J

+ t2
Bf 2

A

� + 2U ′ − J + �J

+ 3f 2
At2

A

2

1

� − U + U ′ + �J − J

+ 3f 2
At2

A

2

1

� − U + U ′ + �J + J
, (B4)

with

gB =
⎡⎣1 +

(
�

I
+

√
1 + �2

I 2

)2
⎤⎦−1/2

. (B5)

The basis set is {|ψh↓,ψH+1〉,|ψh↑,ψH0〉,|ψH+1,ψh↓〉,|ψH0,

ψh↑〉,|ψh↑,ψL〉,|ψL,ψh↑〉}.
(3) (n = 4, Sz = 1)

H(4,1) =
(

Jeh1 αehJeh1

αehJeh1 Jeh1

)
, (B6)

where

Jeh1 = (t2
A + t2

B)

(
f 2

B

U ′ − � + �J

+ g2
B

U ′ − � − �J

)
, (B7)

and

αeh = 2tAtB

t2
A + t2

B

. (B8)

The basis set is {|ψe↑,ψh↑〉|ψh↑,ψe↑〉}.
(4) (n = 4, Sz = 0)

H(4,0) = 1

2

⎛⎜⎝Jeh+ Jeh− 0 0
Jeh− Jeh+ 0 0

0 0 Jeh+ Jeh−
0 0 Jeh− Jeh+

⎞⎟⎠

+ αeh

2

⎛⎜⎝ 0 0 Jeh+ Jeh−
0 0 Jeh− Jeh+
Jeh+ Jeh− 0 0
Jeh− Jeh+ 0 0

⎞⎟⎠, (B9)

where Jeh± = Jeh1 ± Jeh2 and

Jeh2 = (
t2
A + t2

B

)( f 2
B

U ′ − �+�J − 2J
+ g2

B

U ′ − �−�J − 2J

)
.

(B10)

The basis set is {|ψe↓,ψh↑〉,|ψe↑,ψh↓〉,|ψh↑,ψe↓〉,|ψh↓,ψe↑〉}.
(5) (n = 5, Sz = 3/2)

H(5,3/2) =
(

0 tB
tB 0

)
. (B11)

The basis set is {|ψe↑,ψH+1〉,|ψH+1,ψe↑〉}.
(6) (n = 5, Sz = 1/2)

H(5,1/2)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−JeH
JeH√

2
0 − tB√

2
0 0

JeH

√
2 − JeH

2 − tB√
2

− tB
2 0 0

0 − tB√
2

−JeH
JeH√

2
0 0

− tB√
2

− tB
2 JeH

√
2 − JeH

2 0 0
0 0 0 0 −JeL −f 2

BtA
0 0 0 0 −f 2

BtA −JeL

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(B12)
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where

JeH = t2
B

4J
+ t2

A

U + U ′ + 2J
+ t2

Af 2
B

� + U − U ′ + J − �J

+ t2
Ag2

B

� + U − U ′ + J + �J

, (B13)

and

JeL = t2
Af 2

Bg2
B

2�J

+ t2
Af 2

A

� + 2U ′ + J + �J

+ f 2
At2

B

2

3

� − U + U ′ + �J − J

+ f 2
At2

B

2

1

� − U + U ′ + �J + J
. (B14)

The basis set is {|ψe↓,ψH+1〉,|ψe↑,ψ0〉,|ψH+1,ψe↓〉,|ψH0,

ψe↑〉,|ψe↑,ψL〉,|ψL,ψe↑〉}.

APPENDIX C: HARD-CORE TWO-FERMION MODEL

In this appendix, we introduce the hard-core two-fermion
model. As shown in Sec. III C, this model well reproduces
the optical absorption spectra in the photoinduced metastable
state, when the HS-hole bound state is not induced. The hard-
core two-fermion model is defined by

HHC = −tA
∑
〈ij〉

(a†
i aj + H.c.) − tB

∑
〈ij〉

(b†i bj + H.c.)

− tex
∑
〈ij〉

(a†
i b

†
j biaj + H.c.), (C1)

where ai and biare the spin-less fermion operators at site
i and describe annihilations of the electron state and the
hole state, respectively. We take a condition of a

†
i b

†
i = 0.

The first and second terms represent kinetic motions of the
electron and hole states in the LS phase, respectively, and the
third term represents an exchange of the electron and hole
states.

This model is derived in the limiting case of � � I

in the original Hamiltonian as follows. From Eqs. (4)–(6),
we have |ψL〉 = c

†
B↑c

†
B↓|0〉 which is set to be a vacuum,

|0̃〉, in this model. The electron and hole states are defined
from this vacuum as |ẽ〉 = a

†
i |0̃〉 and |h̃〉 = b

†
i |0̃〉, respectively.

The matrix elements for the exchange of the electron (hole)
and LS states, corresponding to the first (second) term in
Eq. (C1), are given by tAf 2

B ∼ tA (tBf 2
B ∼ tB) from Eqs.

(B2) and (B12). The exchange of the electron and hole
states, corresponding to the last term in Eq. (C1), are given
in the matrix elements in Eqs. (B6) and (B9). We confirm
numerically that this contribution to the optical spectra is
much smaller than other terms, and set to be a small
constant tex = 10−10tA in the numerical calculation. In this
effective model, the current operator along an α direction is
given by

jα
HC = itA

∑
i

(a†
i ai+α − H.c.) − itB

∑
i

(b†i bi+α − H.c.).

(C2)
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